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Si dielectric function in a local basis representation: Optical properties, local field effects, excitons,
and stopping power
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An atomiclike basis representation is used to analyze the dielectric function ε(�q + �G,�q + �G′; ω) of Si. First,
we show that a sp3d5 local basis set yields good results for the electronic band structure of this crystal and, then,
we analyze the Si optical properties including local field and excitonic effects. In our formulation, we follow
Hanke and Sham [W. Hanke and L. J. Sham, Phys. Rev. B 12, 4501 (1975); 21, 4656 (1980)], and introduce
excitonic effects using a many-body formulation that incorporates a static screened electron-hole interaction.
Dynamical effects in this interaction are also analyzed and shown to introduce non-negligible corrections in
the optical spectrum. Our results are found in reasonable agreement with the experimental evidence and with
other theoretical results calculated with the computationally more demanding plane-wave representation. Finally,
calculations for the stopping power of Si are also presented.
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I. INTRODUCTION

The ground-state electronic properties of a crystal are
described generally by its electronic bands, whose k-space
structure and density of states can be measured with direct
or inverse photoemission spectroscopy [1]. Other properties,
like their optical excitations or their stopping power, depend
on electronic interband transitions that are more conveniently
analyzed by the dielectric function ε(�r,�r ′; ω) or its Fourier
transform ε(�q + �G,�q + �G′; ω) [1] which, appropriately used,
introduces local field effects.

Many groups have analyzed that dielectric function using
a plane-wave representation, introducing many-body effects,
necessary to include exciton effects associated with the
attraction between the excited electron and its hole, by
means of either a TDDFT (time-dependent density functional
theory) or a Bethe-Salpeter approach [1–4]. Other groups
have used a local orbital basis representation [5,6] or a
reduced linear combination of those orbitals [7] to calculate
ε(�q + �G,�q + �G′; ω) for clusters [5,6] or solids [7]. Although
this local orbital approach is more suitable for describing
systems with a broken symmetry (surfaces or clusters), we have
also found it convenient to reanalyze also how the local orbital
basis representation works in crystals such as Si, introducing
many-body effects in the way explained by Hanke and Sham
[8,9]. Apparently, the main limitation of this approach is
related to the very large dimension of the matrices one has to
invert: this dimension is nα2ρ, n being the number of atoms in
the primitive cell, α the number of orbitals per atom used in the
basis set, and ρ the number of interacting neighbors introduced
in the calculation, the dimension of these matrices can be as
large as 5000 for the most accurate calculation performed in
this work. However, in spite of the large dimension of the
matrices we have to manage in our approach, the calculations
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performed to obtain the excitonic properties are not as time
consuming as the ones needed in the plane-wave representation
[1], allowing us to go a step further including dynamical effects
in the screened electron-hole interaction.

In this paper, we start from the conventional formalism
[8–10] for the dielectric function and describe how to calculate
ε(�q + �G,�q + �G′; ω) using a local orbital representation. Then,
we calculate the electronic bands for Si using a local orbital
DFT approach [11] with different basis sets of numerical
atomiclike orbitals (sp3, sp3s∗p∗3, or sp3d5), and analyze
the quality of the different basis sets using the f -sum rule
for ε(�q + �G,�q + �G′; ω). We conclude that the optimized
sp3d5 basis set provides a good approximation for calculating
ε(�q + �G,�q + �G′; ω). Next, we analyze the Si optical properties
including local field and exciton effects [8,9] and show that
our sp3d5 basis set yields a good description of those optical
properties; in the exciton case, we also discuss how dynamical
effects can modify the conventionally static approximation for
the electron-hole interaction of the exciton [1,8,9]. Finally,
we analyze the Si stopping power introducing only local field
effects since exciton effects are not expected to be important
in this case. In the final section, we present our conclusions
and argue that the sp3d5 basis set yields an appropriate
description of the Si optical properties including exciton
effects and, probably, a very convenient way of analyzing
complex structures such as clusters and surfaces.

II. DIELECTRIC FUNCTION AND f -SUM RULES

A. Dielectric function

Based on very general arguments, we can write the
following equation for the electronic dielectric response [10]:

ε−1(�r,�r ′; ω) = δ(�r − �r ′) +
∫

4πe2

|�r − �r ′′|χ (�r ′′,�r ′,ω)d3r ′′ (1)

with the electron polarizability χ (�r ′′,�r ′,ω), defined by the
following equation:

ρind (�r; ω) = +
∫

e2χ (�r,�r ′,ω)V ext (�r ′,ω)d3r ′, (2)
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where ρind (�r; ω) is the induced electron charge and V ext (�r ′,ω)
the external potential. In random phase approximation (RPA),
Eq. (1) is replaced by

ρind (�r; ω) = +
∫

e2χ0(�r,�r ′,ω)V t (�r ′,ω)d3r ′, (3)

χ0(�r,�r ′,ω) being the free-electron polarizability of the system
and V t (�r ′,ω) = V ext + V ind , V ind being defined by

V ind (�r,ω) =
∫

4π

|�r − �r ′|ρ
ind (�r ′; ω)d3r ′. (4)

Then, the RPA approximation for ε(�r,�r ′; ω) reads as
follows:

εRPA(�r,�r ′; ω) = δ(�r − �r ′) −
∫

4πe2

|�r − �r ′′|χ0(�r ′′,�r ′,ω)d3r ′′.

(5)

For a crystal, it is convenient to write Eq. (5) Fourier
transforming the coordinates (�r,�r ′) to (�q + �G,�q + �G′), where
�G and �G′ are reciprocal lattice wave vectors, �q belonging to
the first Brillouin Zone; this yields [8,12]

εRPA(�q + �G,�q + �G′; ω)

= δ �G �G′ − v(�q + �G)χ0(�q + �G,�q + �G′,ω), (6)

where v(�q + �G) = 4πe2/	0|�q + �G|2 (	0 being the unit-cell
volume). In Eq. (6), χ0(�q + �G,�q + �G′,ω) can be calculated
from the electron band structure of the crystal, as defined
by the electron energy bands En(�k) and the corresponding
wave functions: |
n(�k)〉 = ∑

α,i Cn
α,i(�k)|α, �Ri〉; here, |α, �Ri〉

defines the local orbital basis set used in our calculations (see
following). This procedure yields

χ0(�q + �G,�q + �G′,ω) =
∑
s,s ′

As(�q + �G)N0
ss ′ (�q,ω)A∗

s ′ (�q + �G′)

(7)

with

As(�q + �G) = Aαiβj ρij
(�q + �G)

= exp[−i �G · �τj ]〈αj ,0| exp[−i(�q + �G) · �r]|βi, �ρij 〉

= exp[−i �G · �τj ]
∫

φ∗
αj

(�r) exp[−i(�q + �G) · �r]

×φβi
(�r − �ρij )d3r, (8)

where �ρij = �τi − �τj + �R defines the relative position between
the atoms with orbitals φαi and φβi , and

N0
ss ′ (�q,ω) = N0

(αiβj ρij )(γkδkρkl )

=
∑
n1,n2

∑
�k

exp[−i(�k + �q) · �ρij ] exp[+i(�k + �q) · �ρkl]

×C
n2∗
βj

(�k)Cn1
αi

(�k + �q)Cn1∗
δl

(�k + �q)Cn2
γk

(�k)

× 2

N

fn1(�k + �q) − fn2(�k)

En1 (�k + �q) − En2 (�k) − ω − iη
. (9)

In these equations, f (�k) is the Fermi distribution function
and N the number of primitive cells in the crystal. The inverse
of this dielectric function [Eq. (6); as a matrix of components
�G and �G′] defines ε−1

RPA(�q + �G,�q + �G′; ω), which will be used
in Sec. V to calculate the stopping power of a moving charge
in Si; this quantity can be readily calculated using a ( �G, �G′)
matrix (typically of 100th or 200th order), or inverting the
matrices N0

ss ′ with s × s elements, where s = 2α2ρ as defined
by the number of local orbitals per atom α used in our basis set
(see following), and the number of neighbors ρ introduced in
the calculation. Then, proceeding in this way, ε−1

RPA(�q + �G,�q +
�G′; ω) can be written as follows:

ε−1
RPA(�q + �G,�q + �G′; ω)

= δ �G �G′ + v(�q + �G)
∑
s,s ′

As(�q + �G)Sss ′ (�q,ω)A∗
s ′ (�q + �G′),

(10)

where the matrix N0 in Eq. (7) has been replaced by S:

S = N0[I − V N0]−1 (11)

with

Vss ′ (�q) = 1

	0

∑
�R0

exp[−i �q · (�τj − �τk + �R0)]
∫

d3r

∫
d3r ′

×φ∗
αi

(�r − �τi − �R − �R0)φβj
(�r − �τj − �R0)

e2

|�r − �r ′|
×φ∗

γk
(�r ′ − �τk)φδl

(�r ′ − �τl − �R′). (12)

Calculating ε−1
RPA(�q + �G,�q + �G′; ω) through the matrix Sss ′ ,

instead of inverting the ( �G, �G′) matrix, might appear to be
not practical because that matrix (as well as N0

ss ′ and Vss ′ )
is too large. However, we have found it convenient to use
this approach for introducing excitonic effects, as shown by
Hanke and Sham [8,12]: this is important for analyzing the
optical properties of semiconductors where those effects are
important. The crucial idea is to replace, in Eq. (11), S =
N0[I − V N0]−1 by the matrix N0[I − {V − (1/2)V X}N0]−1,
where V X is the following exchange potential:

V X
ss ′ (�q) = 1

	0

∑
�R0

exp[−i �q · (�τj − �τk + �R0)]
∫

d3r

∫
d3r ′

×φ∗
αi

(�r − �τi − �R − �R0)φβj
(�r ′ − �τj − �R0)

e2

|�r − �r ′|
×φ∗

γk
(�r − �τk)φδl

(�r ′ − �τl − �R′). (13)

This exchange contribution VX appears when, in addition to
the bubblelike RPA diagrams shown in Fig. 1, other “ladder”
diagrams, as the ones shown in Fig. 1, are included; these
“ladder” diagrams describe the exciton electron-hole pair
interaction as shown by Hanke and Sham (HS) [8].
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FIG. 1. Diagrams contributing to the HS dielectric function. In
the HS approximation, the V X potential is screened to V X,S , using a
static dielectric function. Dynamical effects associated with V X,S are
discussed in the Appendix.

Then, one can introduce the following Hanke-Sham dielec-
tric function ε−1

HS :

ε−1
HS (�q + �G,�q + �G′; ω)

= δ �G, �G′ + v(�q + �G)
∑
s,s ′

As(�q + �G)

×N0[I − {V − (1/2)V X}N0]−1
ss ′ As ′ (�q + �G′)∗, (14)

where the matrix elements N0[I − {V − (1/2)V X}N0]−1
ss ′ de-

pend only on the variables (�q,ω), not on �G or �G′. Equation
(14) will be used in Sec. IV to calculate the optical properties
of Si.

We should also mention that this approximation can
still be improved by introducing the electron-hole static
screened potential V

X,S
ss ′ (q), which is obtained by replacing

in Eq. (13) 1/|�r − �r ′| by the screened potential v(�r,�r ′) =∫
(1/|�r − �r ′′|)ε−1(�r ′′,�r ′)d3r ′′; in this equation, for the sake of

simplicity, ε(q ′) [the Fourier transform of ε(�r ′′ − �r ′)] has been
approximated by the Penn dielectric function [13] for ω = 0:

ε(q) = 1 + ω2
p

E2
g + β2q2 + q4/4

(in a.u.), (15)

where ωp is the plasmon frequency (18 eV ∼= 0.66 a.u.),
Eg the mean optical gap (4.1 eV ∼= 0.15 a.u.), and β =
0.022 a.u. Therefore, we will take [8,9] in the HS dielectric
function N0[I − {V − (1/2)V x,s}N0]−1

ss ′ instead of N0[I −
{V − (1/2)V X}N0]−1

ss ′ .
In the Appendix, we analyze how to introduce approxi-

mately a dynamical screening of V X; our discussion shows that
these dynamical processes can be approximately incorporated
in the previous approach [Eq. (14)] by reducing the static
screening by a factor of 0.87, namely, taking (0.435)V x,s

instead of (0.5)V x,s . Results introducing this approximation
are also discussed in the following.

B. f -sum rules

We mention now that the following f -sum rule should be
satisfied by all the dielectric functions if the basis set used in
the calculations is complete [14]:∫ ∞

0
ω Im[ε(�q,�q; ω)]dω = π

2
ω2

p; (16)

here, ω2
p = 4πn(q)e2/m (n = N/	0) defines the plasmon

frequency, N being the number of electrons in the primitive

cell. It is also convenient to introduce N (�q, �G, �G′) defined as

N (�q, �G, �G′) = m	0

2π2e2

∫ ∞

0
ω Im[ε(�q + �G,�q + �G′; ω)]dω

(17)

such that N (�q,0,0) = N for any �q, if the calculation of the
dielectric function is sufficiently accurate. Equation (17), with
ε = εRPA, will be used in the following to check the accuracy
of the different basis sets used in our calculations

III. LOCAL ORBITAL BASIS:
BANDS AND THE f -SUM RULE

In our calculations, we have used for Si the following basis
sets of numerical atomiclike orbitals (NAOs) [15]: (i) Si sp3

NAOs calculated with the following cutoff radii [15] for the s

and p orbitals: rcs = rcp = 5.5 a.u.; (ii) Si sp3d5 NAOs with
rcs = 4.8 a.u., rcp = 5.2 a.u., rcd = 5.4 a.u. (for the s-, p-,
and d-like orbitals); (iii) double basis set orbitals sp3s∗p∗3

with rcs = rcp = rcs∗ = rcp∗ = 5.5 a.u. In the calculations
presented in Secs. IV and V, we have used 256 k points in
the first Brillouin zone [16].

The core electrons are taken into account by means of norm-
conserving pseudopotentials [17]. Figure 2 shows the energy
band structure calculated with these different basis sets using
the local density approximation (LDA) exchange-correlation
potential [18]: the calculations using the sp3 or sp3s∗p∗3

basis sets yield an energy gap which is too large, around
2.5 and 2.1 eV, respectively, compared with the plane-wave
LDA result 0.7 eV [19] (the experimental energy gap is
1.1 eV); in general, the electronic band structure for these basis
sets is significantly different from the one calculated using a
converged plane-wave representation which does not include
many-body corrections [19]. The sp3d5 basis set yields a much
better band structure; we find that our sp3d5 local basis set
yields very accurate valence bands, and conduction bands that
are located around 0.25–0.30 eV higher in energy as compared
with the LDA plane-wave results. For example, our energy gap
of 1.0 eV should be compared with 0.7 eV for the plane-wave
calculations, and our X-point energy gap of 3.85 eV should
be compared with 3.57 eV for the second case. Notice that all
these LDA calculations do not include many-body corrections.

An independent comparison between the quality of the
different basis sets can be performed using the f -sum rule
[Eq. (17)]; this sum rule yields an indication of the quality
of the basis set from the point of view of the conduction
band contribution to the dielectric function. Figure 3 shows
N (�q) = N (�q,0,0) as calculated for the different basis sets
using the RPA approximation [Eq. (6)]. From these figures
we see that N (q) is closer to 8 (the number of electrons per
unit cell) along all the q directions considered, for the sp3d5

basis set: in particular, in the limit q → 0, N (q) goes to 7.832,
this number showing clearly the good quality of this basis
set. In these calculations we have taken ρ, the number of
neighbors associated with s = 2α2ρ, equal to 29, so that for
the sp3d5 basis set s = 4698; this corresponds to going to
third neighbors. We have checked that this truncation provides
a good approximation to the dielectric function, by calculating
N (q → 0) for a larger number of neighbors; in particular, in
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FIG. 2. (Color online) Energy band structure of Si with a basis
set of pseudo-orbitals (a) optimized sp3, (b) sp3d5, and (c) sp3s∗p∗3.

the sp3d5 basis set we have found that, going to fourth, fifth,
and sixth neighbors, yields N (q → 0) = 7.830, 7.832, and
7.832, respectively.

Alternatively, we can also discuss the quality of the
basis sets by considering the following sum rule: 〈i|z2|i〉 =∑

j 〈i|z|j 〉〈j |z|i〉 applied to the s or p orbitals: notice that
the matrix element 〈j |z|i〉 appears in the calculation of the
dielectric function for q → 0, and that satisfying that sum rule
is a good indication of the quality of the dielectric function
in that limit q → 0. Compare, as an example, the sp3d5

and the sp3 basis sets: for both cases, 〈s|z2|s〉 = 1.61 Å
2
,

〈px |z2|px〉 = 1.36 Å
2
, and 〈pz|z2|pz〉 = 4.07 Å

2
; on the other

hand,
∑

j 〈s|z|j 〉〈j |z|s〉 = 1.58 Å
2
,

∑
j 〈px |z|j 〉〈j |z|px〉 =

1.34 Å
2
, and

∑
j 〈pz|z|j 〉〈j |z|pz〉 = 3.36 Å

2
for the sp3d5

FIG. 3. (Color online) (a) N (q) dependence along the � axis of
the first Brillouin zone for the optimized sp3 (broken red line), sp3d5

(full green line), and double sp3s∗p∗3 (dotted broken blue line) basis
set, respectively; qMAX = (2π/a). (b) As (a) for the � axis of the first
Brillouin zone; qMAX = (

√
3/2)(2π/a). (c) As (a) for the � axis of

the first Brillouin; qMAX = (3
√

2/4)(2π/a).

basis set, while for the sp3,
∑

j 〈s|z|j 〉〈j |z|s〉 = 1.58 Å
2
,

〈px |z2|px〉 = 0 Å
2
, and

∑
j 〈pz|z|j 〉〈j |z|pz〉 = 1.58 Å

2
. These

numbers, and similar results for the sp3s∗p∗3, confirm that the
sp3d5 basis set is much better than the other two, as found
above in the analysis of the electronic band structure.

We conclude from our results for the band structure and the
sum rules that the sp3d5 basis set appears to be a good one for
calculating the Si dielectric properties. From now on, we will
use that basis set for analyzing the dielectric function of Si and
its excitonic properties; we will also discuss in the following
the effects associated with the difference in the conduction

205210-4



Si DIELECTRIC FUNCTION IN A LOCAL BASIS . . . PHYSICAL REVIEW B 90, 205210 (2014)

FIG. 4. (Color online) (a) Real and (b) imaginary parts of
the dielectric response of Si for the sp3d5 basis set and
�q = (2π/a)(0.01,0,0). Comparison between the expression (5)
εRPA(�q,�q; ω) (broken blue line), (18) εRPA

mac (�q; ω) (dotted broken green
line), (19) εHS

mac(�q; ω) (full black line) and the experimental value
(dotted red line) after [20].

band energy levels between using either our local orbital basis
or the plane-wave representation.

IV. OPTICAL PROPERTIES

Figure 4 shows Re[εRPA(q,ω)] and Im[εRPA(q,ω)] [Eq. (6)]
for �G = �G′ = 0 and �q very small. Although this approach
does not include local effects, the long-wavelength limit q →
0, εRPA(q,0), agrees well with the experimental value of the
static dielectric function ε(q,0) ≈ 11 [21]. The imaginary part
of this dielectric function defines the optical absorption in
the RPA approximation; this spectrum is, however, far from
the experimental data and different steps have to be taken to
improve it.

First, local field effects in the optical properties are taken
into account by calculating ε−1

RPA(�q + �G,�q + �G′; ω) for �G =
�G′ = 0 and q → 0, namely, ε−1

RPA(q → 0; ω), and defining the

following macroscopic dielectric function [22,23]:

εRPA
mac (�q; ω) = 1

ε−1
RPA(�q; ω)

. (18)

On the other hand, excitonic effects are introduced by means of
the HS dielectric function ε−1

HS (�q + �G,�q + �G′; ω). In the same
spirit as above, we can also introduce a macroscopic dielectric
function, including excitonic effects, as follows [22,23]:

εHS
mac(�q; ω) = 1

ε−1
HS (�q; ω)

. (19)

The real and imaginary parts of εRPA
mac (�q; ω) and εHS

mac(�q; ω),
q = (2π/a)(0.01,0.0,0.0), are shown in Fig. 4 and compared
with the results calculated using εRPA(�q; ω). Notice that while
local field effects introduce a small change in the values of
εRPA(�q; ω), excitonic effects are more dramatic, introducing
an important broadening of the main peak located around 4
eV for Im[εRPA(�q; ω)].

Figure 4(b) compares our results for Im[εRPA(�q; ω)],
Im[εRPA

mac (�q; ω)], and Im[εHS
mac(�q; ω)] with the experimental

optical spectrum for Si. It is interesting to realize that the
spectrum calculated with Im[εHS

mac(�q; ω)] is very similar to
the experimental one except for a shift of around 0.5 eV to
lower energies, indicating that the optical energy gap between
our calculated conduction and valence bands Ec − Ev is a
little too narrow. This suggests to improve our calculated
optical spectrum by introducing in the optical energy gap a
correction that can be attributed to the difference between
the quasiparticle energies and the energies calculated in LDA
[1,12]; following Hybertsen and Louie, we have recalculated
our optical spectrum in the HS approximation, using the
following correction for Ec − Ev:

EQP
c − EQP

v = 1.03(Ec − Ev) + 0.69, (20)

which practically opens the optical energy gap by 0.7 eV.
Figure 5(a) shows Im[εHS

mac(�q; ω)] with this correction, named
Im[εHSQS

mac (�q; ω)]; we stress that the new calculated optical
spectrum is now in better agreement with the experimental data
and close to other theoretical results obtained using a plane-
wave representation in combination with the Bethe-Salpeter
equation and/or a TDLDA approach [1,24]. One should keep
in mind, however, that in our calculations the conduction
band is around 0.25 eV too high in energy, suggesting that
the correction we have introduced in the conduction band
quasiparticle levels is a little too large. We have analyzed this
effect in combination with the dynamical effects discussed
above by introducing the following corrections: in our final
calculations we have taken 0.435V x,s instead of 0.5V x,s in
Eq. (14), and have reduced the quasiparticle correction given
by Eq. (20) to

EQP
c − EQP

v = 1.03(Ec − Ev) + 0.49. (21)

Introducing in this way a shift of 0.2 eV in the con-
duction bands as suggested by our discussion in Sec. III.
Figure 5(b) shows the new results for Im[εHS

mac(�q; ω)], named
Im[εHS∗

mac (�q; ω)] introducing (a) first the dynamical effects in
the electron-hole interaction and (b) also the shift of the
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FIG. 5. (Color online) (a) Imaginary part of ε(ω) in the long-
wavelength limit �G = �G′ = 0 for the sp3d5 basis set including local
and excitonic effects. Dotted blue line: experimental results [20].
Full black line: our results including quasiparticle energy correction
(εHSQP

mac ). Broken green line: results of Onida and Rubio [1]. Dotted
broken brown line: results of Sottile et al. [24]. (b) Dotted blue
line: experimental results. Full black line: our results including
quasiparticle energy correction with dynamic screening, after the
Appendix (εHS∗

mac ).

conduction band. Comparing with the experimental evidence,
we find a remarkable agreement between this new spectrum
and the experimental data. We stress that if we had not
introduced the 0.2-eV shift in the conduction band, the
excitonic spectrum would be located 0.2 eV too high in energy.
Notice also that the effect of introducing dynamical effects
in the screened electron-hole interaction is to shift slightly
(around 0.25 eV) the optical spectrum to higher energies, and
to change a little the relative weights of the two peaks of the
spectrum.

V. STOPPING POWER

The stopping power of a material, in linear theory, for a
particle of charge Z, moving with velocity �v and located at

�RI , is given by [13,25]

S( �RI ,�v) = −8πZ2

	0v

∑
�G, �G′

exp[i( �G − �G′) · �RI ]
∑

�q

(�q + �G) · �v
|�q + �G|2

× Im[ε−1(�q + �G,�q + �G′; ω = (�q + �G) · �v)].

(22)

For a random trajectory, the energy loss by unit of length is
given by[

−dE

dx

]
random

= −8πZ2

	0v

∑
�G

∑
�q

(�q + �G) · �v
|�q + �G|2

× Im[ε−1(�q + �G,�q + �G; ω = (�q + �G) · �v)],

(23)

where only the diagonal part �G = �G′ = 0 contributes to the
stopping power. For high velocity (�q + �G) · �v is large, and ε−1

tends to the classical dielectric function [1 − ω2
p/ω2]−1; this

yields the Bethe’s limit [13,26][
−dE

dx

]
random

≈ 4πZ2e4

mv2
n0 ln

(
2mv2

�ωp

)
. (24)

Equations (22) and (23) show how the inverse of the dielec-
tric function ε−1(�q + �G,�q + �G′; ω) determines the energy loss
and the stopping power for a particle moving in a dielectric
medium. We analyze this problem using the RPA approx-
imation discussed above because, in this problem, exciton
effects are negligible [this simplifies a lot the calculation
of ε−1(�q + �G,�q + �G′; ω) that can be inverted in the ( �G; �G′)
space avoiding to calculate the inverse of larger matrices like
(1 − V N )]. In this regard, it is important to realize that local
effects are important in this problem, implying that in previous
equations [ε−1

RPA(�q + �G,�q + �G′; ω)] should be used instead

FIG. 6. (Color online) Imaginary part of ε−1(�q + �G,�q + �G′; ω),
q = (0.125,0.125,0.125)(2π/a), for a sp3d5 basis set. Broken blue
line: Im[1/ε(�q,�q; ω)] obtained from (6), without local effects. Full
black line: result according to (5), Im[ε−1(�q,�q; ω)], with local effects.
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FIG. 7. (Color online) Dynamical structure factor of Si for �q =
(0.53,0,0), �q = (0.53,0.53,0.53), and �q = (0.80,0.80,0.80) a.u.
Comparison of our results (full black line) with those of [2]
and [28].

of [εRPA(�q + �G,�q + �G′; ω)]−1. This is illustrated in Fig. 6,
where we compare our theoretical results for Im[ε−1

RPA(�q +
0,�q + 0; ω)] and Im[1/εRPA(�q + 0,�q + 0; ω)], the first one
including local effects introduced by calculating the inverse
of the matrix-dielectric function ε(�q + �G,�q + �G′; ω). We can
observe from Fig. 6 that local effects broaden the loss function

FIG. 8. (Color online) Random stopping power for Si. Full black
line: random stopping power as calculated using Im[ε−1

RPA] for Si
[Eq. (10)] for the sp3d5 basis set. Broken blue line: results calculated
incorporating the correction factor α(q)) [Eq. (25)]. Broken red line
shows the Bethe limit [see Eq. (24)]. Inset: shows the low-velocity
limit. Broken blue line corresponds to incorporating the correction
factor α(q).

Im[ε−1
RPA(�q + 0,�q + 0; ω)] and shift the maximum peak, as

obtained by other authors [26,27]. Changes introduced by
local effects are important not only for bigger transferred
momentums, as Weissker et al. [2] have shown, but also for
lower ones, as we can deduce from Fig. 6.

In Fig. 7, we compare our calculated structure factor
S(q,ω) = (q2/4π2)Im[ε−1(�q + 0,�q + 0; ω] for different val-
ues of q, with the results obtained by different authors using
a TDLDA approximation for the dielectric function [1,24];
experimental results [29] are also shown for comparison. In
general, we find a good agreement between our results and the
other theoretical or experimental data; this suggests that our
calculated linear stopping power, as discussed below, can be
taken with a high degree of confidence.

Figure 8 shows the linear stopping power of Si including
local effects. The sum on reciprocal vectors �G in Eq. (23)
is limited to the condition |q + G| � 5(2π/a). This limit is
enough to ensure convergence for the stopping power results
at low velocities, where local effects are very important. These
calculations have to be corrected, however, because the f -sum
rule is not fully fulfilled, as discussed in Sec. III. We have
corrected this small discrepancy by introducing a factor α(�q)
in Im[ε−1

RPA(�q + �G,�q + �G; ω)] such that∫ ∞

0
ω · Im

[
ε−1

RPA(�q, �G, �G; ω)
] · α(�q)dω = −π

2
ω2

p, (25)

then, the same factor is introduced in Eq. (23). Figure 8 shows
the stopping power as calculated with Eq. (23): the solid line
corresponds to using only Im[ε−1

RPA(�q + �G,�q + �G; ω)], while
the dashed line is calculated with Im[α(�q)ε−1

RPA(�q + �G,�q +
�G; ω)]. Notice that the correction introduced by α(�q) is rather
small, as corresponds to using a basis set that almost fulfills
the different sum rules. Moreover, our calculations agree well
with the results of other authors [30–32]. At high velocities,
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FIG. 9. (Color online) Random stopping power for Si. Doubled
dotted broken red line: Ziegler’s results for all electrons in Si atom
[30]. Dotted red line: NIST PStar program [31] for all electrons in
Si atom. Broken blue line: result after SRIM2013 [32] program for all
electrons in Si atom. Broken brown line: stopping power of the 2s

electrons in Si after Mathar [36]. Broken light blue line: stopping
power of the 2p electrons in Si after Mathar [36]. Dotted broken
green line: our result (23) for the sp3d5 basis set with the correction
due to the factor α(�q) [Eq. (25)]. Full black line: our result (23) for the
sp3d5 basis set with the correction due to the factor α(�q) [Eq. (25)]
plus the 2s and 2p electrons contributions after Matthar [36].

local effects are not so important and the linear stopping power
tends to the Bethe’s limit [Eq. (24)]: this can be checked in
Fig. 8, where it can be seen how the “corrected” linear stopping
power tends to the Bethe´s limit for v larger than 2–3 a.u.

The inset of Fig. 8 also shows enlarged the linear stopping
power in the range of low velocities, a range showing
a threshold velocity, around 0.1 a.u., associated with the
semiconductor energy gap [26,33–35].

Finally, in Fig. 9 we show the total stopping power for a
random motion of hydrogen in Si, including the contributions
from the Si 2s and 2p electrons, as calculated by Mathar [36];
in this figure, we also show the experimental data of Ziegler
[30,32]. Our calculations agree very well with the experimental
data for v larger than 2 a.u.; however, for lower velocities,
differences appear that we attribute to nonlinear effects,
such as charge exchange processes, nonlinear screening, etc.,
discussed by other authors [13].

VI. CONCLUSIONS

We have obtained the band structure, the dielectric function,
the loss function, and the stopping power for Si in a local
pseudo-orbitals basis representation using FIREBALL 2004 code
[11]. The sp3d5 basis set yields good results and much better
than the ones calculated with the sp3 or the sp3s∗3p∗3 basis
sets; so, the sp3d5 local basis can be confidently used for
calculating the dynamical dielectric function of Si, if many-
body quasiparticle corrections are appropriately introduced.

In particular, we have also shown that by using the
Hanke-Sham formulation in this local representation, one
can incorporate accurately excitonic effects in the dielectric

function, provided quasiparticle corrections are introduced in
the energy band levels. This procedure offers an alternative
to the plane-wave representation approach developed by
other authors for including those excitonic effects in the
dielectric function [1,24], the advantage of our approach
being that the computational demands needed in the local
orbital representation are not as large as those used in the
other representation; the basic difference being the matrix,
around 5000 × 5000, we have to invert to calculate the exciton
properties, to be compared with a much larger matrix that has
to be inverted in the plane-wave representation to calculate the
effective electron-hole coupling. This suggests that this local
representation approach might be very suitable for analyzing
excitons in surfaces, clusters, and noncrystalline solids.

We also mention that we have analyzed the dynamical
effects associated with the electron-hole screened potential
V x,s ; our discussion has been based on an analysis of a first-
order diagram used to calculate the dielectric function. We have
shown that a reasonable description of those dynamical effects
can de obtained by replacing the statically screened potential
0.5V x,s by 0.435V x,s . Although these effects are found to be
small, they go in the direction of improving the agreement
between the theory and the experimental data, provided an
appropriate correction of the quasiparticle conduction band
levels is introduced.

Finally, we have analyzed the linear stopping power of
charged particles in Si, and have shown that, for obtaining
accurate results at low and intermediate velocities, local field
effects should be included. Our results for the stopping power
of hydrogen in Si, after including the contributions from the
Si 2s and 2p shells, agree accurately with the experimental
data for velocities v larger than 2–3 a.u.; however, for lower
velocities, say v smaller than 1.5 a.u., other effects, such as
charge exchange processes and nonlinear screening, should be
included [13].
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APPENDIX: EVALUATION OF THE DYNAMICAL
SCREENED POTENTIAL

We have explored the accuracy of having used a static
screening for V x by analyzing the diagram of Fig. 10, where

FIG. 10. The first-order diagram proportional to V x,s(�k − �k′,
ν − ν ′).
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we have used a local representation for describing the different Green’s functions; for example, the line joining the points αi and
α′

i represents the following Green’s function:

Gαi,α
′
i
(ν,n1�k) = fn1 (�k)

ν − En1 (�k) − i0+ + 1 − fn1 (�k)

ν − En1 (�k) + i0+ ; (A1)

factors like Cn1
αi

(�k)Cn1

α′
i
(�k) are not included for the sake of simplicity. Diagram 10 yields the following contribution:

D(ω) = −
∫

dν

2π

∫
dν ′

2π
Gαi,α

′
i
(ν)Gβj ,β

′
j
(ν − ω)Gδl,δ

′
l
(ν ′)Gγk,γ

′
k
(ν ′ − ω).V x

α′β ′δ′γ ′

[
1

εC
α′β ′δ′γ ′(ν − ν ′)

]
, (A2)

where the causal dielectric function [1/εC
α′β ′δ′γ ′(ν − ν ′)] = [1/εC

α′β ′δ′γ ′(�q ′,ν − ν ′)], with �q ′ = �k − �k′, is defined as follows:[
1

εC
α′β ′δ′γ ′(ν − ν ′)

]
= −

∫ ∞

0

dω′

π

Im[1/εC(ω′)]
ω′ − ν + ν ′ + i0+ +

∫ 0

−∞

dω′

π

Im[1/εC(ω′)]
ω′ − ν + ν ′ − i0+ . (A3)

If εC(ω′) were ω′ independent, say εC(0), Eq. (A2) would yield

D(ω) = {fn1 (�k)[1 − fn2 (�k − �q)] − [1 − fn1 (�k)]fn2 (�k − �q)}
ω − En1 (�k − �q) + En2 (�k) + i0+

V x
α′β ′δ′γ ′

εC
α′β ′δ′γ ′(0)

{fn′
1
(�k′)[1 − fn′

2
(�k′ − �q)] − [1 − fn′

1
(�k′)]fn′

2
(�k′ − �q)}

ω − En′
1
(�k′ − �q) + En′

2
(�k′) − 0+ ,

(A4)

which represents one of the different terms contributing to Eq. (14) with V x,s = V x/εC(0).
For a general ω dependent εC(ω), we get the following results:
(a) For the term associated with the factor fn1 (�k)[1 − fn2 (�k − �q)]fn′

1
(�k′)[1 − fn′

2
(�k′ − �q)], we find that [1/εC(0)] should be

replaced by

[1/εC(0)] → 1 + Fa = 1 +
∫ ∞

0

dω′

π

Im[1/εC(ω′)]

[ω′ − ω − En2 (�k − �q) + En1 (�k) + i0+]

−
∫ 0

−∞

dω′

π

Im[1/εC(ω′)]

[ω′ + ω + En′
2
(�k − �q) − En′

1
(�k) − i0+]

. (A5)

Taking En2 (�k − �q) − En1 (�k) ∼= En′
2
(�k − �q) − En′

1
(�k) ∼= Eg (the optical energy gap),

1 + Fa = 1 +
∫ ∞

0

dω′

π

Im[1/εC(ω′)]
(ω′ − ω − Eg + i0+)

−
∫ 0

−∞

dω′

π

Im[1/εC(ω′)]
(ω′ + ω + Eg − i0+)

(A6)

or, equivalently,

[1/εC(0)] → 1 + Fa = 1 +
∫ ∞

0

dω′

π

Im[1/ε(ω′)]
(ω′ − ω − Eg + i0+)

+
∫ 0

−∞

dω′

π

Im[1/ε(ω′)]
(ω′ + ω + Eg + i0+)

, (A7)

where ε(ω) is the conventional dielectric function {Im[ε(ω)] = sgn(ω)Im[εG(ω)]}.
(b) Similarly, for the term associated with the factor [1 − fn1 (�k)]fn2 (�k − �q) · [1 − fn′

1
(�k′)]fn′

2
(�k′ − �q), we find that [1/εC(0)]

should be replaced by

[1/εC(0)] → 1 + Fb = 1 +
∫ ∞

0

dω′

π

Im[1/ε(ω′)]
(ω′ + ω − Eg + i0+)

+
∫ 0

−∞

dω′

π

Im[1/ε(ω′)]
(ω′ − ω + Eg − i0+)

. (A8)

(c) (d) For the other factors fn1 (�k)[1 − fn2 (�k − �q)] · [1 − fn′
1
(�k′)]fn′

2
(�k′ − �q) and fn′

1
(�k′)[1 − fn′

2
(�k′ − �q)] · [1 −

fn1 (�k)]fn2 (�k − �q), we find

1 + Fc = 1 + Fd = 1 +
∫ ∞

0

dω′

π

Im[1/ε(ω′)]
(ω′ − Eg + i0+)

+
∫ 0

−∞

dω′

π

Im[1/ε(ω′)]
(ω′ + Eg − i0+)

. (A9)

Notice that Fa(ω) = Fb(−ω) and Fa(0) = Fb(0) = Fc = Fd ; this suggests to take

Fa
∼= Fb

∼= Fc = Fd =
∫ ∞

0

dω′

π

Im[1/ε(ω′)]
(ω′ − Eg + i0+)

+
∫ 0

−∞

dω′

π

Im[1/ε(ω′)]
(ω′ + Eg − i0+)

. (A10)
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This discussion indicates how to include the dynamical effects associated with 1/εC(ω) in V x,s : by introducing an effective
ω-independent dielectric function which can be defined as

1

εeff
= 1 + Fc. (A11)

Using the Penn dielectric function εPenn(q ′), we find that

1

εeff(q ′)
= 1

εPenn(q ′)

⎡
⎣1 −

Eg

√
E2

g + ω2
p + β2q ′2 + (q ′4/4)

E2
g + β2q ′2 + (q ′4/4)

⎤
⎦

⎡
⎣1 − Eg√

E2
g + ω2

p + β2q ′2 + (q ′4/4)

⎤
⎦

−1

. (A12)

This equation shows that the static dielectric function εPenn(q ′) is corrected by the factor

F =
⎡
⎣1 −

Eg

√
E2

g + ω2
p + β2q ′2 + (q ′4/4)

E2
g + β2q ′2 + (q ′4/4)

⎤
⎦

⎡
⎣1 − Eg√

E2
g + ω2

p + β2q ′2 + (q ′4/4)

⎤
⎦

−1

. (A13)

Instead of replacing 1/ε(q ′) by (A12) to recalculate the optical absorption, we have chosen to calculate an average of F [Eq. (A13)]
upon the q ′ space using Eq. (13) with the screened potential V x,s for the particular case τi = τj = τk = τl = R0 = 0 (when V x,s

takes its maximum value); this yields 〈F 〉 = 0.87.
In our approach, we assume that all the different V x,s terms appearing in the diagrams contributing to the dielectric function

are reduced by that same factor of 0.87, due to those dynamical effects. This is the factor we have introduced above to incorporate
those effects in the Penn’s static dielectric function.
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