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Quantum oscillations of photocurrents in HgTe quantum wells with Dirac and parabolic dispersions
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We report on the observation of magneto-oscillations of terahertz radiation induced photocurrent in
HgTe/HgCdTe quantum wells of different widths, which are characterized by a Dirac-like, inverted, and
normal parabolic band structure. The photocurrent data are accompanied by measurements of photoresistance
(photoconductivity), radiation transmission, as well as magnetotransport. We develop a microscopic model of a
cyclotron-resonance assisted photogalvanic effect, which describes main experimental findings. We demonstrate
that the quantum oscillations of the photocurrent are caused by the crossing of Fermi level by Landau levels
resulting in the oscillations of spin polarization and electron mobilities in spin subbands. Theory explains a
photocurrent direction reversal with the variation of magnetic field observed in experiment. We describe the
photoconductivity oscillations related with the thermal suppression of the Shubnikov–de Haas effect.
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I. INTRODUCTION

The physics of relativistic Dirac fermions in semicon-
ductors has became a topical field of condensed matter
due to their unique electronic, optic, and optoelectronic
properties. One can distinguish two groups of such materials,
characterized by either weak spin-orbit coupling like graphene,
for recent reviews see Refs. [1–3], or by rather strong spin-orbit
interaction, typical for the most of topological insulators,
for reviews see Refs. [4–6]. Among the representatives of
the latter group, the HgTe-based crystalline structures have
attracted particular attention, because they allow one to
fabricate two- and three-dimensional topological insulators
[7–16]. In this very system, one can obtain Dirac-like, inverted,
and normal energy dispersions without changing the material
[7,8,17–32]. Thus, investigating various electronic properties
in HgTe-based quantum wells with different thicknesses one
can address similarities and differences in phenomena excited
for different types of electron energy spectra.

Here we report on the complex study of photocurrent,
photoresistance, optical transmission, and electron transport
in HgTe quantum wells with the thicknesses ranging 5–21 nm
where possible variants of energy spectrum are realized. While
the terahertz (THz) radiation induced photogalvanic currents
[33–36] in HgTe quantum wells (QWs) subjected to a classical
magnetic field B are studied in detail in Refs. [19,29], our
paper focuses on the observation and analysis of quantum
oscillations in the cyclotron-resonance-assisted photocurrent
excited by THz laser radiation. We show that the photocurrent
quantum oscillations, similar to the de Haas–van Alphen
and Shubnikov–de Haas effects, stem from the consecutive
crossings of Fermi level by Landau levels, but are drastically
enhanced due to the cyclotron resonance (CR). We discuss the
microscopic origin of the photocurrent in all three cases of
electron energy dispersion and demonstrate that it is caused
by the magnetogyrotropic photogalvanic effect [37]. While
the main features of the phenomena, such as 1/B-periodic
oscillations superimposed by the CR resonance, are very

general and the effect is of the same order of magnitude for all
studied samples, strong peculiarities for Dirac fermions have
been observed. Particularly, as a distinguishing feature of the
linear spectrum, cyclotron resonance and quantum oscillations
in the photocurrent are obtained simply by the variation of the
carrier density in a QW.

II. SAMPLES, MAGNETOTRANSPORT,
DATA AND METHODS

A. Samples

The experiments are carried out on doped (013)-oriented
MBE grown Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te single QW
structures [38] with different widths, Lw, of 5, 6.6, 8, and
21 nm, mobilities of about 105 cm2/(V s) at T = 4.2 K and
carrier densities n in the range 5×1010–7.5×1011 cm−2. In
HgTe, an increase of the QW thickness results in the qualitative
change of the band structure [7,8], starting with a normal
parabolic dispersion (5 nm QW), switching to Dirac cones
(6.6 nm) and then to an inverted, close to parabolic, band
structure (8 and 21 nm). Besides the structures with pure
HgTe QWs, we also studied Hg0.86Cd0.14Te QWs with the
same barriers but containing 14% Cd in the QW layer. The
most important difference of such QWs, compared to that
made of pure HgTe, is that the transition from a normal to an
inverted energy spectrum is observed for wider QWs [21,27].
This fact allows us to study the same phenomena in material
with inverted or noninverted band structures in QWs of the
same thickness, here Lw = 8 nm.

The samples are prepared in different geometries including
Hall bar structures, without a gate and with a semitransparent
gate, as well as square-shaped samples of 5×5 mm2 size.
While the square-shaped large-size structures require van
der Pauw geometry for transport measurements, they are
prepared in order to enable simultaneous measurements of
the photoresponse and radiation transmission. The typical
structure designs and the ohmic contacts positions for Hall-bar
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FIG. 1. (Color online) Experimental geometries of photocurrent
measurements for Hall bar- and square-shaped samples in (a) and (b),
respectively, for (c) photoresistance, as well as (d) transmission.

and square-shaped samples are shown in Fig. 1. Note that for
the square-shaped samples eight ohmic contacts have been
prepared in the middle of the edges and on the corners
of the structure. For magneto-optic and magnetotransport
experiments a magnetic field B up to 7 T is applied normal to
the QW plane.

B. Magnetotransport data

In all samples well-pronounced Shubnikov–de Haas (SdH)
oscillations of static conductivity, see dashed lines in Figs. 2–6,
and quantum Hall plateaus (not shown) have been detected.
Magnetotransport has been measured in a four-terminal con-
figuration applying slowly modulated bias (f = 12 Hz, 1 V)
to the sample. The carrier densities n at 4.2 K are given in
Table I.

At high magnetic field, SdH oscillations corresponding
to both even and odd filling factors and having similar
amplitude are observed in all samples characterized by almost
parabolic dispersion, see Figs. 2–5. This indicates that the
absolute value of the Zeeman splitting |�Z| is comparable
to the energy difference between neighboring levels �E =

(a)

(b)

FIG. 2. (Color online) Photosignals obtained for an ungated
8-nm HgCdTe Hall bar sample 2 excited by linearly polarized
radiation as a function of magnetic field B. Panel (a) shows the
normalized by the radiation power photosignal Ux/P induced in the
unbiased sample, and panel (b) presents the photoresistance response
�Rxx measured in the biased sample. Dashed curves show SdH
oscillations of resistivity Rxx .

�ωc − |�Z|. Here �Z = gμBB with g being the effective
electron g factor, μB being the Bohr magnetron, B = |B|
being the magnetic field directed along the sample normal,
the cyclotron frequency ωc = |eB|/mcc, with carrier charge
e, speed of light c, and the cyclotron mass mc. The latter
is given by mc = �

2kdk/dE, where k and E = E(k) are
wave vector and energy, respectively. In the particular case of
linear energy dispersion characterized by a constant velocity
vDF the cyclotron mass mc depends on the Fermi energy
EF =√

2πn(�vDF) as mc = EF/v
2
DF [40].

Measuring the SdH oscillations in samples with parabolic
dispersion subjected to low magnetic fields we detect either
even or odd numbers of minima, depending on the electron
density of the sample. This is caused by the fact that at low
magnetic fields the distance between neighboring levels �E

is smaller than the level broadening caused by the electron-
scattering processes. Hence, even minima are observed if the
absolute value of the Zeeman splitting |�Z| is smaller than
�E. Such a behavior is detected, e.g., for magnetic fields
B � 2.5 T in the Hall bar 8-nm Hg0.86Cd0.14Te sample 2 having

TABLE I. Parameters of the investigated samples at T = 4.2 K. Second and third columns show the Hg contents in quantum well and QW
width. The transport scattering times τtr have been evaluated from the electron mobility and τCR have been estimated from full width at half
maximum of radiation transmittance measurements under the cyclotron resonance conditions. Carrier densities given for samples 3 and 6 are
obtained by optical doping. For that the structures were illuminated for time till with red LED. Magnetotransport measurements carried out on
gated Hall bar sample 4 show that the transport relaxation time in this sample increases with the rising carrier density as τtr ∝ √

n. This result
is in full agreement with the theory for systems characterized by the linear dispersion and short-range scattering; for details see Refs. [28,39].

Sample Hg (%) Lw (nm) Design till (s) n (1011 cm−2) τCR (ps) τtr (ps)

1 100 5 square 2.4 0.29 0.24
2 86 8 Hall bar 7.5 0.74
3 100 6.6 square 80 1.1 0.44 0.59
4 100 6.6 gated Hall bar 0.5–4.5 0.82 at n = 1011 cm−2

5 100 8 square 2.4 0.68 0.65
6 100 8 square 80 3.2 0.76 0.68
7 100 21 square 1.7 1.4 1.58
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FIG. 3. (Color online) Photosignal normalized by the radiation
power, Ux/P , for the 8-nm pure HgTe QW square sample 5, excited
by σ+ radiation vs magnetic field B at (a) T = 4.2 K and (c) T = 40 K.
Latter data are shown for two different frequencies, 2.54 THz (red)
and 1.64 THz (blue). Panel (b) shows the change of the radiation
transmission upon sweeping magnetic field. The data are obtained
for f = 2.54 THz and are given in arbitrary units. Black dashed
curve in panel (a) shows SdH oscillations of resistivity Rxx .

high electron density n = 7.5×1011 cm−2; see Fig. 2. The
decrease of electron density results in the lowering of the
Fermi energy and, correspondingly, increase of the electron

(a) (b)

(c)

FIG. 4. (Color) Photoresistance and SdH data for square sample
5 with Lw = 8 nm. (a) Longitudinal resistance measured with
(red/solid) and without (black/dotted) cw THz radiation. (b) Green
curve shows photoresistance, �Rxx , for dc bias and modulated
radiation (method 1), red curve shows �Rxx for ac bias and
nonmodulated radiation (method 2). (c) Measured �Rxx (second
method, left scale) and theoretical fits (three curves corresponding
to different heating rates; arb. units). Dashed lines marked as “CR”
in panels (b) and (c) show calculated cyclotron resonance absorption
(arb. units).

(a) (b)

(c) (d)

FIG. 5. (Color online) Photosignal normalized by radiation
power Ux/P (left scale) and SdH oscillations (right scale) for four
different QW widths, (a) Lw = 5 nm, (b) Lw = 8 nm, (c) Lw = 21 nm,
and (d) Lw = 6.6 nm measured for two temperatures, T = 4.2 K
(blue lines) and T = 40 K (dotted red lines). Grey lines indicated as
“CR” show the change of the radiation transmission upon sweeping
magnetic field measured at T = 4.2 K. The data are given in arbitrary
units.

g-factor absolute value [34]. As a result, for |�Z| > �E only
odd numbers of minima can be detected. In fact, only odd

minima in a certain magnetic field range have been detected
in samples 1, 5, and 7, which all have low electron density
n < 2.5×1011 cm−2. This is seen in magnetotransport data
obtained in, e.g., 21-nm QWs for magnetic fields lower than
1.5 T as demonstrated in Fig. 5(c).

For the particular case of the linear dispersion, the cyclotron
mass depends on the electron energy yielding nonequidistant
Landau levels [1,41]. The SdH oscillations develop at the
threshold field of 1.2 T which corresponds to the filling factor
of 3; see Fig. 5(d) for sample 3 with 6.6-nm QW (van der
Pauw geometry). With the further field increasing minima with
filling factors 2 and 1 (not shown) are detected. The absence
of the detectable higher filling factors in this sample is caused
by the square-root dependence of the Landau level’s energy
being, as addressed above, characteristic for the Dirac fermion
system. Higher filling factors up to 7, both odd and even,
however, become visible in the carrier density dependence of
the longitudinal resistance measured at a constant magnetic
field in a gated 6.6-nm QW Hall bar sample 4; see Fig. 6. We
note that the low-field regime where the broadening of energy
levels exceeds by far the distance between them is not realized
in all studied 6.6-nm samples.
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(a)
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FIG. 6. (Color online) Normalized photosignals (left scale) and
longitudinal resistance Rxx (right scale) as functions of the electron
density (bottom scale, for the corresponding gate voltage Ug see
top scale) measured for two different magnetic field values, B = 2 T
[panel (a)] and 1.5 T [panel (b)]. Grey lines marked as “CR” in panels
(a) and (b) show radiation absorption calculated after Eq. (21) for two
values of magnetic field B = 2 T and B = 1.5 T, respectively. Note
that absorption is given in arbitrary units and all parameters used in
the calculations are taken from experiments on magnetotransport and
optical transmission performed for sample 4. The velocity of Dirac
fermions vDF = 7.6×105 m/s for these calculations is taken close
to that experimentally determined in Ref. [29] and τtr = 0.82 ps at
n = 1011 cm−2. (c) Magnetic field position of maximum photosignal
as a function of electron density, showing a nCR ∝ B2

CR dependence.
Solid lines in panels (a) and (b) show radiation absorption calculated
after Eq. (21). Solid line in panel (c) shows nCR vs B dependence
calculated after Eq. (2) applying the above parameters.

C. Methods

For optical excitation we apply a cw CH3OH laser emitting
a radiation with frequency f = 2.54 THz (wavelength λ =
118.8 μm) and f = 1.62 THz (λ = 184 μm) [18,42]. The
incident radiation power P ≈ 10 mW is modulated at about
700 Hz by an optical chopper. The radiation at normal
incidence is focused to a spot of about 1.5 mm diameter at the
center of sample. The spatial beam distribution has an almost
Gaussian profile which is measured by a pyroelectric camera
[43]. Photocurrent, photoresistance, and optical transmission
as functions of an applied magnetic field B have been studied,
applying linearly as well as right- (σ+) and left- (σ−) handed
circularly polarized radiation. The corresponding experimental
setups are shown in Fig. 1. For electro-optical measurements
the radiation induced electric current components jx,y have
been measured via a voltage drop Ux,y ∝ jx,y , picked up
across a Ri = 10 M� load resistor and applying the lock-in
technique. While the photocurrent is measured in unbiased
samples, to detect the photoresistance, we applied an external
bias voltage UB . Two methods have been used to obtain the
change of the longitudinal resistance �Rxx(B). In the first one
the photoresistive signal in response to the modulated radiation

was determined by applying a dc voltage of ±1 V to the sample.
For a preresistor of 10 M� used in these experiments this
bias voltage resulted in the current through the sample Idc =
±0.1 μA. Both photoresistive and photocurrent responses
have been extracted from the total photovoltage making use of
the fact that the former changes its sign upon reversal of the
bias polarity. Consequently, the half of the difference between
the photosignals for positive and negative bias voltages allows
one to obtain the photoresistance, whereas the half of their sum
yields the bias voltage independent signal caused by the THz-
induced photocurrent. In the second method, also providing
the photoresistance �Rxx(B), we measure the longitudinal
sample resistance by applying modulated 1-V bias voltage
(the corresponding current is about 0.1 μA) in the dark and
under the illumination with nonmodulated THz radiation.

III. EXPERIMENTAL RESULTS

In (013)-oriented QWs excitation by normally incident THz
radiation is known to result in photogalvanic [20,44] and
magnetophotogalvanic currents [19,29]. These photocurrents
have already been studied in details being out of scope of the
current paper. As addressed above here we focus on study
in depth of the magnetic field-induced oscillations of the
magnetophotogalvanic current observed at low temperatures
under the conditions of the cyclotron resonance absorption.
Note that the latter one has been widely studied in HgTe based
materials [45–51].

A. Results for parabolic dispersion

We start with the data obtained for the 8-nm Hg0.86Cd0.14Te
QWs Hall bar sample 2 and representing QWs with normal
parabolic bands order. Exciting the unbiased sample at zero
magnetic field with linearly polarized radiation we detected
the photocurrent exhibiting the characteristic behavior of
the photogalvanic effect [20,44]. Sweeping the external
magnetic field we observed that the photosignal shows the
nonmonotonous behavior superimposed with oscillations and
with a maximal signal at B ≈ 2.8 T. The data for T = 4.2 K
are plotted in Fig. 2(a). The observed oscillations correlate
with 1/B-periodic oscillations of resistivity caused by the SdH
effect, shown by black dashed lines in panels (a) and (b). The
oscillatory behavior is also detected for the photoresistance
signal, which, however, does not completely correlate with the
SdH oscillations; see Fig. 2(b). Note that while the oscillations
of photoresistance with similar features have been detected in
HgTe-based and other low dimensional systems [52–55], the
oscillations in the photocurrents generated in unbiased samples
have not been observed so far.

We attribute the observed nonmonotonic behavior of the
envelope of the photosignals, which is particularly clearly
seen in the photoresistance data of Fig. 2(b), to the cyclotron
resonance (CR). In order to verify this conjecture we switched
to large area square-shaped samples, which allow us, in addi-
tion to the photoelectric experiments, to measure the radiation
transmission. Studying the photocurrent and photoresistance in
such samples we also observed oscillations. Figures 3–5 show
the photocurrent and photoresistance responses measured in
pure HgTe QW samples of different QW widths characterized

205415-4



QUANTUM OSCILLATIONS OF PHOTOCURRENTS IN HgTe . . . PHYSICAL REVIEW B 90, 205415 (2014)

by normal (Lw = 5 nm, sample 1) and inverted (Lw = 8 nm,
samples 5 and 6, and Lw = 21 nm, sample 7) band order. These
figures also present the longitudinal resistance measured in the
van der Pauw geometry and the radiation transmission. The
photocurrent and photoresistance signals detected at liquid
helium temperature in sample 5 with 8-nm QW, which is
characterized by the almost parabolic dispersion with inverted
band structure order, are shown in Figs. 3(a) and 4(b). Like in
the data for sample 2 characterized by normal band order
discussed above, see Fig. 2, the photocurrent detected in
sample 5 exhibits multiple sign inversions and is enhanced in
the vicinity of the cyclotron resonance detected by the radiation
transmission; see Fig. 3(b). Similar behavior is detected in the
photoresistance �Rxx ; see Fig. 4(b). Photoresistance data
are obtained applying two methods described in Sec. II C.
In the first one �Rxx has been obtained applying dc bias
voltage of either +1 or −1 V and modulated radiation.
In the second method we measured longitudinal resistance
Rxx in the dark and in the presence of unmodulated THz
radiation applying standard magnetotransport setup, Fig. 4(a),
and plotted the difference �Rxx in Fig. 4(c). The data reveal
that, while illumination does not change the period of the SdH
oscillations, it results in substantial decrease of their amplitude
in the range of magnetic fields corresponding to the cyclotron
resonance (BCR ≈ 2 T). Comparison of the photoresistance
signal obtained by these two methods, see Fig. 4(c), shows
that the results agree very well.

As the temperature increases the oscillations become less
pronounced and almost vanish for T = 40 K, so that both
signals demonstrate a single resonance peak at BCR = 1.8 T for
f = 2.54 THz and BCR = 1.2 T for f = 1.64 THz. These data
are shown for the photocurrent in Fig. 3(c). Clear resonances
at the same magnetic field strength BCR are also detected in the
transmission experiments; see Fig. 3(b) for the radiation with
f = 2.54 THz. Experiments applying right-handed circularly
polarized radiation revealed that a resonance dip is present
for the positive magnetic fields only. Switching the radiation
helicity from σ+ to σ− results in the resonance for negative
magnetic fields (BCR = −1.8 T at f = 2.54 THz, not shown).
For linearly polarized radiation being the superposition of σ+
and σ− photons, the resonance is observed for both magnetic
field polarities. All these facts provide the evidence that the
transmission dip at BCR, as well as the photosignal increase
in the vicinity of BCR, are caused by the cyclotron resonance.
From the cyclotron resonance position

|BCR| = 2πf
mcc

|e| (1)

and its full width at half maximum, both determined from
the radiation transmission data, we obtain effective mass
mc = 0.02m0 and the scattering time τCR = 0.68 ps. Note that
the latter value correlates well with the momentum scattering
time τtr, obtained from mobility; see Table I. Small deviations
between these values detected in our experiments can be
related with electron gas heating and radiative damping of the
CR [56,57]. The same results are observed for other samples
with inverted (samples 6 and 7) and noninverted (sample 1)
parabolic dispersion; see for typical curves Figs. 5(a)–5(c). It
is seen that all samples show an oscillatory behavior of the
photocurrent at T = 4.2 K and a single peak at T = 40 K; the

latter corresponds to the cyclotron resonance position verified
by the radiation transmission shown in the same figures.

B. Results for a Dirac fermion system

Now we turn to the measurements carried out on 6.6-nm
QW samples 3 and 4, which are characterized by a linear
energy spectrum [23,29]. In this system, carrier type and
density have been controllably changed either by a gate voltage
or optical illumination with red light-emitting diode (LED)
in ungated samples (optical doping); see Table I where the
illumination time till is indicated. The optical doping has
been obtained using the persistent photoconductivity effect
well known for HgTe/HgCdTe QWs [23,25,29]. Figure 5(d)
shows the magnetic field dependence of the photocurrent
for sample 3. Similar to the data described above and
obtained for the structures with almost parabolic dispersion,
see Sec. III A, the photocurrent measured at T = 4.2 K exhibits
oscillations correlating with the SdH oscillations, and the
sample transmission has a clear cyclotron resonance dip at
magnetic field B = 1.2 T. Increasing the carrier density by the
illumination with red LED we observed that the CR position,
BCR, shifts to higher values by several times (not shown). The
shift of the resonance caused by energy dependence of the
cyclotron mass for the Dirac fermion systems and variation of
the Fermi energy upon the illumination [29,41] is described
by (cf. Ref. [40]).

|BCR| = (2π )3/2√n�cf

|e|vDF
. (2)

To obtain a fine tuning of the carrier density we performed
additional measurements on the gated samples subjected to
a constant magnetic field. The photocurrent together with
the corresponding SdH oscillations detected in sample 4 is
shown in Fig. 6 for two values of magnetic field. Besides the
observed correlation between oscillations of the photocurrent
and SdH, the figure indicates the nonmonotonic behavior of
the envelope function with the maximum at a density denoted
as nCR. Performing these measurements for different values
of the static magnetic field B, we observed that nCR increases
with rising magnetic field as nCR ∝ B2; see Fig. 6(c).

IV. THEORY

The experiments discussed above demonstrate that pho-
tocurrent and photoresistance exhibit oscillations similar to the
SdH oscillations of longitudinal resistivity. The oscillations,
detected for all three types of electron dispersion, are enhanced
at the cyclotron resonance and vanish with increasing the tem-
perature, showing in this case only one peak in the signal being
caused by the cyclotron resonance. In the following we present
the theory describing the origin of the photogalvanic effect in
classically strong magnetic fields where the electron cyclotron
frequency ωc exceeds the electron momentum scattering rate
1/τtr; this condition is certainly fulfilled for B > 0.5 T in
all our samples. We show that the photocurrent oscillations,
similarly to the de Haas–van Alphen and Shubnikov–de Haas
effects, stem from the consecutive crossings of Fermi level
by Landau levels. The peculiarities of quantum oscillations as
functions of magnetic field and electron density are discussed.
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A. Oscillations of photogalvanic current
in quantizing magnetic field

We begin with a model of the photocurrent generation
developed on the basis of the spin-dependent asymmetric
energy relaxation (relaxation mechanism [58,59]). In the
framework of this model the Drude absorption of THz radiation
leads to the electron gas heating [29]. The subsequent energy
relaxation of the heated carriers in such materials becomes
spin dependent, because the matrix element of electron scat-
tering by phonons contains asymmetric spin-dependent terms
[58,60,61]. Figure 7 sketches the cyclotron motion of electrons
in the presence of asymmetric energy relaxation in two spin
subbands sz = ±1/2 in the case of the classically strong
magnetic field, ωcτtr � 1. We recall that ωc = |eB|/mcc

is the cyclotron frequency, c is the speed of light, mc is
the cyclotron mass given by mc = �

2kdk/dE, E = E(k) is
the electron dispersion, and τtr is the momentum (transport)

x x

spin-up

x x

spin-down

(a)

(b)

FIG. 7. (Color online) Mechanism of the photocurrent formation
in the classically strong magnetic field, ωcτtr � 1 in the spin-up
subband (a) and in the spin-down subband (b). Solid circles depict the
cyclotron orbit in the real space for the particle with given energy E.
Cyclotron radius is Rc. Dashed and dotted red/blue circles depict
cyclotron orbits for the electron after inelastic scattering by a phonon.
Two possibilities for the scattering event are shown by crosses: at
ky + k′

y > 0 and at ky + k′
y < 0. Due to change of the cyclotron

radius, electron shifts in the real space by �x = |Rc − R′
c|, where R′

c

is the cyclotron radius after the collision. The scattering processes are
equally probable if wave-vector-dependent contribution ∝(ky + k′

y)
is neglected in the matrix element, Eq. (3). In this case any net
shift of electron is absent. Allowance for the wave-vector-dependent
contribution in Eq. (3) makes scattering with ky + k′

y > 0 more
probable giving rise to the flow in the spin-up subband directed along
x axis.

scattering time. The classical cyclotron orbits of electrons
in the spin-up subband are shown by closed circles of the
cyclotron radius Rc = v/ωc, where v ≡ v(k) = �

−1∂E/∂k is
the electron velocity. Without scattering the electron moves
along the large circle shown by the solid line. We consider the
dominating phonon-assisted relaxation process due to which
the electron energy decreases. The scattering results in the
displacement of the orbit center [62–64], and the orbits of
smaller diameters are shown by dashed and dotted lines for
two selected scattering points on the orbit with positive and
negative values components of the wave vector ky .

To take into account the spin-dependent scattering asymme-
try we consider k-linear terms in the electron-phonon interac-
tion matrix elements for spins aligned along the magnetic field
B, which as we show below, are relevant for the photocurrent
generation [65]. The corresponding matrix element has the
form

Vk′k = V0 + V1σz(ky + k′
y), (3)

where the first term in the right-hand side describes the con-
ventional spin-independent scattering, σz is the Pauli matrix,
k and k′ are the initial and final wave vectors. We emphasize
that the above terms are allowed for gyrotropic media only
[58,66,67] and have been considered for HgTe-based quantum
wells with both parabolic [19] and linear dispersions [29].
Evidently, the shift of orbits for positive and negative ky

are opposite, resulting in the shifts of electrons parallel or
antiparallel to the x axis. For the fixed spin, e.g., spin-up in
Fig. 7(a), spin dependent scattering makes the probabilities of
these events unequal [higher for ky > 0 and lower for ky < 0;
see Eq. (3)], which results in the steady electron flow along the
x axis, ix,+. For the opposite spin, see Fig. 7(b), the situation
reverses and the flow ix,− is oppositely directed. Consequently,
in the absence of Zeeman effect we obtain a pure spin current.
However, the magnetic field induced Zeeman splitting causing
unequal electron subband populations and mobilities in each
spin subband makes the magnitudes of the flows unequal
giving rise to the net dc current, jx = e(ix,+ + ix,−).

Quantum effects enter the picture as an interference of
electron waves on classical orbits yielding Landau levels. As
is well known, the quantization results in 1/B-periodic oscil-
lations of density of states and of scattering rates caused by the
crossing of the Fermi level EF by Landau levels [63,64,68].
In particular, we show that oscillations of the photocurrent
stem from periodic variation of the radiation absorption rates,
occupations of spin-up and spin-down subbands n±, and
electron scattering rates W±

k′k.
Formally, the electron fluxes in the x direction are given by

the product of elementary displacement of the charge carrier
in the real space due to the scattering event and its probability,

ix,± =
∑
k,k′

(xk − xk′ )W±
k′k, (4)

where the position of the cyclotron orbit center is given by

xk = �kx

c

|eB| . (5)

These expressions are general and valid for parabolic as
well as for linear dispersions [69]. Considering the scattering
on phonons and assuming that at low temperatures the
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thermalization between the spin branches due to electron-
electron collisions is not efficient [70], we obtain the following
expression for the total dc current:

jx = e(ix,+ + ix,−) = eβζc

|B| |E0|2[n+μ+(ω) − n−μ−(ω)],

(6)

where E0 is the complex amplitude of the incident radiation,
β = 1 for parabolic and β = 1/2 for linear energy dispersion,
μ±(ω) are the high-frequency electron mobilities in each
spin branch related with the high-frequency (ac) dissipative
conductivities as σ±(ω) = |e|n±μ±(ω), and

ζ = 2Re(V0V
∗

1 )

|V0|2
k

v(k)

is the small parameter responsible for the scattering asym-
metry [74]. It follows from Eq. (6) that the photocurrent is
proportional to the squared amplitude of the electromagnetic
field, i.e., to the radiation intensity, as well as to the radiation
absorption rate in the corresponding spin subband ∝n±μ±(ω).
We stress that Eqs. (4)–(6) hold in both classical and quantizing
magnetic fields provided that �ωc 	 EF , where EF is the
Fermi energy, if k, k′ are replaced by the appropriate quantum
numbers in the magnetic field, namely, N (the Landau-level
number) and Px = �kx − eAx/c the generalized momentum
(Ax = −By is the vector potential of the static field), and all
quantities are expressed via N , N ′, Px , P ′

x [75]. The quantum
oscillations of the photocurrent j , Eq. (6), originate from the
oscillations of n± and μ±.

It is convenient to decompose the current j as a sum of
two components: one, jn, related to the spin polarization
Sz = (n+ − n−)/2n in the system (de Haas–van Alphen
effect) and the other, jμ, related solely with the difference,
μ+(ω) − μ−(ω), of high-frequency mobilities in spin sub-
bands (Shubnikov–de Haas effect); total electron density
n = n+ + n−. To do this we rewrite the term in square brackets
in Eq. (6) in the form

Szn[μ+(ω) + μ−(ω)] + n
μ+(ω) − μ−(ω)

2
.

Then

jx = jn + jμ, (7)

where

jn = 2eζcβ|E0|2
|B| Sznμ(ω), (8)

jμ = eζcβ|E0|2
|B| n

μ+(ω) − μ−(ω)

2
, (9)

and μ(ω) = [μ+(ω) + μ−(ω)]/2. The above equations show
that the oscillatory part of the photocurrent is, in fact,
contained in the magnetic field dependence of (i) the electron-
spin polarization Sz (contribution jn), and (ii) the mobility
difference in subbands with opposite spins, μ+(ω) − μ−(ω)
(contribution jμ). Thus, below we focus on these quantities
and derive the expressions for them in the cases of QWs with
parabolic and linear energy dispersions.

B. Photocurrent in the system with parabolic dispersion

To be specific we first analyze the case of parabolic
dispersion characterized by the energy-independent effective
mass m, and, in line with experiment, the frequency range of
ω in the vicinity of the cyclotron frequency ωc.

We start with calculation of electron spin Sz determining
the first contribution to the photocurrent jn. With allowance
for the quantum oscillations (de Haas–van Alphen effect), it is
given by (cf. Ref. [76])

Sz = 1

2

∫ EF

0 [ν+(E) − ν−(E)]dE∫ EF

0 [ν+(E) + ν−(E)]dE
, (10)

where ν±(E) = ν0(E ∓ �Z/2) are the densities of states in
each spin branch with ν0(E) being the density of states per
spin found neglecting Zeeman effect. Here �Z = gμBB is
the Zeeman splitting with g being the electron Landé factor
and μB being Bohr magneton. We consider classical magnetic
fields, where �ωc 	 EF and for EF τq/� � 1. Here τq is the
quantum scattering time related to Dingle temperature, which
describes the lifetime of an electron in a given quantum state,
and is shorter than the transport time τtr for a smooth disorder
potential. Under these assumptions the density of states can be
written as [64,77,78]

ν0(E) = m

2π�2

[
1 − 2 exp

(
− π

ωcτq

)
cos

(
2π

E

�ωc

)]
, (11)

where we have taken into account the oscillating contributions
of the first order in small parameter exp (−π/ωcτq) describing
the interference of electron waves on the cyclotron orbits [63].
The spin polarization is proportional to the energy-integrated
difference of densities of states in spin-up and spin-down
subbands, Eq. (10), namely,

Sz = − 1

4EF

[
�Z − 2�ωc

π
T1 sin

(
π�Z

�ωc

)

× cos

(
2πEF

�ωc

)
e−π/ωcτq

]
. (12)

Note that hereinafter we neglect the oscillatory corrections
of higher orders in small parameters �ωc/EF 	 1 and
�Z/EF 	 1. The factor

T1 = 2π2kBTe

�ωc sinh (2π2kBTe/�ωc)
(13)

takes into account a thermal spread of the electron distribution
function with Te being the electron-gas temperature. Interest-
ingly, the oscillatory contribution to the spin polarization Sz

being proportional to the factor sin (π�Z/�ωc) is absent if
Zeeman splitting �Z is a multiple of the inter-Landau-level
distance �ωc. In this case the Landau levels in both spin
branches are aligned [79] and oscillations of spin polarization
vanish.

Now we turn to the high-frequency mobilities in each
spin subband whose difference gives rise to jμ. In line with
Refs. [64,80,81] we have for ω in the vicinity of ωc

μ±(ω) = |e|τtr/2m

1 + (ω − ωc)2τ 2
tr

[
1 + T1e

−π/ωcτq cos

(
2πEF±

�ωc

)

×F (ωτtr,ωcτtr)

]
, (14)
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with EF± = EF ∓ �Z/2 and

F (ωτtr,ωcτtr) = 2(ω − ωc)2τ 2
tr

1 + (ω − ωc)2τ 2
tr

sin 2πω/ωc

2πω/ωc

+ 1 + 3(ω − ωc)2τ 2
tr

1 + (ω − ωc)2τ 2
tr

sin2 πω/ωc

(ω − ωc)τtrπω/ωc

(15)

is the smooth (on the scale of �ωc/EF ) function of ωτtr

and ωcτtr. Here we neglect a background contribution to
the mobility resonant at ω = −ωc [82]. Equation (14) shows
that the high-frequency mobilities contain both the classical
(Drude) CR part, being proportional to τtr/[1 + (ω − ωc)2τ 2

tr ],
and 1/B-periodic oscillatory contributions resulting from
the consecutive crossing of Fermi level by Landau levels
[64,80,83].

Taking into account Eqs. (10) and (14) we can obtain from
Eqs. (8) and (9) contributions jn and jμ in the form

jn = −eζc|E0|2nμ(ω)

2EF |B|
[
�Z − 2�ωc

π
T1e

−π/ωcτq sin

(
π�Z

�ωc

)

× cos

(
2πEF

�ωc

)]
, (16)

and

jμ = e3ζc|E0|2n
2m|eB|

τtr

1 + (ω − ωc)2τ 2
tr

T1e
−π/ωcτq sin

(
π�Z

�ωc

)

× sin

(
2πEF

�ωc

)
F (ωτtr,ωcτtr), (17)

respectively. Equations (16) and (17) describe the classical
smooth part and quantum oscillations of the photocurrent in
systems with parabolic dispersion.

C. Photocurrent in the system with linear dispersion

In the HgTe-based quantum wells of critical thickness the
electron energy spectrum at zero magnetic field is linear,
E(k) = �vDFk. Our theoretical treatment demonstrates that the
basic mechanism of the photocurrent generation is the same
as in the HgTe-based QWs with normal or inverted parabolic
band structure. The photocurrent contains two contributions
jn and jμ resulting from the different populations of spin
subbands and from the difference in high-frequency mobilities
in these subbands and described by Eqs. (8) and (9), respec-
tively. In the case of linear dispersion, however, the Landau
levels are not equidistant and the quantum oscillation pattern
changes. Here we present the set of formulas which generalize
Eqs. (11)–(14) to the case of linear dispersion taking into
account, as in Sec. IV B, only first-order oscillatory contribu-
tions. The density of states assumes the form [40] (see also

Ref. [84])

ν0(E) = mc

2π�2

[
1 + 2 exp

(
− π

ωcτq

)
cos

(
πE

�ωc

)]
, (18)

where both cyclotron mass mc ≡ mc(E) = E/v2
DF and cy-

clotron frequency ωc ≡ ωc(E) = eBv2
DF/(Ec) are the func-

tions of electron energy. Under the same approximations as for
the parabolic spectrum we obtain the electron-spin polarization
in the first order in exp (−π/ωcτq):

Sz = − 1

2EF

[
�Z + 2�ωc

π
T1e

−π/ωcτq sin

(
π�Z

�ωc

)

× cos

(
πEF

�ωc

)]
, (19)

and the high-frequency mobilities in spin-up and spin-down
branches,

μ±(ω) = eτtr/2mc

1 + (ω − ωc)2τ 2
tr

[
1 − T1e

−π/ωcτq cos

(
πEF±

�ωc

)

×F (ωτtr,ωcτtr)

]
, (20)

where the function F (ωτtr,ωcτtr) is given by Eq. (15) [85]. In
Eqs. (19) and (20) one has to put E = EF in mc, ωc, τq , and
τtr. Note that in the case of linear dispersion even short-range
scattering results in different quantum (out-scattering) time τq

and transport time τtr = 2τq . Equations (19) and (20) allow
us to calculate the photocurrent contributions jn and jμ by
Eqs. (8) and (9) for the system with linear energy dispersion.

V. DISCUSSION

The theory discussed in the previous section allows us to
describe the experimental data. First we discuss the basic fea-
tures of the photocurrent in the quantum wells with parabolic
dispersion, then we address peculiarities of the quantum
wells of critical thickness, particularly, the appearance of the
cyclotron resonance in the photocurrent as a function of the
carrier density. The photoresistivity effect is discussed in
the end of this section as well.

A. Quantum oscillations of photocurrent in QWs
with parabolic dispersion

To analyze the oscillations of the photocurrent generated
in the structures with almost parabolic dispersion [86] we
calculated the individual contributions jn and jμ, as well
as the total photocurrent j = jn + jμ using Eqs. (16), (17),
and Eq. (7), respectively. Figure 8 shows the results ob-
tained using an effective mass m = 0.034m0, carrier density
n= 7.5×1011 cm−2, and the electron g factor g = −36.5, i.e.,
the parameters close to that of sample 2 with 8-nm QW.
Note that large values of electron g factors in HgTe-based
QWs were reported in Ref. [87]. Comparison of the total
photocurrent plotted in Fig. 8(c) with experimental result
for sample 2 representing QWs with the normal band order
[Fig. 2(a)] clearly shows that the main experimental features
are fully reproduced by the theoretical calculations. First of
all, both calculated and experimental signals show pronounced
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(a)

(b)

(c)

FIG. 8. (Color) Panels (a) and (b) show photocurrent contribu-
tions jn and jμ calculated for different transport times τtr after
Eqs. (16) and (17), respectively. The total photocurrent given by
the sum of jn and jμ, see Eq. (7), is presented in panel (c). Curves
1–3 are calculated for τtr = 7.4×10−13, 5×10−13, and 3×10−13 sec,
respectively. The parameters used in the calculations are chosen close
to those of sample 2: m = 0.034m0, n = 7.5×1011 cm−2, g = −36.5,
and τq = 1.3×10−13 sec. The normalization is the same for all
panels. Dashed lines show calculated cyclotron resonance absorption
profiles CR1 and CR3 obtained for τtr = 7.4×10−13 and 3×10−13 sec,
respectively. These data are given in arbitrary units with the CR
maximum almost equal to jn maximum. Dashed line in (a) shows the
first harmonic in the oscillatory part of Rxx .

oscillations accompanied with inversion of the current direc-
tion. They start to be observable in the range of magnetic
fields where the cyclotron resonance takes place [see the
dashed line in Fig. 8(a)]. Moreover, both experiment and theory
reveal that the oscillations for magnetic fields B > |BCR| are
substantial being comparable with that in the vicinity of the
cyclotron resonance. Different magnetic field behavior of the
photocurrent caused by spin polarization, jn, and that driven by
the difference of mobilities in the spin branches, jμ, provides a
way to distinguish their contributions to the total photocurrent.
Figures 8(a) and 8(b) show that, while jn almost follows the
cyclotron resonance, being slightly modulated by the periodic
sign-conserved oscillations jμ, in contrast, is characterized by
the multiple reversal of the current direction with maxima far
away from CR. Moreover, the latter contribution vanishes at
CR position. Figure 9 shows that while jn contribution to the
photocurrent achieves maximum at CR position and rapidly
decreases outside the resonance, the oscillations of this term
are almost absent. By contrast, the contribution jμ vanishes
exactly in the resonance and shows oscillations, with one
period of oscillations being pronounced beyond the resonance,
B > BCR. Experimental data shown in Fig. 2(a) reveal that
jn and jμ components of the photocurrent are comparable.

FIG. 9. Panels (a) and (b) show photocurrent contributions jn

and jμ calculated after Eqs. (16) and (17), respectively. Dotted
lines show calculated cyclotron resonance absorption. Photocurrent
contributions and CR profile are normalized to their maximum
values. Dashed line in (a) shows first-order oscillatory contribution
to Rxx . The parameters used in the calculations are chosen close to
those of sample 5: m = 0.02m0, n = 2.4×1011 cm−2, g = −41.5,
τq = 1.3×10−13 sec, τtr = 6.8×10−13 sec.

In particular, the multiple sign inversion of the photocurrent,
being the fingerprint of jμ is clearly detected demonstrating
that this mechanism dominates in the total current. The same
results are obtained for sample 5 representing structures with
the inverted band order, see Fig. 3(a), being in agreement with
the corresponding calculations, see Fig. 9.

While Figs. 8 and 9 present the calculations for a relatively
broad cyclotron resonance, Fig. 10 shows the results of
calculation for relatively narrow CR which covers only one
period of SdH oscillations, see dotted and dashed lines in
Fig. 10 for CR and SdH oscillations, respectively. This
condition is relevant to the low temperature measurements
in QWs with normal (Lw = 5 nm) and inverted (Lw = 8 and
21 nm) parabolic bands summarized in Figs. 5(a)–5(c). The

FIG. 10. (Color online) Photocurrent contributions jn and jμ

calculated after Eqs. (16) and (17), respectively. Dotted line shows
calculated cyclotron resonance absorption. Absorption and jn con-
tribution to the photocurrent are normalized to their maximum
values. Dashed line shows first-order oscillatory contribution to
Rxx . The parameters used in the calculations are chosen close to
those of sample 7: m = 0.026m0, n = 1.7×1011 cm−2, g = −41.5,
τq = 0.28×10−12 sec, τtr = 1.4×10−12 sec.
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parameters used in the calculations are chosen close to those
of sample #7. The results of the calculations describe well
the experimental findings, see Fig. 5(c) [88]. Comparison of
the calculated jn and jμ with experimental data shown in
Figs. 5(a)–5(c) demonstrates that while both contributions can
be clearly identified the main input in these structures comes
from jn. This conclusion is proved by the higher signals at
CR position as well as by a small number of the detected
oscillations [90].

Below we analyze in more detail a complex picture of
the photocurrent oscillations. We start with the photocurrent
jn, which is proportional to the electron-spin polarization
Sz, given by Eq. (16) and plotted in Figs. 8(a) and 9(a);
see also blue solid curve in Fig. 10. This contribution to
the photocurrent represents the dc current generated due to
a difference of spin-up and spin-down subbands populations
in the presence of magnetic field, see Eq. (8). The effect is
also known as a zero-bias spin separation [58] converted to the
electric current due to Zeeman effect, which has been observed
in many semiconductor low-dimensional systems; for review
see Refs. [37,67,94,95]. One can see that the dominating
input comes from a smooth nonoscillatory part which almost
follows the cyclotron resonance and is in agreement with
Eqs. (13) and (14) of Ref. [29]. However, since both Sz and
μ(ω) in Eq. (8) contain also 1/B-periodic components, the jn

contains relatively small [for exp (−π/ωcτq) 	 1] quantum
oscillations described by cos (2πEF /�ωc) superimposed over
a smooth background, as demonstrated in Fig. 8(a). Similarly
to de Haas–van Alphen and Shubnikov–de Haas effects
scattering processes and thermal spread of electron distribution
function suppress the oscillations of Sz and μ±; see Eqs. (12)
and (14). Therefore, only the smooth part of the jn contribution
remains responsible for the observed resonant photocurrent at
high temperatures T � 40 K, where oscillations vanish; see
Figs. 3(b) and 5.

Now we turn to the second contribution jμ, which results
from the magnetic field induced difference of high-frequency
mobilities in spin-up and spin-down branches; see Eqs. (9)
and (14). It is given by Eq. (17) and plotted in Figs. 8 and
Fig. 9(b) as well as by the red solid curve in Fig. 10. As seen
from the figure this contribution also oscillates as a function of
magnetic field, but compared to jn does not have any smooth
part and demonstrates multiple sign inversions. The latter is
due to the fact that the difference of mobilities μ±(ω) mainly
comes from oscillatory factors sin (2πEF /�ωc) [96]. In other
words, the direction of the jμ current is determined by the
electron flux in the spin branch with extremal density of states
at the Fermi level. As magnetic field changes, either the spin-up
or spin-down branch dominates, and the photocurrent changes
its direction. The amplitude of the oscillations of jμ comes
from two competing factors: an increase of Shubnikov–de
Haas oscillations amplitude with an increase of magnetic
field and the decrease of radiation absorption for B > BCR.
Moreover, jμ cancels at exact resonance position, B = BCR,
and, depending on the relation between the scattering times τq

and τtr and on the value of ωcτtr the photocurrent jμ can either
show oscillations for B > BCR or be suppressed. Formally, the
oscillations for B > BCR stem from an increase of quantum
parameter exp (−π/ωcτq), which governs the amplitude of the
magneto-oscillations in Eqs. (16) and (17), resulting also in

the increase of Shubnikov–de Haas oscillations amplitude in
the resistivity of the QW structure.

Theoretical Fig. 8 as well as experimental Figs. 2(a) and
3(a) show that jn and jμ contributions have at low temperatures
close magnitudes. It stems from the fact that jn contains small
parameter �Z/EF since this term is proportional to the spin
polarization Sz. By contrast, jμ contains the small quantum
parameter, namely, exp(−π/ωcτq), while Zeeman splitting �Z

enters only as a ratio �Z/�ωc, which can be on the order of
unity. For typical parameters �Z/�ωc ∼ 1, exp(−π/ωcτq) =
0.1 . . . 0.5 the contributions are comparable.

It is noteworthy that there is a phase shift between
oscillatory parts of jn and jμ contributions to the photocurrent.
Particularly, as it follows from Eq. (16), the oscillations of jn

have the same phase as or inverted phase in respect to the
Shubnikov–de Haas oscillations of resistivity given by the
factor cos (2πEF /�ωc). By contrast, according to Eq. (17),
the oscillations of jμ are given by the factor sin (2πEF /�ωc)
and are phase shifted by π/2 in respect to the Shubnikov–de
Haas oscillations.

The total photocurrent is given by the sum of jn and jμ

contributions and demonstrates the rather complex oscillatory
behavior shown in Fig. 8(c). Particularly, the oscillations are
accompanied with sign inversion, but they are superimposed
over a smooth CR-like background. An interplay of jn and
jμ contributions may result in the overall phase shift of
the photocurrent oscillations in respect to the Shubnikov–de
Haas oscillations of the sample resistivity, like that observed,
e.g., for 8-nm QW; see Fig. 3(a). It is worthwhile to stress
that in addition to the above considered photocurrent j =
jn + jμ resulting from the spin-dependent asymmetric energy
relaxation mechanism the measured photocurrent may contain
contributions caused by the spin dependent asymmetry of
optical transitions (excitation mechanism; see Ref. [58]). The
latter mechanism also results in the magneto-oscillations,
and the functional form of its individual contributions is
similar to that of jn and jμ. Hence, for detailed comparison
of experimental data and theory one needs to take into
account these additional photocurrent contributions as well as
higher-order terms in Eqs. (16) and (17) in quantum parameter
exp (−π/ωcτq), as experimental data presented in Figs. 2 and
4 reveal second harmonic in Shubnikov–de Haas oscillations
of resistivity; see also Sec. V C.

B. Quantum oscillations of photocurrent in QWs
with linear dispersion

Now we turn to the system with Dirac dispersion realized
in quantum wells of critical thickness, Lw = 6.6 nm (samples
3 and 4). The analysis performed in Sec. IV C shows that
the magnetic field dependence of the photocurrent is similar to
that in the system with normal or inverted parabolic band. This
result is in agreement with the experimental data presented in
Fig. 5(d). Particular differences, cf. different panels of Fig. 5,
are mostly quantitative due to different values of electron
densities, scattering times, effective masses, etc. Indeed, the
comparison of Eqs. (19) and (12) as well as Eqs. (20) and
(14) for the photocurrent contributions in the systems with
linear and parabolic dispersions, respectively, shows that the
differences between them are the amplitude and the phase of
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quantum oscillations. The former one is primary determined by
strong dependence of the cyclotron mass on the electron energy
in QWs of critical thickness which is almost absent in systems
with parabolic dispersion. Similarly to the systems with
parabolic dispersion, a phase shift between the photocurrent
and Shubnikov–de Haas oscillations comes from the interplay
of jn and jμ addressed above, as observed in experiment;
see Fig. 6(a).

A distinguishing feature of the photocurrent in the Dirac
fermions system, however, is the fact that the CR-resonance
related effects change upon the carrier density variation. It
becomes possible due to the linear energy spectrum resulting
in the dependence of the cyclotron frequency on the electron
Fermi energy EF ∝ √

n. The CR resonance as a function
of the carrier density or gate voltage can be understood by
considering the electron density dependence of the high-
frequency conductivity. The latter determines the radiation
absorption and, in the vicinity of the cyclotron resonance, can
be recast as

σ (ω) = e2n∗τ ∗
tr

2m∗
c

[
1 + (ω − ω∗

cη)2τ ∗
tr

2η2
] , (21)

where parameters m∗
c , τ ∗

tr , and ω∗
c denote corresponding

quantities at some (arbitrary) electron density n = n∗ and
η = √

n∗/n. Equation (21) implies short-range scattering.
The effect of electron density variation is demonstrated in
Figs. 11 and 12 where the photocurrent is plotted as a function
of electron density for two values of magnetic field, B = 2
and 1.5 T, respectively. Note that all parameters used in the
calculations are taken from experiments on magnetotransport
and optical transmission performed for sample 4. One can

FIG. 11. Panels (a) and (b) show photocurrent contributions jn

and jμ calculated after Eqs. (8) and (9), respectively. Spin polarization
and the high-frequency mobilities in the opposite spin branches are
calculated for B = 2 T after (19) and (20) applying velocity of
Dirac fermions vDF = 7.6×107 cm/s close to that experimentally
determined in Ref. [29]. In the calculations we assume the short-
range scattering with τq = τtr/2 = 4×10−13 sec for electron density
n = 1011 cm−2. Dotted lines show CR profile as a function of electron
density. The radiation absorption is calculated after Eq. (21) for
B = 2 T. All parameters used in the calculations are taken from
experiments on magnetotransport and optical transmission performed
for sample 4. Note that the photocurrent contributions and CR profile
are normalized to their maximum values.

FIG. 12. Panels (a) and (b) show photocurrent contributions jn

and jμ calculated after Eqs. (8) and (9), respectively. Spin polarization
and the high-frequency mobilities in the opposite spin branches are
calculated for B = 1.5 T after (19) and (20) applying velocity of
Dirac fermions vDF = 7.6×107 cm/s close to that experimentally
determined in Ref. [29]. In the calculations we assume the short-
range scattering with τq = τtr/2 = 4×10−13 sec for electron density
n = 1011 cm−2. Dotted lines show CR profile as a function of electron
density. The radiation absorption is calculated after Eq. (21) for
B = 1.5 T. All parameters used in the calculations are taken from
experiments on magnetotransport and optical transmission performed
for sample 4. Note that the photocurrent contributions and CR profile
are normalized to their maximum values.

see that the photocurrent as a function of electron density
shows the pronounced resonance superimposed with quantum
oscillations. Interestingly, for the linear electron dispersion
jμ contribution related with the difference of spin-up and
spin-down subbands mobilities contains a smooth background
caused by the dependence of the cyclotron mass and scattering
times on electron energy. Both figures show that the resonance
position is close to the CR peak denoted as nCR (see dotted
lines) and shifts towards the smaller densities with a decrease
of the B field. This is in agreement with experimental
data for sample 4 presented in Fig. 6 together with the
absorption calculated after Eq. (21) (see grey full lines).
The dependence of nCR on magnetic field calculated after
Eq. (21) agrees well with that obtained in the experiment;
see Fig. 6(c). Interestingly, Figs. 6(a) and 6(b) show that while
the SdH oscillations in the longitudinal resistance decrease
and almost vanish with raising carrier density, the amplitude
of the photocurrent oscillations gets strongly increased. This
highlights the fact that the photocurrent is enhanced at the
cyclotron resonance position, which in sample 4 corresponds
to rather high carrier density.

To summarize this part, the photocurrent in unbiased HgTe-
based QWs in the presence of magnetic field demonstrates
1/B-periodic oscillations. The developed theory based on the
spin-dependent asymmetric energy relaxation shows that the
photocurrent oscillations stem from the crossing of Fermi level
by Landau levels. The analysis shows that the photocurrent
contains two contributions jn and jμ caused by the electron-
spin polarization in the magnetic field and by the difference of
spin-up and spin-down subband mobilities.
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C. Photoresistance (photoconductivity) effect

Finally, for completeness, we address the oscillations of the
photoresistance and compare these results with the experiment.
For the analysis of the photoresistance �Rxx we will use
the data for 8-nm QW sample 5 shown in Fig. 4(c). The
microscopic origin of the photoresistance is related with the
electron-gas heating caused by the absorption of THz radiation
and a corresponding reduction of the electron mobility; for
review see, e.g., [35]. In the model where the electron gas is
described by an effective temperature Te the heating process
is governed by the energy balance equation:

kB(Te − Tl)

τε

= 2|e|
n

[μ+(ω)n+ + μ−(ω)n−]|E0|2, (22)

where Tl is the lattice temperature and τε is the energy
relaxation time. The photoconductance tensor is, by definition,
given by

σ
(ph)
αβ = �(σαβ) ≡ σαβ(T = Te) − σαβ(T = Tl), (23)

where σαβ is the static conductivity, and the photoresistance
signal measured experimentally is given by

�Rxx ∝ �

(
σxx

σ 2
xx + σ 2

xy

)
; (24)

�(. . .) denotes the variation of some quantity under illumina-
tion. We recall that, similarly to Eq. (14), the components of
static conductivity also contain oscillatory contributions. Par-
ticularly, for quantum wells with parabolic electron dispersion,

Rxx ∝ 1 + 2T1 exp

(
− π

ωcτq

)
cos

(
π

�Z

�ωc

)
cos

(
2π

EF

�ωc

)
.

(25)

Hence, an increase of an electron-gas effective temperature Te

mainly results in the suppression of the oscillatory factor be-
cause coefficient T1 given by Eq. (13) exponentially decreases
with an increase of temperature. As a result, the pronounced
oscillatory photoresistance appears. The envelope function of
the photoresistance oscillations at B � BCR approximately
follows the cyclotron resonance line shape, because the heating
is most efficient exactly in the resonance and becomes weaker
the larger detuning, |ωc − ω|. However, the oscillations of
the photoresistance signal do not decay as fast as cyclotron
resonance for B > |BCR| because the oscillatory contributions
increase with an increase of magnetic field. This is illustrated in
Fig. 13 where panel (a) shows the oscillatory part of resistivity
calculated for the parameters close to that of Lw = 8-nm
sample 5, while panel (b) represents the photoresistance signal.
In contrast to the calculations of photocurrents presented
above, here we took into account both first and second har-
monics of SdH oscillations, see below. The calculated pho-
toresistance signal is presented in Fig. 4(c) (blue solid curve)
together with the measured photoresistance (red solid curve)
and calculated CR radiation absorption (dashed curve). Apart a
difference in the amplitudes the calculations are in a reasonable
agreement with experiment.

At last but not at least we address the influence of the ratio
between the Landau-level separation and Zeeman splitting.
In linear transport for �Z/(�ωc) ≈ 1/2 the first harmonic in

FIG. 13. (Color) Oscillatory part of the resistivity (a) and the
photoresistive signal (b) calculated after Eqs. (23)–(26), respectively.
Curves 1, 2, and 3 correspond to different electron temperatures,
Te, being ∝τε |E0|2; see Eq. (22). The parameters are chosen close to
those of 8-nm sample 5: m = 0.02m0, n = 2.4×1011 cm−2, g = −51,
τq = 1.6×10−13 sec, momentum relaxation time τtr = 6.8×10−13 sec.
Both first- and second-order oscillatory contributions are taken into
account and additional phase shift ϕ = −π/5 was included to match
the phase of experimental data in Fig. 4. Dotted lines show calculated
cyclotron resonance absorption. The data are given in arbitrary
units.

quantum oscillations of static resistivity vanishes; see Eq. (25)
and Ref. [79] for details. This is caused by the mismatch of
Landau levels and spin sublevels. Hence, second harmonic in
the resistivity oscillations described by

T2 exp

(
− 2π

ωcτq

)
cos

(
2π

�Z

�ωc

)
cos

(
4π

EF

�ωc

)
(26)

with T2 = 4π2kBTe[�ωc sinh (4π2kBTe/�ωc)]−1 becomes im-
portant. It results also in the frequency doubling of the
photoresistance signal as clearly seen in Fig. 13. This effect is
essential to describe the experimental data both on photoresis-
tance and on SdH oscillations. By contrast, for the previously
discussed photocurrent and the spin-polarization oscillations
both the first and second harmonic vanish simultaneously if
�Z/(�ωc) ≈ 1. It is because photocurrent is caused by the
imbalance of electron fluxes in two spin branches, therefore
its extrema are realized when the mismatch of the Zeeman and
Landau levels is maximal.

To conclude this section we note that at high lattice
temperatures where oscillatory corrections to the conductivity
governed by factors T1 and T2 vanish, the photoresistance can
be still caused by the electron-gas heating and corresponding
change of the classical conductivity, i.e., via temperature
dependence of the scattering times. In this case the photore-
sistance signal as a function of magnetic field follows the
Lorentzian shape of cyclotron resonance depicted by dotted
curves in Fig. 13 in agreement with experimental results,
Fig. 3(c).

VI. CONCLUSIONS

To conclude, the detailed experimental and theoretical
studies of quantum magneto-oscillations of photocurrent in
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HgTe-based quantum wells have been performed. It has been
demonstrated that 1/B-periodic oscillations stem from the
consecutive crossing of Fermi level by Landau levels and
they become strongly enhanced at the cyclotron resonance
conditions. The oscillations have been observed as a function
of magnetic field for all three types of electron dispersion
realized in HgTe quantum wells: normal parabolic, inverted
parabolic, and linear. Similar responses detected in all in-
vestigated samples evidence the universality of the effect.
The developed theory explains photocurrent formation as a
result of the spin-dependent asymmetric energy relaxation. It
demonstrates that the photocurrent contains two contributions
resulting from (i) the magnetic field induced electron spin

polarization and (ii) the difference of the electron mobilities
in the spin-up and spin-down subbands in the presence of
magnetic field, both of which contain oscillatory component.
The theory describes well all main experimental features.
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T. Colin, P. Helgesen, T. Skauli, and S. Lovold, Phys. Rev.
B 57, 14772 (1998).

[48] M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, and S.
Løvold, Semicond. Sci. Technol. 11, 1168 (1996).

[49] M. von Truchsess, V. Latussek, C. R. Becker, and E. Batke,
J. Cryst. Growth 159, 1104 (1996).

[50] V. J. Goldman, H. D. Drew, M. Shayegan, and D. A. Nelson,
Phys. Rev. Lett. 56, 968 (1986).

[51] C.-M. Hu, C. Zehnder, C. Heyn, and D. Heitmann, Phys. Rev.
B 67, 201302 (2003).

[52] V. G. Golubev, V. I. Ivanov-Omskii, and G. I. Kropotov,
Sov. Tech. Phys. Lett. 3, 216 (1977).

[53] Z. D. Kvon, D. A. Kozlov, S. N. Danilov, C. Zoth, P. Vierling,
S. Stachel, V. V. Bel’kov, A. K. Bakarov, D. V. Dmitriev, A. I.
Toropov, and S. D. Ganichev, JETP Lett. 97, 41 (2013).

[54] M. Pakmehr, A. Stier, B. D. McCombe, C. Brüne, H. Buhmann,
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