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While the topological classification of insulators, semimetals, and superconductors in terms of nonspatial
symmetries is well understood, less is known about topological states protected by crystalline symmetries, such
as mirror reflections and rotations. In this work, we systematically classify topological semimetals and nodal
superconductors that are protected, not only by nonspatial (i.e., global) symmetries, but also by a crystal reflection
symmetry. We find that the classification crucially depends on (i) the codimension of the Fermi surface (nodal line
or point) of the semimetal (superconductor), (ii) whether the mirror symmetry commutes or anticommutes with
the nonspatial symmetries, and (iii) how the Fermi surfaces (nodal lines or points) transform under the mirror
reflection and nonspatial symmetries. The classification is derived by examining all possible symmetry-allowed
mass terms that can be added to the Bloch or Bogoliubov–de Gennes Hamiltonian in a given symmetry class
and by explicitly deriving topological invariants. We discuss several examples of reflection-symmetry-protected
topological semimetals and nodal superconductors, including topological crystalline semimetals with mirror Z2

numbers and topological crystalline nodal superconductors with mirror winding numbers.
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I. INTRODUCTION

Inspired by the recent experimental discovery of two- and
three-dimensional topological insulators [1–5], a multitude of
novel topological states protected by different symmetries
has been predicted over the last few years [4,6–9]. One
of the main hallmarks of these topological materials is the
appearance of protected zero-energy surface states, which arise
as a consequence of the nontrivial topological characteristics
of the bulk wave functions. For fully gapped topological
phases protected by general nonspatial symmetries, a complete
classification, the tenfold way, has been obtained for arbi-
trary dimensions [6–9]. This scheme classifies fully gapped
noninteracting systems in terms of nonspatial symmetries,
i.e., symmetries that act locally in position space, namely,
time-reversal symmetry (TRS), particle-hole symmetry (PHS),
and chiral or sublattice symmetry (SLS).

However, over the last few years it has become apparent that
besides nonspatial symmetries, also crystalline symmetries,
i.e., symmetries that act nonlocally in position space, can lead
to nontrivial topological properties of bulk insulating states
[10–27]. A prime example of a topological material protected
by a crystalline symmetry is the topological crystalline insula-
tor SnTe [28–31]. This band insulator exhibits Dirac-cone sur-
face states that are protected by a mirror reflection symmetry of
the crystal. Other than reflection symmetry, inversion [22–26]
and rotation [17,19,27] can also give rise to topologically
nontrivial quantum states of matter. In fact, it is expected
that for any given discrete space-group symmetry, there is a
distinct topological classification of band insulators and fully
gapped superconductors, and that each of these space-group-
symmetry-protected topological states can be characterized in
terms of an associated crystalline topological number.
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Parallel to these developments, the concept of topological
band theory has been extended to semimetals with Fermi
points or Fermi lines, and nodal superconductors with point
nodes or line nodes [26,32–44]. Although a global topological
number cannot be defined for these gapless systems, it is
nevertheless possible to determine their topological charac-
teristics and the stability of their Fermi points or Fermi
lines in terms of momentum-dependent topological numbers.
Notable examples of gapless topological states include Weyl
semimetals [45–53], Weyl superconductors [54–57], and nodal
noncentrosymmetric superconductors [58–65]. Similar to fully
gapped topological materials, the topological characteristics of
gapless topological states manifest themselves at the surface
in the form of either linearly dispersing boundary modes (i.e.,
Dirac or Majorana states) or dispersionless states, forming
two-dimensional surface flat bands or one-dimensional surface
arcs. While a complete topological classification of semimetals
and nodal superconductors in terms of nonspatial symmetries
has been established recently [26,33–35], the characterization
of gapless topological materials protected by crystalline
symmetries has remained an open problem.

In this paper, we present a complete classification of
topological semimetals and nodal superconductors protected
by crystal reflection symmetries and possibly one or two
nonspatial (i.e., global) symmetries. We find that the topo-
logical classification of these reflection-symmetry-protected
gapless states sensitively depends on (i) the codimension of the
Fermi surface, (ii) whether the reflection symmetry commutes
or anticommutes with the nonspatial symmetries, and (iii)
whether the Fermi points or Fermi lines are left invariant by the
mirror symmetry or the nonspatial symmetries. The outcome
of this classification scheme is summarized in Tables II and III,
which constitute the main results of this paper. Similar to the
tenfold classification in terms of nonspatial symmetries [6–9],
these tables exhibit twofold and eightfold Bott periodicities as
a function of spatial dimension. Two complementary methods
are used to derive these classification tables. The first approach
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is based on classifying all possible symmetry-allowed mass
terms that can be added to the Bloch or Bogoliubov–de Gennes
(BdG) Hamiltonian in a given symmetry class. The second
method relies on the explicit derivation of different types of
topological invariants that guarantee the stability of the Fermi
surfaces (superconducting nodes). In order to illustrate the new
topological phases predicted by these classification schemes,
we discuss several specific examples of reflection-symmetry-
protected topological semimetals and nodal superconductors
(see Sec. IV).

The remainder of this paper is organized as follows.
In Sec. II, we briefly review the classification of gapless
topological materials in terms of nonspatial symmetries. This
is followed by the derivation of the topological classification
of reflection-symmetry-protected semimetals and nodal super-
conductors in Sec. III, which is the principal result of this paper.
We present some explicit examples of topological semimetals
and nodal superconductors protected by reflection symmetries
in Sec. IV and conclude with a brief summary in Sec. V. Some
technical details have been relegated to appendices.

II. GAPLESS TOPOLOGICAL MATERIALS PROTECTED
BY NONSPATIAL SYMMETRIES

Since the classification of reflection-symmetry-protected
topological semimetals and nodal superconductors is closely
related to the topological classification of gapless states
protected by global symmetries, we first briefly review the
tenfold classification of gapless topological materials (cf.
Appendix A). This brief review also aims to clarify some open
questions which recently arose in the literature [26,33–35].
The tenfold scheme classifies gapless fermionic systems in
terms of three fundamental global symmetries, i.e., antiunitary
time-reversal and particle-hole symmetry, as well as chiral (i.e.,
sublattice) symmetry [66,67]. In momentum space, TRS and
PHS of the Bloch or BdG Hamiltonian H (k) are implemented
by antiunitary operators T and C, which act on H (k) as

T −1H (−k)T = +H (k) and C−1H (−k)C = −H (k), (1)

respectively. Both T and C can square either to +1 or −1,
depending on the type of the symmetry (see last three columns
of Table I). Chiral symmetry, on the other hand, is implemented
by

S−1H (k)S = −H (k), (2)

where S is a unitary operator.

A. Tenfold classification of gapless topological materials

As it turns out, the topological classification of gapless
materials depends not only on the symmetry class of the
Hamiltonian and the codimension p of the Fermi surface

p = d − dFS, (3)

where d and dFS denote the dimension of the Brillouin zone
(BZ) and the Fermi surface, respectively, but also on how the
Fermi surface transforms under the global symmetries [33].
Regarding the symmetry properties of the Fermi surfaces, two
different cases have to be distinguished: (i) each individual
Fermi surface is left invariant under nonspatial symmetries,
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FIG. 1. (Color online) The tenfold classification of gapless topo-
logical materials depends on the location of the Fermi surfaces in the
Brillouin zone, which in turn determines how the Fermi surfaces
transform under global antiunitary symmetries (see Table I). (a)
Each Fermi surface (red point/line) is left invariant under global
(i.e., nonspatial) symmetries. The contour, on which the topological
invariant is defined, is indicated by blue circles/spheres. Here, d

denotes the spatial dimension and p = d − dFS is the codimension of
the Fermi surface. (b) Different Fermi surfaces are pairwise related
to each other by global symmetries (k ↔ −k).

and (ii) different Fermi surfaces are pairwise related to each
other by nonspatial symmetries (see Fig. 1). While most of the
recent literature has studied case (i) [26,34,35], we emphasize
that also in case (ii) there exist topologically stable Fermi
surfaces.

1. Fermi surfaces at high-symmetry points

As shown in Refs. [26,33–35], Fermi surfaces located
at high-symmetry points in the BZ can be protected by
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TABLE I. Tenfold classification of topological insulators and fully gapped superconductors [6–9] as well as of Fermi surfaces and nodal
point/lines in semimetals and nodal superconductors, respectively [33–35]. The first row indicates the spatial dimension d of topological
insulators and superconductors, whereas the second and third rows specify the codimension p = d − dFS of the Fermi surfaces (nodal lines) at
high-symmetry points [Fig. 1(a)] and away from high-symmetry points of the Brillouin zone [Fig. 1(b)], respectively. The first column gives
the name of the symmetry classes. The labels T , C, and S in the last three columns indicate the presence (“+,” “−,” and “1”) or absence (“0”)
of time-reversal, particle-hole, and chiral symmetries, respectively, as well as the sign of the squared symmetry operators T 2 and C2.

Top. insul. and top. SC d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
FS at high-sym. point p = 8 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 T C S

FS off high-sym. point p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 1

A 0 Z 0 Z 0 Z 0 Z 0 0 0
AIII Z 0 Z 0 Z 0 Z 0 0 0 1
AI 0 0 0 2Z 0 Z2

a,b Z2
a,b Z + 0 0

BDI Z 0 0 0 2Z 0 Z2
a,b Z2

a,b + + 1
D Z2

a,b Z 0 0 0 2Z 0 Z2
a,b 0 + 0

DIII Z2
a,b Z2

a,b Z 0 0 0 2Z 0 − + 1
AII 0 Z2

a,b Z2
a,b Z 0 0 0 2Z − 0 0

CII 2Z 0 Z2
a,b Z2

a,b Z 0 0 0 − − 1
C 0 2Z 0 Z2

a,b Z2
a,b Z 0 0 0 − 0

CI 0 0 2Z 0 Z2
a,b Z2

a,b Z 0 + − 1

aZ2 numbers only protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone.
bFermi surfaces located away from high-symmetry points of the Brillouin zone cannot be protected by a Z2 topological number. Nevertheless,
the system can exhibit gapless surface states (at time-reversal-invariant momenta of the surface Brillouin zone) that are protected by a Z2

topological invariant.

either Z-type or Z2-type invariants. The complete tenfold
classification of Fermi surfaces that are left invariant under
global symmetries is shown in Table I, where the second
row indicates the codimension p of the Fermi surface at a
high-symmetry point. This result has been obtained using a
dimensional reduction procedure [33] and an approach based
on K theory [26,34,35]. In Appendix A, we present yet another
derivation of this classification scheme by considering all
possible symmetry-allowed mass terms that can be added to a
representative Dirac-matrix Hamiltonian in a given symmetry
class. It is important to note that for a given symmetry class and
codimension p, a Z-type topological invariant guarantees the
stability of the Fermi surface independent of the Fermi-surface
dimension dFS. A Z2-type topological number, on the other
hand, only protects Fermi surfaces of dimension zero, i.e.,
Fermi points. We can see from Table I that the tenfold
classification of global-symmetry-invariant Fermi points (i.e.,
dFS = 0) is related to the original tenfold classification of
topological insulators and superconductors by a dimensional
shift, i.e., d → d − 1. Due to a bulk-boundary correspondence
[26,33,34], gapless materials with nontrivial topology support
protected surface states, which, depending on the case, are
either Dirac or Majorana states or are dispersionless, forming
flat bands or arc surface states.

Let us illustrate some of the gapless topological states listed
in Table I by considering specific lattice models.

a. Nodal superconductor with TRS (class DIII). To demon-
strate that Z-type invariants protect Fermi surfaces (nodal
lines) of arbitrary dimension dFS, we study the following two-
dimensional tight-binding Hamiltonian on the square lattice:

H DIII
s = sin kxσx + sin kyσy, (4)

which describes a nodal superconductor with point nodes
(dFS = 0) at the four time-reversal-invariant momenta

(0,0), (0,π ), (π,0), and (π,π ). Hamiltonian (4) preserves time-
reversal symmetry, with T = σyK, and particle-hole symme-
try, with C = σxK. Here, K denotes the complex-conjugation
operator. Since T 2 = −1 and C2 = +1, the Hamiltonian
belongs to symmetry class DIII, where 1 is the 2 × 2 identity
matrix. According to Table I, superconducting nodes with
codimension p = 2 in class DIII are protected by a Z-type
topological invariant. Indeed, we find that the winding number

ν = i

2π

∫
C
q∗dq, (5)

where q = (sin kx − i sin ky)/
√

sin2 kx + sin2 ky is quantized
to ±1 for closed contours C encircling one of the four nodal
points. Specifically, for an anticlockwise-oriented contour we
obtain ν = +1 for the nodes at (0,0) and (π,π ), whereas ν =
−1 for the nodes at (0,π ) and (π,0). The topological nature of
these point nodes results in the appearance of protected flat-
band edge states for all edge orientations, except the (10) and
(01) faces. As demonstrated in Fig. 2(a), these flat-band states
connect two projected nodal points with different topological
charge (i.e., different winding number ν) in the edge BZ. The
BdG Hamiltonian (4) can be converted in a straightforward
manner to a three-dimensional topological superconductor
with protected line nodes (dFS = 1) by including an extra
momentum-space coordinate. Similar to the two-dimensional
example [Eq. (4)], the stability of these nodal lines is
guaranteed by the quantized winding number ν [Eq. (5)].

b. Semimetal with TRS (class AII). As stated above, Z2-
type invariants only protect Fermi surfaces of dimension zero
(dFS = 0) at high-symmetry points of the BZ and cannot give
rise to topologically stable Fermi surfaces with dFS > 0. To
exemplify this, we consider the following two-dimensional
Bloch Hamiltonian on the square lattice:

H AII
s = sin kxσx + sin kyσy + sin(kx + ky)σz (6)
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FIG. 2. (Color online) (a) Edge band structure of the nodal topological superconductor (4) (class DIII) for the (11) face as a function of edge
momentum k‖ = (kx + ky)/

√
2. The flat-band edge states (red traces) are protected by time-reversal symmetry and particle-hole symmetry. (b)

Band structure of the time-reversal-invariant semimetal (A9) (class AII) at the (11) edge as a function of edge momentum k‖. Linearly dispersing
edge states (red traces) connect the projected Fermi points in the edge BZ. (c) Edge spectrum of the sublattice-symmetric (chiral-symmetric)
semimetal (14) with A = B = 0.7 at the (01) face as a function of edge momentum kx . The flat-band edge states (red trace) are protected by
sublattice (chiral) symmetry.

that describes a semimetal with Fermi points at the four
time-reversal-invariant momenta of the two-dimensional BZ.
Hamiltonian (A9) preserves time-reversal symmetry, with
T = σyK, but breaks particle-hole symmetry, thus belonging
to symmetry class AII. The four Fermi points are protected
by a binary Z2 invariant, which can be defined in terms of an
extension of H AII

s to three dimensions [34,68]:

H̃ AII
s (k,θ ) = [sin kxσx + sin kyσy

+ sin(kx + ky)σz] sin θ + σz cos θ, (7)

where θ ∈ [0,π ] is the parameter for the extension in the third
direction. The extended Hamiltonian (7) is required to preserve
TRS:

T −1H̃ AII
s (−k,π − θ )T = H̃ AII

s (k,θ ). (8)

Performing a small-momentum expansion around a given
Fermi point, we find that the Z2 invariant is expressed as

nZ2 = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ ĝ · (∂θ ĝ × ∂φ ĝ) mod 2, (9)

with ĝ = g/|g| and

g = (±k̃x, ± k̃y,k̃x + k̃y + �) for k = (0,0), (π,π ),

g = (±k̃x, ∓ k̃y, − k̃x − k̃y + �) for k = (0,π ), (π,0),
(10)

where k̃x = k cos φ sin θ , k̃y = k sin φ sin θ , � = �0 cos θ ,
and (k, �0) are positive constants. The integral (9) is evaluated
along the sphere that surrounds the Fermi point and is
required to preserve TRS. We observe that the Z2 invariant
(9) is nontrivial (i.e., n = 1) for all four Fermi points, hence
indicating the topological protection of these two-dimensional
Dirac points. By the bulk-boundary correspondence, the topo-
logical characteristics of these Fermi points leads to linearly
dispersing edge modes, which connect two projected Dirac
points in the edge BZ [see Fig. 2(b)]. Importantly, we find that
Hamiltonian (A9) cannot be converted to a three-dimensional
semimetal with Fermi lines since it is possible to gap out
the Fermi lines located at (0,0,kz), (0,π,kz), (π,0,kz), and
(π,π,kz) by the symmetry-preserving term sin kzσz. That is,

in the presence of Fermi lines along the kz direction, the
topological invariant (9) is ill defined for kz 	= 0,π since it
breaks TRS.

c. Unstable semimetal with TRS and PHS (class BDI). As
an example of an unstable semimetal in two dimensions, we
consider the square-lattice Hamiltonian

H BDI
s = sin kx σx ⊗ σy + sin ky σy ⊗ 1, (11)

which represents a four-band semimetal with Fermi points at
the four time-reversal-invariant momenta. Hamiltonian (11)
belongs to class BDI since it is both time-reversal and
particle-hole symmetric with T = 1 ⊗ 1K and C = σz ⊗ 1K,
respectively. In agreement with the classification of Table I,
the four Fermi points of H BDI

s are unstable, as they can be
gapped out by the symmetry-preserving mass σx ⊗ σz. This is
in accordance with the fact that the winding number

ν = i

2π

∫
C

Tr (q†dq), (12)

where

q = −i√
sin2 kx + sin2 ky

(
sin ky sin kx

− sin kx sin ky

)
(13)

vanishes identically for any closed contour C.

2. Fermi surfaces off high-symmetry points

Second, we discuss the topological classification of
semimetals and nodal superconductors with Fermi surfaces
(or superconducting nodes) that are located away from high-
symmetry points of the BZ. In this case, global antiunitary
symmetries pairwise relate different Fermi surfaces with each
other [see Fig. 1(b)]. Interestingly, only Z-type invariants can
guarantee the stability of Fermi surfaces off high-symmetry
points. Z2-type numbers, on the other hand, cannot protect
these Fermi surfaces, but may nevertheless lead to the appear-
ance of zero-energy surface states at time-reversal-invariant
momenta of the surface BZ. The complete classification of
Fermi surfaces that are pairwise related by global symmetries
is shown in Table I, where the third row indicates the
codimension p of the Fermi surface located away from
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high-symmetry points (cf. Appendix A). We observe that the
classification for the two complex symmetry classes A and
AIII is identical to the one of Fermi surfaces that are left
invariant by global symmetries, while the classification for the
eight real symmetry classes is different. As before, we notice
that this classification scheme is related to the original tenfold
classification of topological insulators and superconductors by
a dimensional shift, i.e., in this case d → d + 1.

In order to exemplify some of the gapless topological states
with Fermi surfaces away from high-symmetry points, we
consider a few specific lattice modes.

a. Two-dimensional semimetal with SLS (class AIII). To
demonstrate that Z-type invariants protect Fermi surfaces at
non-high-symmetry points of the BZ, we study the following
sublattice symmetric Hamiltonian on the square lattice:

H AIII
n = Xσx + Yσy, (14)

where X = 1 + cos ky + A sin kx + B cos kx and Y = sin ky .
Sublattice symmetry acts on H AIII

n as SH AIII
n + H AIII

n S = 0,
with the unitary matrix S = σz. Hamiltonian (14) exhibits
two Fermi points located at (δ,π ) and (δ − π,π ), where
δ = arctan(−B/A) and we require that

√
A2 + B2 < 2. Note

that, in agreement with the fermion-doubling theorem by
Nielsen and Ninomiya [69], the number of Fermi points is
even. Since there exists no symmetry-allowed mass term that
can be added to Hamiltonian (14), the two Fermi points are
stable and, according to Table I, protected by the Z topological
number Eq. (5), with q = (X − Y i)/

√
X2 + Y 2 and C a closed

contour. Choosing C to be parallel to the ky axis, we find that
ν = +1 for δ − π < kx < δ, and zero otherwise. Due to an
index theorem [70], a nonzero value of the winding number
(5) implies the existence of flat-band edge states at zero energy.
At the (01) edge, the zero-energy flat-band states appear within
the interval kx ∈ [δ − π,δ] of the edge BZ [see Fig. 2(c)].

b. Three-dimensional semimetal with TRS and PHS (class
BDI). Z-type numbers can protect Fermi surfaces of arbitrary
dimension dFS. To demonstrate this for the case of Fermi
surfaces located away from high-symmetry points, we consider
the following three-dimensional tight-binding model on the
cubic lattice:

H BDI
n = (1 + cos ky + cos kx)σx + sin kyσy, (15)

which realizes a topological semimetal with two Fermi lines
at (±π/2,π,kz). Hamiltonian (15) belongs to symmetry class
BDI since it satisfies both TRS and PHS with T = 1K and C =
σzK, respectively. We observe that the two Fermi lines, which
are located away from the time-reversal-invariant momenta
of the BZ, transform into each other under particle-hole and
time-reversal symmetries [cf. Fig. 1(b)]. As indicated in Table
I, the Fermi lines are protected by a Z-type topological
invariant, which for the tight-binding model (15) takes the
form of Eq. (5), with q = (1 + cos ky + cos kx) − i sin ky . The
integration contour in Eq. (5) can be chosen to be any circle
enclosing the Fermi line. (The integration contour does not
need to be time-reversal or particle-hole symmetric.) Similar
to the class AIII model (14), a nonzero value of this winding
number leads to zero-energy flat-band surface states that
connect the two projected Fermi lines in the surface BZ.

c. Unstable nodal superconductor with TRS (class DIII).
As indicated in Table I, Z2-type topological numbers do
not guarantee the topological stability of Fermi surfaces
(superconducting nodes) at non-high-symmetry points of the
BZ. Nevertheless, Z2-type invariants, which are defined on
time-reversal-symmetric contours, can give rise to protected
gapless surface states. To demonstrate this, we consider an
example of an unstable nodal superconductor given by the
four-band BdG Hamiltonian

H DIII
n = (1 + cos kx + cos ky)σx ⊗ σy + sin kxσy ⊗ 1. (16)

This superconductor belongs to symmetry class DIII, as it pre-
serves both time-reversal and particle-hole symmetries, with
T = σy ⊗ 1K and C = σx ⊗ 1K, respectively. Hamiltonian
(16) exhibits two point nodes at (π, ± π/2). These two point
nodes, which are positioned away from the high-symmetry
points of the BZ, are unstable since the symmetry-preserving
extra kinetic term sin kx σx ⊗ σx opens up a gap in the entire
bulk BZ (cf. Table I). This is corroborated by the fact that the
winding number ν for model Hamiltonian (16) is identically
zero for any closed contour C, which follows from a similar
argument as the one given in the example of Eq. (11). In
contrast, the one-dimensional Z2 number [8,71]

nZ2 =
∏
K∈C

Pf[ω(K)]√
det[ω(K)]

(17)

for Hamiltonian (16) can take on nontrivial values, which
however does not lead to a protection of the point nodes of
the superconductor (cf. Table I and Appendix A). In Eq. (17),
the product is over the two time-reversal-invariant momenta
K (high-symmetry points) of the contour C and ω(K) denotes
the 2 × 2 sewing matrix

ωâb̂(k) = 〈u−
â (−k)| T u−

b̂
(k)〉, (18)

with |u−
â (k)〉 the negative-energy BdG wave functions of

Hamiltonian (16). Even though Z2 number (17) does not
stabilize point nodes in the bulk, it nevertheless leads to
protected zero-energy surface states at time-reversal-invariant
momenta of the surface BZ. To exemplify this, we consider two
time-reversal-invariant contours C oriented along the kx axis
with ky held fixed at ky = 0 or ky = π . With these contours,
the Z2 number takes on the values n = +1 and −1 at ky = 0
and π , respectively, indicating the existence of a zero-energy
edge state at ky = π of the (10) edge BZ of the superconductor.
We observe that the unstable nodal superconductor (16) can
be connected to a fully gapped topological superconductor
without removing the zero-energy edge states. That is, the
edge states of Hamiltonian (16) are inherited from the fully
gapped topological phase [72].

III. CLASSIFICATION OF
REFLECTION-SYMMETRY-PROTECTED GAPLESS

TOPOLOGICAL MATERIALS

Having discussed the classification of gapless topological
materials in terms of global symmetries, we are now ready
to classify reflection-symmetric topological semimetals and
nodal superconductors. Reflection symmetries lead to an
enrichment of the tenfold classification of topological
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FIG. 3. (Color online) The classification of reflection-symmetry-protected topological semimetals and nodal superconductors depends on
the location of the Fermi surfaces with respect to the reflection plane (highlighted in green) in the Brillouin zone, which in turn determines how
the Fermi surfaces transform under reflection and global antiunitary symmetries (see Tables II and III). (a) Each Fermi surface (red points/lines)
is left invariant under reflection and global antiunitary symmetries. (b) The Fermi surfaces are left invariant by reflection, but transform pairwise
into each other by the global antiunitary symmetries. The contours on which the MZ- and MZ2-type invariants are defined are indicated by
blue points/circles in panels (a) and (b). (c) Different Fermi points are pairwise related to each other by both reflection and global symmetries.
The contours on which the CZ2-type invariants are defined are indicated by blue lines/planes (see Table III).

semimetals (nodal superconductors) with new topological
phases. The classification depends on the codimension p =
d − dFS of the Fermi surface (nodal line/point) and on whether
the reflection operator R commutes or anticommutes with
the nonspatial symmetries. Moreover, we need to distinguish
how the Fermi surface (nodal line/point) transforms under
the mirror reflection and nonspatial symmetries. There are
three different cases to be considered: (i) The Fermi surface
is invariant under both reflection and global symmetries
[Fig. 3(a) and Table II], (ii) Fermi surfaces are invariant
under reflection, but transform pairwise into each other by
the global antiunitary symmetries [Fig. 3(b) and Table II], and
(iii) different Fermi surfaces are pairwise related to each other
by both reflection and nonspatial symmetries [Fig. 3(c) and
Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method [12,73,74]. This
method is based on considering reflection-symmetric Dirac-
matrix Hamiltonians with the smallest possible matrix dimen-
sion for a given symmetry class of the tenfold way. The topo-
logical properties of the Fermi surfaces (nodal lines) described
by these Dirac-matrix Hamiltonians are then determined by
the existence or nonexistence of symmetry-preserving gap-
opening terms (SPGTs), i.e., symmetry-allowed terms that
fully gap out the bulk Fermi surfaces. The existence of such
an SPGT indicates that the Fermi surface is topologically
trivial and hence unstable. This is denoted by the label “0”
in Tables II and III. On the other hand, if no SPGT exists,
then the Fermi surface is topologically stable and protected by
a topological invariant (for more details see Appendix A and
Ref. [12]). The minimal Dirac-matrix Hamiltonian approach is
complemented by a discussion of different types of topological
invariants (i.e.,Z-,Z2-, MZ-, MZ2-, and CZ2-type invariants)
that guarantee the stability of these Fermi surfaces. For
some concrete examples, we derive explicit expressions for

these topological numbers in Sec. IV. The classification of
reflection-symmetric gapless materials in terms of topological
invariants is consistent with the Dirac-matrix Hamiltonian
method.

Before discussing in detail the classification of reflection-
symmetric topological semimetals and nodal superconductors,
let us first examine how reflection symmetry acts on the
Hamiltonian and how it is related to the global symmetries.

A. Reflection symmetries

Crystal reflection is a spatial symmetry, which acts non-
locally in position space. For concreteness, let us consider a
d-dimensional Bloch or BdG Hamiltonian H (k) in momentum
space which is invariant under reflection in the first direction.
The invariance of H (k) under this mirror symmetry implies

R−1H (−k1,k̃)R = H (k1,k̃), (19)

where k̃ = (k2, . . . ,kd ) and the reflection operator R is a
unitary matrix. Due to a phase ambiguity in the definition
of the reflection operator R [12], we can assume without
loss of generality that R is Hermitian (at least for electronic
insulators), i.e.,

R† = R. (20)

With this assumption, the commutation or anticommutation
relations between R and the global nonspatial symmetry
operators T , C, and S,

SRS−1 = ηSR, T RT −1 = ηT R, CRC−1 = ηCR, (21)

can be determined in an unambiguous way, which in turn
simplifies the classification of reflection-symmetry-protected
insulators and superconductors. The three indices ηS , ηT , and
ηC in Eq. (21) take values +1 or −1 and specify whether R

commutes (+1) or anticommutes (−1) with the corresponding
global symmetry operator. These different possibilities are
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TABLE II. Classification of reflection-symmetry-protected topological insulators and fully gapped superconductors [12,13,26], as well
as of Fermi surfaces and nodal points/lines in reflection-symmetry-protected semimetals and nodal superconductors, respectively. The first
row specifies the spatial dimension d of reflection-symmetry-protected topological insulators and fully gapped superconductors, while the
second and third rows indicate the codimension p = d − dFS of the reflection-symmetric Fermi surfaces (nodal lines) at high-symmetry points
[Fig. 3(a)] and away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Top. insul. and top. SC d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

Reflection
FS within mirror plane

at high-sym. point p = 8 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

FS within mirror plane
off high-sym. point

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 1

R A MZ 0 MZ 0 MZ 0 MZ 0
R+ AIII 0 MZ 0 MZ 0 MZ 0 MZ
R− AIII MZ ⊕ Z 0 MZ ⊕ Z 0 MZ ⊕ Z 0 MZ ⊕ Z 0

AI MZ 0 0 0 2MZ 0 MZ2
a,b MZ2

a,b

BDI MZ2
a,b MZ 0 0 0 2MZ 0 MZ2

a,b

D MZ2
a,b MZ2

a,b MZ 0 0 0 2MZ 0
DIII 0 MZ2

a,b MZ2
a,b MZ 0 0 0 2MZ

R+,R++
AII 2MZ 0 MZ2

a,b MZ2
a,b MZ 0 0 0

CII 0 2MZ 0 MZ2
a,b MZ2

a,b MZ 0 0
C 0 0 2MZ 0 MZ2

a,b MZ2
a,b MZ 0

CI 0 0 0 2MZ 0 MZ2
a,b MZ2

a,b MZ

AI 0 0 2MZ 0 TZ2
a,bc Z2

a,b MZ 0
BDI 0 0 0 2MZ 0 TZ2

a,bc Z2
a,b MZ

D MZ 0 0 0 2MZ 0 TZ2
a,bc Z2

a,b

DIII Z2
a,b MZ 0 0 0 2MZ 0 TZ2

a,bc
R−,R−−

AII TZ2
a,bc Z2

a,b MZ 0 0 0 2MZ 0
CII 0 TZ2

a,bc Z2
a,b MZ 0 0 0 2MZ

C 2MZ 0 TZ2
a,bc Z2

a,b MZ 0 0 0
CI 0 2MZ 0 TZ2

a,bc Z2
a,b MZ 0 0

R−+ BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R+− DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0

R+− BDI MZ ⊕ Z 0 0 0 2MZ ⊕ 2Z 0 MZ2 ⊕ Z2
a,bMZ2 ⊕ Z2

a,b

R−+ DIII MZ2 ⊕ Z2
a,bMZ2 ⊕ Z2

a,b MZ ⊕ Z 0 0 0 2MZ ⊕ 2Z 0
R+− CII 2MZ ⊕ 2Z 0 MZ2 ⊕ Z2

a,bMZ2 ⊕ Z2
a,b MZ ⊕ Z 0 0 0

R−+ CI 0 0 2MZ ⊕ 2Z 0 MZ2 ⊕ Z2
a,bMZ2 ⊕ Z2

a,b MZ ⊕ Z 0

aZ2 and MZ2 invariants only protect Fermi surfaces of dimension zero (dFS = 0) at high-symmetry points of the Brillouin zone.
bFermi surfaces located within the mirror plane but away from high-symmetry points cannot be protected by a Z2 or MZ2 topological invariant.
Nevertheless, the system can exhibit gapless surface states that are protected by a Z2 or MZ2 topological invariant.
cFor gapless topological materials, the presence of translation symmetry is always assumed. Hence, there is no distinction between TZ2 and
Z2 for gapless topological materials.

labeled by RηT
, RηS

, and RηC
for the five symmetry classes

AI, AII, AIII, C, and D, respectively, which contain only one
global symmetry operation. For the remaining four symmetry
classes BDI, CI, CII, and DIII, which contain two nonspatial
symmetries, the four different possible (anti)commutation
relations are denoted by RηT ηC

. Hence, there are a total of 27
different symmetry classes for reflection-symmetry-protected
topological insulators and fully gapped superconductors (see
Table II). We observe that since the reflection operator R is
both Hermitian and unitary, R2 = 1 and all eigenvalues of R

are either +1 or −1. Here, 1 denotes the identity matrix with
unspecified matrix dimension.

B. Fermi surfaces at high-symmetry points within mirror planes

Fermi points that are invariant under both reflection
and global symmetries [red points in Fig. 3(a)], can be

protected by Z-, MZ-, Z2-, or MZ2-type topological num-
bers. The topological classification of these Fermi points
(dFS = 0) in d dimensions is related to the classification of
reflection-symmetric fully gapped systems in d + 1 dimen-
sions [12,13,26]. (For a brief review of the classification of
fully gapped reflection-symmetric topological materials, see
Appendix B.) To demonstrate this relation, let us consider
a d-dimensional Dirac Hamiltonian of a reflection-symmetric
insulator (or fully gapped superconductor) in a given symmetry
class

H TI
Dirac =

d∑
i=1

kiγi + mγ̃0. (22)

Reflection symmetry R is implemented by
R−1H TI

Dirac(−k1,k̃)R = H TI
Dirac(k1,k̃). Here and in the

following, γi denote Dirac matrices which anticommute
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TABLE III. Classification of Fermi points and superconducting point nodes of reflection-symmetric semimetals and nodal superconductors,
respectively, where the Fermi points (point nodes) are located outside the mirror plane [see Fig. 3(c)]. The first row indicates the spatial dimension
d of the semimetal (nodal superconductor). The prefix “C” indicates that the corresponding topological invariant is defined in terms of the
combined symmetries T̃ and/or C̃ [see Eq. (26)] on a (d − 1)-dimensional plane which is perpendicular to the k1 axis [blue line/plane in
Fig. 3(c)]. The Z- and Z2-type invariants, on the other hand, are identical to the ones of the original tenfold classification in the absence of
mirror symmetry (cf. Table I) and are defined on (d − 1)-dimensional hyperspheres surrounding the Fermi point.

Reflection FS off mirror plane
and off high-sym. point

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

R A Z 0 Z 0 Z 0 Z 0
R+ AIII 0 Z 0 Z 0 Z 0 Z

AI Z 0 0 0 2Z 0 CZ2 CZ2

BDI CZ2 Z 0 0 0 2Z 0 CZ2

D CZ2 CZ2 Z 0 0 0 2Z 0
DIII 0 CZ2 CZ2 Z 0 0 0 2Z

R+,R++
AII 2Z 0 CZ2 CZ2 Z 0 0 0
CII 0 2Z 0 CZ2 CZ2 Z 0 0
C 0 0 2Z 0 CZ2 CZ2 Z 0
CI 0 0 0 2Z 0 CZ2 CZ2 Z

AI 2Z 0 CZ2 0 2Z 0 0 0
BDI 0 2Z 0 CZ2 0 2Z 0 0

D 0 0 2Z 0 CZ2 0 2Z 0
DIII 0 0 0 2Z 0 CZ2 0 2Z

R−,R−−
AII 2Z 0 0 0 2Z 0 CZ2 0
CII 0 2Z 0 0 0 2Z 0 CZ2

C CZ2 0 2Z 0 0 0 2Z 0
CI 0 CZ2 0 2Z 0 0 0 2Z

R+− CI CZ2 0 0 0 0 0 0 CZ2

R−+ BDI 0 CZ2 CZ2 0 0 0 0 0
R+− DIII 0 0 0 CZ2 CZ2 0 0 0
R−+ CII 0 0 0 0 0 CZ2 CZ2 0
R− AIII 0 0 0 0 0 0 0 0
R−+ DIII, CI 0 0 0 0 0 0 0 0
R+− BDI, CII 0 0 0 0 0 0 0 0

(commute) with the time-reversal operator T (particle-hole
operator C) of the given symmetry class, whereas γ̃i are
Dirac matrices that commute (anticommute) with T (C)
(see Appendix A). By considering the reflection-symmetric
surface states of H TI

Dirac, we can derive from Eq. (22) a Dirac
Hamiltonian describing a reflection-symmetric Fermi point
in the same symmetry class as Eq. (22) but in one dimension
lower,

HR
s =

d−1∑
i=1

kiPγiP, (23)

with the projection operator P = (1 − iγ̃0γd )/2. The topo-
logical property of H TI

Dirac is signaled by the existence or
nonexistence of an extra symmetry-allowed mass term 
̃ [12],
i.e., a symmetry-preserving Dirac matrix that anticommutes
with all Dirac matrices γi and γ̃0 of Eq. (22). Whenever such
an extra mass term 
̃ exists, it is possible to construct an SPGT
for HR

s [Eq. (23)] by 
̃P = P
̃P, which is nonzero since 
̃

anticommutes with both γ̃0 and γd . Vice versa, one can show
that whenever there exists an SPGT for HR

s , i.e., a symmetry-
allowed Dirac matrix γ̃ that anticommutes with HR

s , there is
a corresponding extra symmetry-allowed mass term for H TI

Dirac
[12,66]. Hence, the classification of Fermi points (i.e., dFS = 0)

at high-symmetry positions within the mirror plane follows
from the classification of reflection-symmetric fully gapped
systems by the dimensional shift d → d − 1 (Table II). We
observe that this finding is in agreement with the classification
of Fermi points reported by Shiozaki and Sato in Ref. [26] [see
Eq. (9.5) in their work].

For Fermi surfaces with dFS > 0, on the other hand, the
classification differs from the one of Fermi points (dFS = 0).
That is, only Z-type invariants (i.e., Z, MZ, and MZ ⊕ Z
topological numbers) can protect Fermi surfaces with dFS > 0.
This is because for a gapless d-dimensional system with, e.g.,
Fermi lines along the kd direction [described by Eq. (23)],
we can add to the Hamiltonian the additional symmetry-
preserving kinetic term kdγd , which gaps out the Fermi lines
(except at high-symmetry points). For gapless systems with
a Z2-type invariant, such an extra kinetic term always exists,
whereas for Fermi surfaces with a Z-type topological number
this extra kinetic term is absent (cf. Appendix A for more
details and Sec. IV A for some examples).

The classification of Fermi surfaces that are located within
the mirror plane at high-symmetry positions is summarized in
Table II, where the second row indicates the codimension p

of the Fermi surface. The prefix “M” in Table II indicates
that the corresponding topological invariant is defined on
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a (p − 2)-dimensional contour within the reflection plane
[blue points/lines in Fig. 3(a)]. The topological invariants
labeled by Z and Z2, on the other hand, are defined on
(p − 1)-dimensional contours that intersect with the mirror
plane (same invariants as in the absence of reflection symmetry,
cf. Table I).

C. Fermi surfaces within mirror planes but off
high-symmetry points

Second, we classify Fermi surfaces that are located
within the mirror plane but away from high-symmetry points
[Fig. 3(b)]. These Fermi surfaces are invariant under reflection,
but transform pairwise into each other by the nonspatial
antiunitary symmetries. We discuss this classification by
considering the following reflection-symmetric Dirac-matrix
Hamiltonian

HR
n =

p−1∑
i=1

sin kiγi +
(

1 − p +
p∑

i=1

cos ki

)
γ̃0, (24)

which describes a semimetal (nodal superconductor) with a
(d − p)-dimensional Fermi surface (superconducting node)
located at

k = (0, . . . ,0, ± π/2,kp+1, . . . ,kd ). (25)

Reflection symmetry acts on Hamiltonian (24) as
R−1HR

n (−k1,k̃)R = HR
n (k1,k̃). We observe that Fermi sur-

face (25) lies within the mirror plane k1 = 0, but away
from the high-symmetry points (0,0,0, . . . ,0), (π,0,0, . . . ,0),
(0,π,0, . . . ,0), etc., of the BZ. Comparing Eq. (24) to (22) we
find that HR

n , with kp 	= ±π/2 and kp−1, . . . ,kd held fixed,
can be interpreted as a reflection-symmetric insulator (fully
gapped superconductor) in d = p − 1 dimensions. Hence, the
existence (or nonexistence) of an extra symmetry-allowed
mass term 
̃ for H TI

Dirac [Eq. (22)] implies the existence (or
nonexistence) of a momentum-independent SPGT for HR

n

[Eq. (24)]. However, Fermi surface (25) can also be gapped
out by an additional symmetry-allowed kinetic term, i.e., by
the momentum-dependent SPGT sin kpγp. It turns out that
for symmetry classes with a Z2- or MZ2-type invariant, this
extra kinetic term is always allowed by symmetry, whereas for
classes with a Z- or MZ-type number, this term is symmetry
forbidden (cf. Appendix A). With this, it follows that the
classification of p-dimensional Fermi surfaces (superconduct-
ing nodes) within the reflection plane but off high-symmetry
points is given by the classification of reflection-symmetric
topological insulators (fully gapped superconductors) in d =
p − 1 dimensions which are protected by a Z- or MZ-type
invariant (cf. Table II). We note that while Z2- or MZ2-type
invariants cannot protect Fermi surfaces that are located within
the mirror plane but away from high-symmetry points, they
nevertheless might give rise to protected gapless surface states
(see Sec. IV B 4 for an example).

D. Fermi surfaces outside mirror planes

Finally, we discuss the classification of Fermi surfaces
(superconducting nodes) that are located outside the mirror
plane. These Fermi surfaces are pairwise related to each other
by both reflection and nonspatial antiunitary symmetries [see

Fig. 3(c)]. Reflection symmetry alone cannot protect Fermi
surfaces that lie outside the reflection plane since the reflection
symmetry does not restrict the form of the mass term at
the position of the Fermi surface. However, a combination
of reflection and global antiunitary symmetries can give rise
to topologically stable Fermi points (or point nodes in the
superconducting gap) [8,75]. In order to study this possibility,
we introduce the combined symmetry operators

T̃ = RT and C̃ = RC, (26a)

which are antiunitary. These combined symmetry operators act
on the d-dimensional Bloch or BdG Hamiltonian as follows:

T̃ −1H (k1,−k̃)T̃ = +H (k1,k̃) (26b)

and

C̃−1H (k1,−k̃)C̃ = −H (k1,k̃). (26c)

Hence, T̃ (C̃) can be viewed as an effective time-reversal
(particle-hole) symmetry acting within (d − 1)-dimensional
planes that are perpendicular to the k1 direction [blue
lines/planes in Fig. 3(c)]. For each of these planes, it is
possible to define a topological number and study its evolution
as a function of the parameter k1 [62]. These k1-dependent
topological numbers can only change across gap-closing
points. Hence, the stability of Fermi points or superconducting
point nodes (i.e., gap-closing points) can be discussed in
terms of these topological invariants which are defined in the
presence of the combined symmetry T̃ and/or C̃ [Eq. (26)].
Moreover, at surfaces that are parallel to the k1 direction,
these k1-dependent topological numbers give rise to arc surface
states that connect two projected Fermi points in the surface
BZ.

In this section, we derive the classification of Fermi surfaces
outside the mirror plane by examining which types of topolog-
ical invariants can be defined within the (d − 1)-dimensional
planes perpendicular to the k1 axis. For this, we have to
distinguish between two different kinds of invariants: (i) mirror
invariants that are defined within the mirror plane for a given
eigenspace of the reflection operator R and (ii) invariants
which are defined for any given plane perpendicular to the
k1 axis [green and blue lines/planes in Fig. 3(c), respectively].
Since these two kinds of invariants are constrained differently
by symmetry, they can in principle give rise to different
classifications. However, it turns out that the Fermi points
are only protected by the “weaker” of these two invariants.
That is, e.g., if one invariant is of Z type whereas the other
one is of Z2 type, then the Fermi points only exhibit a Z2-type
topological characteristic. This follows from the fact that the
topological invariant cannot change as a function of k1 as
long as the bulk gap does not close. Hence, the invariant
defined in the mirror plane must equal the invariant defined
in a plane that is perpendicular to k1 and infinitesimally close
to the mirror plane. This condition can only be satisfied if
the “stronger” of the two invariants reduces to the “weaker”
one. In Appendix C, we present a complementary derivation
of the classification scheme of Table III using the Dirac-matrix
Hamiltonian approach.

Le us now discuss in detail for which of the 27 symmetry
classes listed in Tables II and III there exist topologically
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stable Fermi points (point nodes) protected by the combined
symmetry T̃ and/or C̃.

1. R+ and R++

First, we study the situation where the reflection symmetry
operator R commutes with all global antiunitary symmetries,
which is denoted by R+ and R++ in Table III. Since [R,T ] = 0
and [R,C] = 0, we have T̃ 2 = T 2 and C̃2 = C2, from which
it follows that the tenfold symmetry class defined in terms of T

and C is the same as the one defined in terms of the combined
symmetries T̃ and C̃. Hence, the classification of R+ (R++)
reflection-symmetric systems with Fermi points outside the
reflection plane is almost the same as the classification of
Fermi points off high-symmetry momenta in the absence of
reflection symmetry (compare Table I with Table III and see
Appendix C 1). The only difference is that the CZ2-type
invariants of Table III, which are defined in terms of the
combined symmetries (26), lead to stable Fermi points outside
the reflection plane, whereas the Z2-type invariants of Table I
do not protect Fermi points that are located away from
high-symmetry momenta (cf. Sec. II A 2). We observe that
for systems with R+ (R++) reflection symmetry in Table III
the mirror invariants which are defined in the mirror planes for
a given eigenspace of R yield the same classification as the

invariants which are defined in the planes perpendicular to k1

with k1 	= 0,π .

2. R− and R−−

Second, we study the case where the reflection operator R

anticommutes with the nonspatial symmetries T and C, which
is labeled by R− and R−− in Table III. Here, we find that
T̃ 2 = −T 2 and C̃2 = −C2 which implies that the symmetry
class defined in terms of T̃ and C̃ is shifted by four positions
on the “Bott clock” [73] with respect to the symmetry class
defined in terms of T and C. Note that since the “Bott clock”
has periodicity eight, the direction of the shift is irrelevant.
Therefore, the types of invariants that can be defined in (d − 1)-
dimensional planes with fixed k1 	= 0,π can be inferred from
column p = d + 4 of the classification of Fermi surfaces that
are away from high-symmetry points (Table I). This, however,
is inconsistent with the invariants that can be defined within the
mirror planes k1 = 0,π . That is, since [H (k1 = 0,π ; k̃),R] =
0 and [S = T C,R] = 0, it is possible to block-diagonalize H

within the mirror plane with respect to R, and for each block
one can define a Chern number (class BDI, DIII, CII, and CI) or
a winding number (class AI, D, AII, and C). For example, for
three-dimensional systems, there are the following invariants
that can be defined within the mirror planes (fixed k1 = 0,π )
or within planes with fixed k1 	= 0,π :

d = 3 AI BDI D DIII AII CII C CI
Mirror plane Z 0 Z 0 Z 0 Z 0

(k1 	= 0,π ) plane Z2 0 Z 0 0 0 Z Z2

.

As discussed above, the Fermi points are only protected by
the “weaker” of these two invariants [76]. Extending these
arguments to other dimensions yields the classification shown
in Table III [77]. The derivation of this result using the
Dirac-matrix Hamiltonian approach is given in Appendix C 2.
We observe that the classification for classes with Z-type
invariants almost agrees with the classification of Fermi points
located away from high-symmetry momenta in the absence
of reflection symmetry (Table I). The only difference is that
reflection symmetry requires that the Z invariants are even
(indicated by “2Z” in Table III), whereas in the absence of re-
flection symmetry the Z numbers can also take on odd values.

3. DIII and CI with R+− and BDI and CII with R−+

Third, we discuss the case where the reflection operator R

commutes with one of the global antiunitary symmetries but
anticommutes with the other one, i.e., classes DIII and CI with
R+−-type reflection symmetry and classes BDI and CII with
R−+-type reflection symmetry. From the (anti-)commutation
relations of R with the nonspatial symmetries we find that the
symmetry class defined in terms of T̃ and C̃ (symmetry class
for plane with fixed k1 	= 0,π ) is shifted with respect to the
symmetry class defined in terms of T and C (symmetry class
of entire system) as follows:

DIII → CII, CII → CI, CI → BDI, BDI → DIII. (27a)

On the other hand, since only one global symmetry
commutes with the reflection operator R, the symmetry class
within the mirror plane is reduced in the following way:

DIII → AII, CI → AI, BDI → D, CII → C. (27b)

By a similar logic as above, we find by use of Eq. (27) and
Table I that, e.g., for three-dimensional systems, the following
invariants can be defined within the mirror planes (fixed k1 =
0,π ) or within planes with fixed k1 	= 0,π :

d = 3 DIII CI BDI CII
Mirror plane Z2 0 Z Z

(k1 	= 0,π ) plane 0 0 Z2 0
.

As before, we find that only the “weaker” of these two types
of invariants leads to a protection of the Fermi point (cf.
Appendix C 4). Extending these arguments to other dimensions
gives the classification of Table III.

4. AIII with R−, DIII and
CI with R−+, and BDI and CII with R+−

Finally, we consider class AIII with R−-type reflection
symmetry, classes DIII and CI with R−+-type reflection
symmetry, and classes BDI and CII with R+−-type reflection
symmetry. Repeating the steps of the previous subsection, we
find that for, e.g., three-dimensional systems, the following
invariants can be defined within the mirror plane and within

205136-10



CLASSIFICATION OF REFLECTION-SYMMETRY- . . . PHYSICAL REVIEW B 90, 205136 (2014)

planes with fixed k1 	= 0,π :

d = 3 AIII DIII CI BDI CII
Mirror plane Z Z 0 2Z Z2

(k1 	= 0,π ) plane 0 0 0 0 Z2

,

which suggests that Fermi points in three-dimensional systems
with class CII symmetries are protected by aZ2-type invariant.
However, this is in contradiction with the result obtained from
the Dirac-matrix Hamiltonian approach, which shows that all
Fermi points have trivial topology (Appendix C 3). It turns
out that even though some nontrivial Z2-type invariants can
in principle be defined, these invariants do not protect Fermi
points outside the mirror plane. We conclude that Fermi points
outside the mirror plane in class AIII with R−-type reflection
symmetry, classes DIII and CI with R−+-type reflection
symmetry, and classes BDI and CII with R+−-type reflection
symmetry have trivial topology in all spatial dimensions
(Table III).

IV. EXAMPLES OF
REFLECTION-SYMMETRY-PROTECTED TOPOLOGICAL

SEMIMETALS AND NODAL SUPERCONDUCTORS

In this section, we present several examples of gapless topo-
logical phases protected by reflection symmetry. As in Sec. III,
we consider three different types of Fermi-surface positions,
which are defined by how the Fermi surface transforms under
the mirror reflection and nonspatial symmetries (see Fig. 3).

A. Fermi surfaces at high-symmetry points
within mirror planes

We start by discussing four examples of reflection-
symmetry-protected Fermi surfaces (superconducting nodes)
that are left invariant under both reflection and global sym-
metries. These Fermi surfaces are located at high-symmetry
points within the reflection plane [see Fig. 3(a)].

1. Reflection-symmetric nodal spin-triplet superconductor with
TRS (class DIII with R−+ and p = 2)

As indicated in Table II, point nodes (dFS = 0) in two-
dimensional spin-triplet superconductors with TRS and R−+-
type reflection symmetry (class DIII with R−+) are protected
by an MZ ⊕ Z invariant. That is, the number of protected
point nodes at high-symmetry points within the mirror plane
is given by max {|nZ| , |nMZ|}, where nZ denotes the one-
dimensional winding number, whereas nMZ is the mirror
invariant. Let us illustrate this type of reflection-symmetric
nodal superconductor by considering the following continuum
model:

H DIII
s = kxσx + kyσy. (28)

This superconductor has a point node at k = (0,0) and is in-
variant under reflection kx → −kx with R = σy . Time-reversal
and particle-hole symmetry operators are given by T = σyK
and C = σxK, respectively. Since {T ,R} = 0 and [C,R] = 0,
Hamiltonian (28) exhibits an R−+-type reflection symmetry.
The global invariant nZ of this nodal superconductor is
given by the one-dimensional winding number [Eq. (5)] with
q = (kx − iky)/

√
k2
x + k2

y and an integration contour C that

surrounds the point node at k = (0,0). We find that this
winding number evaluates to nZ = +1. The mirror number
nMZ, on the other hand, is defined on the mirror line kx = 0
for each eigenspace of the mirror operator R (i.e., σy = ±1).
For Eq. (28), the mirror number is given by the difference of
occupied states on either side of the point node

n±
MZ = n±

occ(ky > 0) − n±
occ(ky < 0) = ∓1, (29)

where n±
occ(ky) denotes the number of occupied states (i.e.,

the number of negative-energy states) at k = (0,ky) in the
eigenspace of R with eignevalue ±1. Hence, the nodal point
at k = (0,0) is protected by both the winding number nZ and
the mirror number n±

MZ.
It is important to note, however, that gapless systems with

MZ ⊕ Z-type invariants are not protected by the sum of the
Z and MZ invariants; rather, the number of point nodes
(gapless modes) is given by max {|nZ| , |nMZ|}. To exemplify
this further, we consider two doubled versions of Hamiltonian
(28):

H DIII
s,1 = kxσx ⊗ σz + kyσy ⊗ σz (30a)

and

H DIII
s,2 = kxσx ⊗ σz + kyσy ⊗ 1, (30b)

which have the same symmetry properties as Eq. (28) with T =
σy ⊗ 1K, C = σx ⊗ 1K, and R = σy ⊗ 1. Equations (30a)
and (30b) have different topological characteristics: While the
topology of H DIII

s,1 is given by nZ = 2 and n±
MZ = 0, for H DIII

s,2

we find that nZ = 0 and n±
MZ = ∓2. Hence, both Hamiltonians

in Eq. (30) exhibit two stable gapless modes at k = 0. We now
form a direct product between H DIII

s,1 and H DIII
s,2 , which yields

an 8 × 8 Hamiltonian H DIII
s,3 = diag(H DIII

s,1 ,H DIII
s,2 ), with four

gapless modes. However, only two of these four modes are
topologically stable since it is possible to gap out two states
by the symmetry-preserving mass term⎛⎜⎝0 0 0 0

0 0 0 imσy

0 0 0 0
0 −imσy 0 0

⎞⎟⎠ . (31)

Thus, in accordance with the formula max {|nZ| , |nMZ|} = 2,
H DIII

s,3 exhibits only two stable gapless modes at k = 0.
In closing, we observe that by including an extra

momentum-space coordinate, we can convert Hamiltonian
(28) to a three-dimensional reflection-symmetric superconduc-
tor with a protected line node (dFS = 1) located at k = (0,0,kz).
The stability of this nodal line is guaranteed by the quantized
winding number nZ [Eq. (5)] and the mirror invariant nMZ

[Eq. (29)].

2. Reflection-symmetric Dirac semimetal with TRS
(class AII with R+ and p = 3)

Next, we study a reflection-symmetric three-dimensional
Dirac semimetal with TRS, which is described by

H AII
s = kxσx ⊗ σz + kyσy ⊗ 1 + kzσz ⊗ 1. (32)

Time-reversal and reflection-symmetry operators are given by
T = σy ⊗ 1K and R = 1 ⊗ σx , respectively. Because T 2 =
−1 and [T ,R] = 0, Hamiltonian (32) belongs to symmetry
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class AII with R+. The semimetal of Eq. (32) has a Dirac
point at k = (0,0,0) which is topologically stable since there
exists no SPGT that can be added to the Hamiltonian. Indeed,
according to Table II, this Fermi point is protected by an
MZ2-type topological invariant, which is defined on the mirror
line kx = 0 for each eigenspace of the reflection operator R.
Focusing on the eigenspace R = +1, we find that H AII

s in this
subspace on the mirror line is given by

hAII
R=+1 = kyσy + kzσz. (33)

The MZ2 invariant is defined in terms of an extension of
Eq. (33) to three dimensions [cf. Eq. (7)]

h̃AII
R=+1 = (kyσy + kzσz) cos θ + �σx sin θ, (34)

where � is a positive constant and θ ∈ [0,π ] is the pa-
rameter for the extension in the third dimension. With
this, we find that the stability of the single Dirac point
at k = (0,0,0) is guaranteed by the invariant (9) with
g = (� sin θ,k cos φ cos θ,k sin φ cos θ ), which evaluates to
nMZ2 = 1. However, as indicated by the MZ2-type invariant,
a doubled version of this Dirac point is unstable. This can
be seen by considering two copies of Hamiltonian (32), i.e.,
H AII

s ⊗ 1. The doubled Dirac point of this 8 × 8 Hamiltonian
can be gapped out by the momentum-independent SPGT
σx ⊗ σx ⊗ σy , which is in agreement with the value of the
topological number nMZ2 = 0 for H AII

s ⊗ 1.
MZ2-type invariants only protect Fermi surfaces of dimen-

sion zero (dFS = 0) at high-symmetry points of the BZ. To
illustrate this, we consider an extension of Hamiltonian (32)
to four spatial dimensions with a Fermi line along the fourth
momentum direction kw. This Fermi line, which is located
at (0,0,0,kw), can be gapped out by the symmetry-preserving
kinetic term kwσx ⊗ σx . Only the Fermi point at (0,0,0,0)
remains gapless; it is protected by the nonzero MZ2 invariant
which is well defined only for kw = 0.

3. Nodal spin-singlet superconductor with TRS and R+−-type
reflection symmetry (class CII with R+− and p = 2)

Let us now discuss an example of a nodal superconductor
with an MZ2 ⊕ Z2-type index. According to Table II, point
nodes of time-reversal-invariant spin-singlet superconductors
with an R+−-type reflection symmetry are protected by an
MZ2 ⊕ Z2 topological invariant. A simple example of such a
reflection-symmetric topological superconductor is provided
by the 4 × 4 Hamiltonian

H CII
s = kxσy ⊗ 1 + kyσx ⊗ 1, (35)

which preserves time-reversal and particle-hole symmetry
with T = σy ⊗ 1K and C = σx ⊗ σyK, respectively. H CII

s is
invariant under reflection kx → −kx with R = σx ⊗ σy . Since
T 2 = −1, C2 = −1, [T ,R] = 0, and {C,R} = 0, Hamiltonian
(35) belongs to symmetry class CII with R+−. The two-
dimensional superconductor (35) exhibits a point node at
k = (0,0) whose stability is guaranteed by a MZ2 ⊕ Z2

topological index. To demonstrate this, we compute both the
global invariant nZ2 and the mirror invariant nMZ2 . From Table
II, we find that the global invariant nZ2 in column p = 2 is
a second descendant of a Z-type invariant in column p = 4.
Hence, the topological number nZ2 can be defined in terms of

an extension of H CII
s to four dimensions [34,35]

H̃ CII
s = [kxσy ⊗ 1 + kyσx ⊗ 1] sin θ sin ψ

+ σz ⊗ σz sin θ cos ψ + σz ⊗ σx cos θ, (36)

where ψ,θ ∈ [0,π ] are the parameters for the extension to four
dimensions. Just as Eq. (35), Hamiltonian (36) satisfies both
time-reversal and particle-hole symmetry with

T −1H̃ CII
s (−k,π − ψ,π − θ )T = H̃ CII

s (k,ψ,θ ) (37a)

and

C−1H̃ CII
s (−k,π − ψ,π − θ )C = −H̃ CII

s (k,ψ,θ ), (37b)

respectively. We note that for the definition of the global
invariant nZ2 we do not need to consider the restrictions
imposed by reflection symmetry. Using the extension (36),
the nZ2 invariant is expressed as

nZ2 = 1

48π2

∮
C

Tr
[
S
(
H̃ CII

s d[H̃ CII
s

]−1)3]
mod 2, (38)

with the chiral symmetry operator S = σz ⊗ σy and C a three-
dimensional contour which encloses the point node and which
is mapped onto itself by both TRS and PHS [see Fig. 1(a)].
Choosing C to be the unit three-sphere S3, we parametrize the
momenta as kx = cos φ and ky = sin φ, which yields

nZ2 = 1

8π2

∫ 2π

0
dφ

∫ π

0
dψ

∫ π

0
dθ Tr

[
S
(
H̃ CII

s ∂φ

[
H̃ CII

s

]−1)
× (

H̃ CII
s ∂ψ

[
H̃ CII

s

]−1)(
H̃ CII

s ∂θ

[
H̃ CII

s

]−1)]
mod 2 = 1,

(39)

indicating that the point node at k = (0,0) is protected by the
nontrivial value of nZ2 .

As opposed to the global invariant nZ2 , the mirror invariant
nMZ2 is defined in the reflection plane kx = 0 for a given
eigenspace of the reflection operator R. Focusing on the
eigenspace R = +1, we find that the extended Hamiltonian
(36) in this eigenspace within the mirror plane is given by

h̃CII
R=+1 = kyσy sin ψ sin θ − σz cos ψ sin θ + σx cos θ, (40)

where ψ ∈ [0,π ] and θ ∈ [0,π ]. Hamiltonian (40) is invariant
under TRS:

T −1
R h̃CII

R=+1(−k,π − ψ,π − θ )TR = h̃CII
R=+1(k,ψ,θ ), (41)

with TR = iσyK. The mirror invariant nMZ2 is of the same form
as Eq. (9) with an integration contour that preserves TRS, that
lies within the mirror plane, and that surrounds the nodal point
[see Fig. 3(a)]. As the integration contour we choose a two-
sphere S2 which intersects the (kx,ky) plane at k = (0, ± a),
such that the Fermi point at k = (0,0) on the mirror line is
enclosed by ky = ±a [see Fig. 3(a)]. That is, to perform the
contour integration ky = 0 in h̃CII

R=+1 is replaced by a and ψ is
integrated over the interval [0,2π ], whereas θ is integrated over
[0,π ]. With this integration contour we find that nMZ2 is given
by Eq. (9) with g = (cos θ,a sin ψ sin θ, − cos ψ sin θ ), which
evaluates to nMZ2 = 1. Hence, the point node at k = (0,0) is
protected also by the mirror invariant nMZ2 .

As indicated in Table II, MZ2 ⊕ Z2-type indices only
protect Fermi surfaces (superconducting nodes) of dimension
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zero, i.e., dFS = 0. To exemplify this, we consider a trivial
extension of Hamiltonian (35) to three spatial dimensions by
including the extra momentum component kz, which yields a
three-dimensional superconductor with a line node at (0,0,kz).
However, this line node is unstable since it can be gapped out
by the symmetry-preserving kinetic term kzσz ⊗ σx . Only the
point node at k = (0,0,0) is topologically stable. Moreover,
we find that the global invariant nZ2 [Eq. (38)], as well
as the mirror invariant nMZ2 , cannot be defined for the
three-dimensional superconductor with a line node along the
kz direction since it is impossible to choose a time-reversal-
invariant integration contour that surrounds this nodal line
(except for kz = 0 and π ).

4. Reflection-symmetric nodal spin-singlet superconductor
(class C with R− and p = 2)

As a fourth example, we consider a two-dimensional nodal
spin-singlet superconductor with reflection symmetry, which
is described by the 4 × 4 Hamiltonian

H C
s = kxσx ⊗ σy + kyσy ⊗ σy. (42)

Equation (42) satisfies PHS with C = σy ⊗ 1K and is invariant
under reflection kx → −kx with R = σy ⊗ 1. Because C2 =
−1 and {C,R} = 0, Hamiltonian (42) belongs to symmetry
class C with an R−-type reflection symmetry. This supercon-
ductor has a point node at k = (0,0), which, according to
Table II, is protected by a TZ2 invariant. Indeed, there exists
no SPGT that can gap out this point node. To demonstrate
the Z2-type property of Eq. (42), we consider different
doubled versions of the Hamiltonian. Using H C

s , there are
four possibilities to construct an 8 × 8 Hamiltonian in the
symmetry class C with R− [12]:

H C
++ = H C

s ⊗ 1, H C
−− = H C

s ⊗ σz, (43a)

H C
−+ = kxσx ⊗ σy ⊗ 1 + kyσy ⊗ σy ⊗ σz, (43b)

and

H C
+− = kxσx ⊗ σy ⊗ σz + kyσy ⊗ σy ⊗ 1. (43c)

We find that the first three Hamiltonians can be fully gapped out
by the momentum-independent SPGTs 1 ⊗ σz ⊗ σy , 1 ⊗ 1 ⊗
σy , and σy ⊗ σy ⊗ σy , respectively. Interestingly, the fourth
Hamiltonian H C

+− has a stable point node at k = 0, i.e., there
exists no SPGT for H C

+−. However, if we consider quadrupled
versions of H C

s [Eq. (42)], we find that for each quadrupled
Hamiltonian there exists at least one SPGT which gaps out all
the point nodes. (In a sense, the Hamiltonian has a Z4 property
rather than a Z2 property.)

B. Fermi surfaces within mirror planes but off
high-symmetry points

Second, we present some examples of Fermi surfaces
(superconducting nodes) that are left invariant by the mirror
symmetry but transform pairwise into each other under the
global symmetries. These Fermi surfaces are located within
the mirror plane but away from the time-reversal-invariant
momenta [see Fig. 3(b)].

1. Reflection-symmetric Dirac semimetal with TRS
(class AII with R+ and p = 2)

We begin by considering the following two-orbital
tight-binding Hamiltonian HAII

n = ∑
k �

†
kh

AII
n (k)�k, with the

spinor �k = [ψ↑1(k),ψ↑2(k),ψ↓1(k),ψ↓2(k)]T and

hAII
n (k) = tx sin kx σz ⊗ τx + [1 − ty cos ky]σ0 ⊗ τz, (44)

where σi operates in spin grading and τi in orbital grading
[78]. This Hamiltonian satisfies TRS, with T = σy ⊗ τ0K, and
reflection symmetry kx → −kx , with R = σ0 ⊗ τz. Because
T 2 = −1 and [R,T ] = 0, semimetal (44) belongs to symmetry
class AII with R+. The spectrum of the Hamiltonian is given by

E = ±
√

t2
x sin2 kx + (1 − ty cos ky)2. (45)

For ty > 1, Hamiltonian (44) has four Dirac points at (kx,ky) =
(0, ± arccos[1/ty]) and (π, ± arccos[1/ty]), for ty = 1 there
are two Dirac points at (kx,ky) = (0,0) and (π,0), and for
ty < 1 there is a full gap in the BZ. The reflection symmetry
R maps each Dirac point onto itself, i.e., the Fermi points are
located within the mirror lines kx = 0 and π [see Fig. 3(b)].
Since there does not exist any SPGT that can be added to
Eq. (44), the four Dirac points of Hamiltonian (44) with ty > 1
are topologically stable and protected against gap opening by
TRS and reflection symmetry. This is in agreement with the
classification of Table II (column p = 2), which shows that the
Fermi points are protected by a mirror invariant of type 2MZ,
where the prefix “2” indicates that the mirror invariant only
takes on even values. To exemplify this for semimetal (44), we
evaluate the mirror number n2MZ for the reflection line kx = 0.
We find that hAII

n in the eigenspace R = ±1 for kx = 0 reads as

hAII
R=±1 = ±(1 − ty cos ky)1. (46)

The mirror index n±
2MZ for the eigenspace R = ±1 is given

by the difference of occupied states (i.e., states with E < 0)
of Hamiltonian hAII

R=±1 on either side of the Dirac point, i.e.,

n±
2MZ = n±

occ(|ky | < k0) − n±
occ(|ky | > k0) = ±2, (47)

where k0 = arccos[1/ty] and

n+
occ(ky) =

{
2, |ky | < k0

0,
∣∣ky

∣∣ > k0
, n−

occ(ky) =
{

0, |ky | < k0

2, |ky | > k0

(48)

denotes the number of occupied states at k = (0,ky) in the
eigenspace or R with eigenvalue +1 and −1, respectively.
Hence, the two Dirac points at (0, ± k0) are protected by the
invariant (47). The index n2MZ for the kx = π line, which
guarantees the stability of the Fermi points at (π, ± k0), can
be computed in a similar fashion.

2. Reflection-symmetric tight-binding model on the honeycomb
lattice (class AI with R+ and p = 2)

As a second example, we discuss a tight-binding model of
spinless fermions on the honeycomb lattice, which describes
the electronic properties of graphene [79] (ignoring any spin-
dependent terms). Considering both first- and second-neighbor
hopping, the tight-binding Hamiltonian can be written as
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FIG. 4. (Color online) (a) The honeycomb lattice of graphene
is a bipartite lattice composed of two interpenetrating triangular
sublattices. The two sublattices are marked “A” (black dots) and
“B” (blue dots). The nearest-neighbor bond vectors (green arrows)
are given by s1 = (−1,0), s2 = 1

2 (1,
√

3), and s3 = 1
2 (1, − √

3). The

second-neighbor bond vectors (red arrows) are d1 = −d4 = 1
2 (3,

√
3),

d2 = −d5 = 1
2 (3, − √

3), and d3 = −d6 = (0, − √
3). The mirror

line x → −x is indicated by the green line. (b) Energy spectrum
of a graphene ribbon with (10) edges (i.e., zigzag edges) and (t1,t2) =
(1.0,0.1). A linearly dispersing edge state (red trace) connects the
Dirac points, which are located at k‖ = 2π/3 and 4π/3 in the edge
BZ and are projected from the bulk Dirac points at (0, ± k0).

HAI
n = ∑

k �
†
kh

AI
n (k)�k with the spinor �k = (ak,bk)T and

hAI
n (k) =

(
�k �k
�∗

k �k

)
, (49)

where ak and bk denote the fermion annihilation operators
with momentum k on sublattices A and B, respectively. The
hopping terms are given by �k = t1

∑3
i=1 e+ik·si and �k =

t2
∑6

i=1 e+ik·di , where si and di denote the nearest- and second-
neighbor bond vectors, respectively [Fig. 4(a)]. The hopping
integrals t1 and t2 are assumed to be positive.

Hamiltonian (49) satisfies TRS with T = σ0K and is
invariant under the mirror symmetry kx → −kx with R = σx .
[Incidentally, Eq. (49) is also symmetric under ky → −ky .
However, we shall ignore this symmetry since it does not
play any role for the protection of the Dirac points.] Because
T 2 = +1 and [R,T ] = 0, we find that Hamiltonian (49)
belongs to symmetry class AI with R+. The energy spectrum

E±
k = +2t2

[
2 cos

(
3kx

2

)
cos

(√
3ky

2

)
+ cos(

√
3ky)

]

± t1

[
3 + 4 cos

(
3kx

2

)
cos

(√
3ky

2

)
+ 2 cos(

√
3ky)

] 1
2

(50)

exhibits two Dirac points, which are located on the mirror
line kx = 0, i.e., at (kx,ky) = (0, ± k0) in the BZ, with k0 =
4π/(3

√
3). These two Dirac points transform pairwise into

each other under TRS. Because there does not exist any SPGT
that can be added to Eq. (49), we find that the Dirac points
are topologically stable and protected against gap opening by
TRS, reflection symmetry, and SU(2) spin-rotation symmetry.
In particular, we note that the TRS-preserving mass term σ3 is

forbidden by reflection symmetry R. This finding is confirmed
by the classification of Table II, which indicates that the
stability of the Dirac points is guaranteed by an MZ-type
invariant.

To compute this mirror invariant nMZ, we determine the
eigenstates ψ±

k of hAI
n (k) with energy E±

k :

ψ−
k = 1√

2

(−eiϕk

1

)
, ψ+

k = 1√
2

(
eiϕk

1

)
, (51)

where ϕk = arg[�k]. On the mirror line kx = 0 we have

eiϕ(0,ky ) =
{ +1, |ky | < k0

−1, |ky | > k0.
(52)

Hence, ψ±
(0,ky ) are simultaneous eigenstates of the reflection

operator R = σx with opposite eigenvalue (+1 or −1), which
prohibits the hybridization between them. The mirror invariant
n±

MZ is given by the difference of the number of states with
energy E−

k and reflection eigenvalue R = ±1 on either side of
the Dirac point, i.e.,

n±
MZ = n±

neg(|ky | > k0) − n±
neg(|ky | < k0), (53)

where n±
neg(ky) denotes the number of states with energy E−

k
and reflection eigenvalue R = ±1. Using Eq. (52), we find that
n±

MZ = ±1, and hence the Dirac points are protected by the
mirror invariant (53). By the bulk-boundary correspondence,
the nontrivial topology of the Dirac points leads to a linearly
dispersing edge mode, which connects the projected Dirac
points in the (10) edge BZ [see Fig. 4(b)].

3. Reflection-symmetric semimetal with Fermi rings
(class A with R and p = 3)

To exemplify that MZ-type invariants can give rise
to topologically stable Fermi surfaces with dFS > 0, we
consider the following three-dimensional semimetal on the
square lattice HA

n = ∑
k �

†
kh

A
n (k)�k, with the spinor �k =

[c1(k),c2(k),c3(k),c4(k)]T and

hA
n (k) = M(k)τ0 ⊗ σz + m2τz ⊗ σz + sin kxτ0 ⊗ σx. (54)

Here, M(k) = m1 − cos kx − cos ky − cos kz is a momentum-
dependent mass term, and m1 and m2 are positive constants.
Equation (54) breaks both TRS and PHS, but is symmetric
under kx → −kx with R = τ0 ⊗ σz. Incidentally, Eq. (54) also
exhibits a chiral symmetry with S = 1 ⊗ σy and {R,S} = 0,
which corresponds to class AIII with R− in Table II. However,
chiral symmetry can be broken by including a staggered
chemical potential

Vs = μs

N∑
i=1

(−1)i�†(xi)1 ⊗ σy�ν(xi), (55)

with N the number of lattice sites in the x direction. For sim-
plicity, we assume that N is an even number. The Hamiltonian
with the staggered chemical potential, i.e., HA

n + Vs , is still
reflection symmetric about the mirror plane x = (x1 + xN )/2,
and hence belongs to class A with R in Table II.

The energy spectrum of HA
n in the absence of Vs is given

by

E±,μ = ±
√

[M + (−1)μm2]2 + sin2 kx, (56)
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FIG. 5. (Color online) (a) Surface band structure of semimetal (54) for the (100) face with μs = 0, kz = 0, m1 = 2.5, and m2 = 0.2 as a
function of surface momentum ky . Note that the (100) surface is not symmetric under kx → −kx . Zero-energy surface flat bands (red traces)
appear within regions of the surface BZ that are bounded by the projected bulk Fermi lines. (b) Surface spectrum on the (100) face as a function
of both ky and kz for the same parameters as in panel (a). Nondegenerate zero-energy flat bands protected by the winding number nZ = 1
[see Eq. (62)] appear within the region 1.3 < cos ky + cos kz < 1.7 of the surface BZ (green area). Doubly degenerate flat bands protected by
nZ = 2 exist within the region cos ky + cos kz > 1.7 (brown area). (c) Surface spectrum in the presence of a staggered chemical potential (55)
with μs = 0.05. Linearly dispersing surface states (red traces) connect the projected Fermi rings in the surface BZ.

with μ ∈ {1,2}. Assuming that m2 > 0 and m1 − m2 > 1, we
find that Hamiltonian (54) exhibits two Fermi rings (i.e., two
Fermi surfaces with dFS = 1) located within the mirror plane
kx = 0, which are described by

cos ky + cos kz = m1 − 1 ± m2. (57)

These Fermi rings are topologically stable since there does not
exist any reflection-symmetric mass term nor any reflection-
symmetric kinetic term that can be added to Eq. (54) (cf.
Appendix A). This finding is in agreement with Table II, which
shows that the Fermi rings (57) are protected by an MZ-type
invariant (in the presence of Vs) or an MZ ⊕ Z-type invaraint
(in the absence of Vs). To demonstrate this, let us compute the
corresponding mirror and winding numbers.

The mirror number nMZ is defined within the mirror plane
kx = 0 for a given eigenspace of the reflection operator R.
Focusing on the eigenspace R = +1, we find that hA

n (0,ky,kz)
in this subspace reads as

hA
R=+1 = (m − 1 − cos ky − cos kz)1 − m2σz. (58)

The mirror topological number nMZ is given by the difference
of occupied states (i.e., states with negative energy) on either
side of the Fermi ring

n+
MZ = n+

occ(k>
y ,k>

z ) − n+
occ(k<

y ,k<
z ), (59)

where (k>
y ,k>

z ) and (k<
y ,k<

z ) are two momenta on either side of
the Fermi ring and

n+
occ(ky,kz) =

⎧⎨⎩2, m̃(ky,kz) < −m2

1, −m2 < m̃(ky,kz) < +m2

0, m̃(ky,kz) > +m2

(60)

with m̃(ky,kz) = m1 − 1 − cos ky − cos kz, represents the
number of occupied states in the eigenspace with R = +1.

In the absence of the staggered chemical potential Vs ,
Hamiltonian (54) satisfies chiral symmetry and the Fermi rings
are also protected by a winding number nZ, which takes the

form of Eq. (12) with

q =
( sin kx−i[M(k)+m2]

r+
0

0 sin kx−i[M(k)−m2]
r−

)
, (61)

where r± =
√

[M(k) ± m2]2 + sin2 kx , and an integration
contour C that encircles the Fermi ring. Choosing the contour
along the kx direction we find

nZ(ky,kz) =
⎧⎨⎩2, m̃(ky,kz) < −m2

1, −m2 < m̃(ky,kz) < +m2

0, m̃(ky,kz) > +m2.

(62)

By the bulk-boundary correspondence, a nontrivial value of
nZ [Eq. (62)] leads to zero-energy flat bands at the surface of
the semimetal. These zero-energy states appear within regions
of the surface BZ that are bounded by the projection of the bulk
Fermi rings [see Figs. 5(a) and 5(b)]. When chiral symmetry is
broken, for example by a finite staggered chemical potential Vs ,
the surface flat bands acquire a finite dispersion [see Fig. 5(c)].

4. Unstable reflection-symmetric nodal superconductors (class
DIII with R−+ and p = 2, class D with R+ and p = 2)

As shown in Table II, Z2-type topological invariants (i.e.,
Z2, MZ2, and MZ2 ⊕ Z2) do not protect Fermi surfaces
(superconducting nodes) that are located within the mirror
planes but away from high-symmetry points (cf. Sec. II A 2 c).
However, these Z2-type invariants can lead to protected
gapless surface states. To exemplify this behavior, we study in
this section two-dimensional unstable nodal superconductors
belonging to class DIII with R−+-type reflection and class D
with R+-type reflection, which are classified as MZ2 ⊕ Z2 and
MZ2, respectively, in Table II. For this purpose, we borrow an
example from Sec. II A 2 c, i.e., HDIII

n = ∑
k �

†
kh

DIII
n �k with

the Nambu spinor �k = (a†
k,b

†
k,a−k,b−k )T and

hDIII
n = (1 + cos kx + cos ky)σx ⊗ σy + sin kxσy ⊗ 1, (63)

which describes a time-reversal-symmetric superconductor
with point nodes located at (π, ± π/2). Here, a

†
k and b

†
k
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represent fermionic creation operators with momentum k.
Hamiltonian (63) preserves TRS and PHS with T = σy ⊗
1K and C = σx ⊗ 1K, respectively, and is invariant under
kx → −kx with R = σx ⊗ 1. Because T 2 = −1, C2 = +1,
{R,T } = 0, and [R,C] = 0, Eq. (63) belongs to class DIII with
R−+. According to Table II, the point nodes of Hamiltonian
(63), which transform pairwise into each other by TRS and
PHS, are topologically unstable, even though the topological
numbers nZ2 [cf. Eq. (17)] and nMZ2 for Hamiltonian (63)
take on nontrivial values. Indeed, we find that the symmetry-
preserving extra kinetic term δt sin kyσx ⊗ σx gaps out the
Fermi points at (π, ± π/2) and turns Eq. (63) into a fully
gapped reflection-symmetric topological superconductor

HDIII
fg = HDIII

n + δt
∑

k

�
†
k sin kyσx ⊗ σx�k. (64)

That is, the unstable nodal superconductor (63) is connected
to the fully gapped reflection-symmetric topological supercon-
ductor (64) and inherits topological edge states from the fully
gapped phase [72].

To demonstrate this, let us compute the global nZ2 invariant
and the mirror invariant nMZ2 for Hamiltonians (63) and (64).
The computation of the global invariant nZ2 , which is given
by Eq. (17), follows along similar lines as in the example
of Sec. II A 2 c. (Note that for the definition of a Z2-type
invariant the reflection symmetry does not play any role;
the Z2 number nZ2 is defined solely in terms of the global
symmetries.) We find that for a contour C oriented along the
kx axis with ky held fixed at ky = 0 (or ky = π ), the topological
index evaluates to nZ2 = +1 (or nZ2 = −1) both for the nodal
superconductor HDIII

n and the fully gapped superconductor
HDIII

fg . This indicates that there appear zero-energy edge states
at ky = π of the (10) edge BZ of both the fully gapped and the
nodal systems.

To calculate the mirror number nMZ2 we focus on the
eigenspace of the reflection operator with eigenvalue R = +1
and transform Hamiltonian (64) to a Majorana basis [80]. On
the mirror lines kx = 0 and π , HDIII

fg in the eigenspace R = +1
can be expressed as

HDIII,ν
R=+1

=
∑
ky

Mν(ky)
(
d
†
ν,ky

dν,−ky

)( 1 −iδT

iδT −1

)(
dν,ky

d
†
ν,−ky

)
,

(65)

with ν ∈ {0,π} and where Mν(ky) = 1 + (−1)ν/π + cos ky

and δT (ky) = δt sin ky . In Eq. (65), the transformed fermion
operators dν,ky

are given by

dν,ky
= 1

2 [a†
ν,ky

+ aν,−ky
− i(b†ν,ky

+ bν,−ky
)]. (66)

Using Eq. (66) we can construct real Majorana operators
�ν,ky

= (λν,ky
,λ′

ν,ky
)T, with

λν,ky
:= d

†
ν,ky

+ dν,ky
, λ′

ν,ky
:= i(d†

ν,−ky
− dν,−ky

), (67)

and rewrite the Hamiltonian in the R = +1 eigenspace as

HDIII,ν
R=+1 = i

2

∑
ky

�T
ν,−ky

Bν(ky)�ν,ky
, (68a)

with

Bν(ky) =
(

δT (ky) Mν(ky)
−Mν(ky) δT (ky)

)
. (68b)

It follows that the mirror invariant nMZ2 on the two mirror
lines ky = 0 and π is given by

nν
MZ2

= sgn[PfBν(0)]sgn[PfBν(π )] =
{+1, ν = 0
−1, ν = π.

(69)

Interestingly, the value of nν
MZ2

does not depend on the extra
kinetic term δt sin kyσx ⊗ σx . Hence, we conclude that the
unstable nodal superconductor HDIII

n can be connected to the
fully gapped topological superconductor HDIII

fg (whose bulk
topology is described by n0

MZ2
nπ

MZ2
) without changing the

values of the invariants nZ2 and nν
MZ2

. Both nZ2 and nν
MZ2

lead to protected zero-energy states at the edge of the nodal
(or fully gapped) superconductor.

We observe that in systems that are classified as MZ2 ⊕ Z2

in Table II the two invariants nMZ2 and nZ2 always take on
the same values. This is in contrast to topological materials
with an MZ ⊕ Z classification, where the two invariants nMZ

and nZ can be distinct (see example in Sec. IV A 1). That
is, the presence of reflection symmetry in MZ2 ⊕ Z2-type
systems does not lead to any new topological characteristics,
but it simplifies the calculation of the topological index, i.e.,
the topological characteristics can be inferred from the wave
functions at reflection planes alone. (This situation is in a
sense similar to the Z2 time-reversal-symmetric topological
insulator with inversion symmetry of Ref. [81], where the
inversion symmetry does not lead to new topological features,
but simplifies the formula for the topological index.)

A similar analysis as above can be preformed for a two-
dimensional unstable nodal superconductor in class D with
R+-type reflection symmetry. In the absence of TRS, the global
Z2 number nZ2 is ill defined, however, the mirror invariant
nMZ2 is still well defined and takes on nontrivial values (cf.
Table II). This mirror index leads to stable zero-energy modes
at edges that are invariant under reflection. As before, we
find that a reflection-symmetric nodal superconductor in class
D with R+ can be connected to a fully gapped topological
superconductor without removing the zero-energy edge states.

5. Reflection-symmetric nodal spin-triplet superconductor with
TRS (class DIII with R−− and p = 3)

As the last example of this section, we study a three-
dimensional reflection-symmetric superconductor in class
DIII:

hDIII
3D =M(k)σz ⊗ 1 + sin kxσx ⊗ σx + sin kzσx ⊗ σz, (70)

which exhibits point nodes at k = (0, ± π/3,0). The k-
dependent mass M(k) is given by M(k) = −2.5 + cos kx +
cos ky + cos kz. Hamiltonian (70) satisfies TRS and PHS
with T = 1 ⊗ σyK and C = σx ⊗ 1K, respectively, and is
reflection symmetric under kx → −kx with R = σz ⊗ σx .
Because T 2 = −1, C2 = +1, {T ,R} = 0, and {C,R} = 0,
Eq. (70) is classified as DIII with R−−. The two point nodes,
which are located within the mirror plane at k = (0, ± π/3,0),
are protected by TRS, PHS, and reflection symmetry since
there does not exist any SPGT that can be added to Eq. (70).
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FIG. 6. (Color online) Surface band structure of the reflection-symmetric nodal superconductor (70) (class DIII with R−−) for the (001)
face as a function of (a) surface momentum ky with kx = 0 and (b) surface momentum kx with ky = 0. A zero-energy arc surface state (red
trace) connects the projected point nodes in the surface BZ. (c) Surface spectrum on the (001) face as a function of both kx and ky . The surface
states and bulk states are indicated in green and gray, respectively.

We note that the gap-opening term sin kyσy ⊗ 1 is symmetric
under TRS and PHS but breaks mirror symmetry, which shows
that the reflection symmetry R is crucial for the protection of
the point nodes. Indeed, as indicated by Table I, the point nodes
are unstable in the absence of reflection symmetry.

Let us now compute the mirror invariant nMZ which, as
listed in Table II, protects the point nodes. Since the chiral
symmetry operator S = T C = σx ⊗ σy commutes with R, the
mirror number nMZ can be expressed as a one-dimensional
winding number, i.e., for the eigenspace R = +1 it takes the
form of Eq. (12) with

q = M(k) − sin kzi√
M(k)2 + sin2 kz

, (71)

and a contour C that lies within the mirror plane and encloses
one of the point nodes [see Fig. 3(b)]. Choosing the contour
along the kz axis with kx = 0 and ky a fixed parameter, we find
that the mirror number evaluates to

n+
MZ(ky) =

{
1, 0 � |ky | < π

3
0, π

3 < |ky | � π.
(72)

By the bulk-boundary correspondence, the nontrivial value of
Eq. (72) leads to zero-energy arc states on surfaces that are
perpendicular to the mirror plane. As shown in Fig. 6, these
zero-energy arc states connect two projected point nodes in
the surface BZ.

C. Fermi surfaces outside mirror planes

Third, we discuss three examples of Fermi surfaces (super-
conducting nodes) that lie outside the mirror plane. These
Fermi surfaces are pairwise related to each other by both
reflection and nonspatial symmetries [see Fig. 3(c)]. Their
topological properties are classified by Table III.

1. Reflection-symmetric Dirac semimetal with TRS
(class AII with R+ and p = 3)

We start by studying an example of a three-dimensional
Dirac semimetal with an R+-type reflection symmetry, which

is described by [75,78,82]

H AII
off = sin kyτx ⊗ σz + sin kzτy ⊗ 1 + M(k)τz ⊗ 1. (73)

Here, M(k) = M − cos kx − cos ky − cos kz and M is a pos-
itive constant, which we set to M = 2.0. The Pauli matrices
σi and τi operate in spin and orbital gradings, respectively.
Hamiltonian (73) preserves TRS with T = 1 ⊗ iσyK and is
symmetric under kx → −kx with R = 1 ⊗ 1. Since T 2 = −1

and [T ,R] = 0, the Hamiltonian belongs to class AII with R+.
By computing the energy spectrum, we find that the semimetal
exhibits two doubly degenerate Dirac points that are located
outside the reflection plane kx = 0, i.e., at k = (±π/2,0,0).
These Fermi points are protected by a combination of time-
reversal and reflection symmetries because there does not
exist any SPGT that can be added to Eq. (73). We note,
however, that in the absence of reflection symmetry, the Dirac
points can be gapped out by the time-reversal-invariant term
sin kxτx ⊗ σx , which turns Hamiltonian (73) into a class AII
topological insulator. This finding is in agreement with the
tenfold classification of gapless topological materials shown
in Table I. To determine whether the Dirac points have a
Z- or Z2-type character, we consider a doubled version of
H AII

off , i.e., H AII
off ⊗ 1. For the doubled Hamiltonian, there

exists a momentum-independent SPGT (i.e., τx ⊗ σx ⊗ σy),
demonstrating that the Dirac points are protected by a Z2-type
invariant, which is denoted as “CZ2” in Table III.

The CZ2 invariant nCZ2 is defined in terms of the combined
symmetry (26b), i.e., T̃ −1H AII

off (kx,−k̃)T̃ = H AII
off (kx,k̃). Since

each plane perpendicular to the kx axis is left invariant by
the combined symmetry (26b), we can define the topological
number nCZ2 for any given plane Ekx

with fixed kx [see
Fig. 3(c)]. We find that

nCZ2 (kx) =
{+1, π

2 < |kx | � π

−1, 0 � |kx | < π
2 .

(74)

Due to the bulk-boundary correspondence, the nontrivial value
of nCZ2 (kx) in the interval [−π/2, + π/2] gives rise to helical
Fermi arcs on surfaces that are perpendicular to the reflection
plane [75,82]. These helical arc states connect the project bulk
Dirac points in the surface BZ.
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2. Reflection-symmetric nodal spin-triplet superconductor
(class D with R− and d = 3)

Next, we consider a reflection-symmetric nodal spin-triplet
superconductor, which is described by the BdG Hamiltonian

H D
off = sin kyτy ⊗ σz + sin kzτx ⊗ σz + M(k)τz ⊗ 1, (75)

where M(k) = 2 − cos kx − cos ky − cos kz. Here, the Pauli
matrices σi and τi act in spin and particle-hole space,
respectively. H D

off satisfies PHS with C = τx ⊗ 1K and is
invariant under kx → −kx with R− = τz ⊗ σx . Because C2 =
+1 and {R,C} = 0, the BdG Hamiltonian belongs to class
D with R−. As an aside, we note that reflection symmetry
kx → −kx for spin- 1

2 systems is usually implemented by the
operator R′

p = +iσx (R′
h = −iσx) for particlelike (holelike)

degrees of freedom, i.e., by the operator R′ = iτz ⊗ σx in
particle-hole space. However, in order to correctly categorize
the Hamiltonian with respect to the 27 symmetry classes of
Table III, we need to ensure that the reflection operator R is
Hermitian [cf. Eq. (20)]. Therefore, we have dropped the factor
i in the above definition of R.

The spectrum of Hamiltonian (75) exhibits two doubly
degenerate point nodes, which are located outside the mirror
plane at k = (±π/2,0,0). These point nodes are topologically
stable since there does not exist any SPGT that can be added
to Eq. (75). According to Table III, the point nodes of H D

off are
protected by an invariant of type “2Z” (i.e., a Chern number),
where the prefix “2” indicates that the topological number
only takes on even values. Choosing the two-dimensional
integration contour to be a plane perpendicular to the kx axis,
we find that the Chern number for Hamiltonian (75) is given
by

nZ(kx) = i

2π

∫ 2∑
i=1

d〈u−
i |du−

i 〉

= −
∫

1

2πR3

(
ZdX ∧ dY+XdY ∧ dZ+YdZ ∧ dX

)
,

(76)

where X = sin kz, Y = sin ky, Z = M(k), and R =√
X2 + Y 2 + Z2. Evaluating the integral, we obtain

nZ(kx) =
{

0, π
2 < |kx | � π

−2, 0 � |kx | < π
2 .

(77)

Note that for the definition of the Chern number (77), the
combined symmetry C̃ = RC [Eq. (26c)] does not not play
any role, except to ensure that there are an even number of
point nodes on either side of the reflection planes. By the bulk-
boundary correspondence, the nontrivial value of nZ [Eq. (77)]
gives rise to arc surface states which connect the projected
point nodes in the surface BZ [62].

3. Unstable reflection-symmetric nodal superconductor with TRS
(class DIII with R−+ and d = 2)

As stated in Sec. III D 4, superconducting nodes outside the
mirror plane in systems of class DIII with R−+-type reflection
symmetry are unstable, even though a nontrivial MZ2-type
invariant can be defined for these systems. To illustrate this,

we consider the following BdG Hamiltonian:

H DIII
off = sin kyσx ⊗ 1 + (1 + cos kx + cos ky)σz ⊗ σy, (78)

which describes a superconductor with unstable point nodes.
Equation (78) preserves TRS and PHS with T = σy ⊗ 1K
and C = σx ⊗ σzK, respectively, and is symmetric under
kx → −kx with R = σx ⊗ σz. Because T 2 = −1, C2 = +1,
{T ,R} = 0, and [C,R] = 0, Hamiltonian (78) is classified as
DIII with R−+. We find that the spectrum of Eq. (78) exhibits
point nodes located away from the mirror lines kx = 0 and
π , i.e., at k = (±π/2,0). These point nodes are topologically
unstable since there exists a momentum-dependent SPGT (i.e.,
sin kxσy ⊗ 1), which opens up a full gap.

Let us now examine topological invariants for Hamiltonian
(78). First, we consider a winding number νZ, which is
defined by chiral symmetry with S = T C = −iσz ⊗ σz on
a line perpendicular to the kx direction. Since chiral symmetry
is momentum independent, combining reflection and chiral
symmetries is not required to define the winding number νZ.
We find that this one-dimensional winding number is given by
Eq. (5) with

q = 1√
sin2 ky + M2

(
sin ky −iM

−iM sin ky

)
, (79)

where M = 1 + cos kx + cos ky . Evaluating the integral, one
obtains that νZ is trivial for any fixed kx (i.e., νZ = 0), in
agreement with the fact that the point nodes are unstable.
Second, we consider the mirror invariant, which is defined
within the mirror lines kx = 0 and π for a given eigenspace
of R. Since H DIII

off restricted to the mirror lines satisfies PHS, a
mirror invariant of type MZ2 can be defined. By a similar
calculation as in example Sec. IV B 4, we find that the
mirror invariant nMZ2 is given by nMZ2 = 1 for kx = 0 and
nMZ2 = −1 for kx = π . However, even though nMZ2 takes on
a nontrivial value, this MZ2-type invariant does not protect the
point nodes that are located at k = (±π/2,0) (see Appendix
C 3).

V. SUMMARY AND CONCLUSIONS

In this paper, we have performed an exhaustive classifica-
tion of reflection-symmetry-protected topological semimetals
and nodal superconductors. We have shown that the classifica-
tion depends on (i) the codimension p = d − dFS of the Fermi
surface (nodal line) of the semimetal (nodal superconductor),
(ii) how the Fermi surface (nodal line) transforms under
the crystal reflection and the global symmetries, and (iii)
whether the reflection-symmetry operator R commutes or
anticommutes with the global (i.e., nonspatial) symmetries.
The result of this classification scheme is summarized in
Tables II and III, which show that the presence of reflection
symmetries leads to an enrichment of the tenfold classification
of gapless topological materials (cf. Table I) with additional
topological states. The reflection symmetry R together with
the three nonspatial symmetries, time-reversal, particle-hole,
and chiral symmetry, define a total of 27 different symmetry
classes. For Fermi surfaces with even (odd) codimension p

located within the mirror plane, 17 (10) out of these 27 classes
allow for nontrivial topological characteristics of the Fermi
surface (Table II). For Fermi surfaces located outside the
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mirror plane, on the other hand, there are 9 symmetry classes
which permit the existence of nontrivial topological properties
(Table III).

To illustrate the general principles of the classification
schemes, we have discussed in Sec. IV concrete examples
of reflection-symmetry-protected topological semimetals and
nodal superconductors. The topological properties of these
gapless materials manifest themselves at the surface in the
form of linearly dispersing Dirac or Majorana modes, or
dispersionless states, which form two-dimensional flat bands
or one-dimensional arcs (see Figs. 4, 5, and 6). These
different types of surface states are protected by different
types of topological invariants. For the examples of Sec. IV
we have derived explicit expressions for these topological
numbers.

Probably, the most prominent example of a reflection-
symmetric topological semimetal is graphene [79], whose
Dirac points are protected against gap opening by time-reversal
symmetry together with reflection and SU(2) spin-rotation
symmetry. In the classification scheme of Table II, graphene
belongs to class AI with R+-type reflection symmetry. Hence,
the Dirac points of graphene, which are located within the
reflection line but away from time-reversal-invariant points,
are protected by a mirror invariant (MZ) (see Sec. IV B 2).
The classifications of Tables II and III predict several new
reflection-symmetric topological semimetals and nodal super-
conductors, for which realistic physical systems have yet to
be found. For example, a reflection-symmetric topological
nodal superconductor with spin-triplet pairing is predicted
to exist in three spatial dimensions (class DIII with R−−)
(see Sec. IV B 5). This nodal superconductor, which exhibits
two point nodes within the reflection plane (but away from
the time-reversal-invariant momenta), is a three-dimensional
superconducting analog of graphene.

Recently, several examples of space-group symmetry-
protected topological semimetals have been theoretically
proposed [83,84]. The surface states of Na3Bi [85–87] and
Cd3As2 [88–90], which are two topological Dirac materials
protected by rotation symmetry, have been experimentally
observed using angle-resolved photoemission and scanning
tunneling measurements. We hope that these recent discoveries
will spur the experimental search for other types of topological
phases. The results of this paper will be useful for the search
and design of new gapless topological materials that are
protected by reflection symmetry.
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APPENDIX A: REVIEW OF TENFOLD CLASSIFICATION
SCHEME OF GAPLESS TOPOLOGICAL MATERIALS

Topological properties of gapless materials can be clas-
sified by two different methods [26,33–35]: (i) the minimal
Dirac-matrix Hamiltonian method and (ii) the derivation

of topological invariants. For the former, the topological
property is determined by the existence or nonexistence
of a symmetry-preserving gap-opening term (SPGT). The
existence of an SPGT implies trivial topology of the gapless
system, i.e., the Fermi surface (nodal line) is topologically
unstable. In the absence of such an SPGT, however, the gapless
state is topologically nontrivial and exhibits topologically
stable Fermi surfaces (nodal lines). Method (i) is similar to
the approach of Refs. [12,74], which classify fully gapped
topological materials by studying symmetry-preserving extra
mass terms that allow us to deform different gapped states
into each other without closing the bulk gap. Method (ii),
on the other hand, relies on the existence or nonexistence
of nonzero topological invariants. A nonzero topological
invariant implies nontrivial topology of the gapless quantum
system. In this Appendix and in Appendix C, we use the
minimal Dirac-matrix Hamiltonian approach [i.e., method (i)]
to derive the topological classification of gapless materials.
These derivations should be compared to the discussions in
the main text, which uses the topological-invariant approach
[i.e., method (ii)]; see, in particular, Sec. III D.

1. Fully gapped materials

Before discussing the tenfold classification of gapless mate-
rials (cf. Table I), let us briefly state some results and definitions
related to the tenfold classification of fully gapped systems.
The Dirac Hamiltonian (H TI

Dirac) that classifies fully gapped
systems (i.e., topological insulators and superconductors) is
given by Eq. (22), where the Dirac matrices γi are kinetic
terms and the Dirac matrices γ̃j represent mass terms. For real
symmetry classes, these Dirac matrices obey

{T ,γi} = 0, [C,γi] = 0, (A1)

[T ,γ̃j ] = 0, {C,γ̃j } = 0, (A2)

to preserve TRS and PHS. Note that both Dirac matrices γi and
γ̃j anticommute with the chiral symmetry operator S = CT .
The classification of fully gapped topological materials follows
from the homotopy groups, which are given by [6,12,74]

KC(s,d) = π0(Cs−d ), (A3a)

KR(s,d) = π0(Rs−d ), (A3b)

where Cs and Rs denote the complex and real classifying
spaces, respectively. Equations (A3) are in line with the
existence or nonexistence of symmetry-allowed kinetic terms
(γi) and mass terms (γ̃j ) which enter in the minimal-Dirac
matrix description (see Table IV). In the case, where the
classification is trivial, which is labeled by “0” in Table IV,
the symmetry-preserving mass term mγ̃1 in H TI

Dirac allows us to
deform different gapped phases into each other without closing
the bulk gap. Hence, in this case there is only one topological
equivalence class, namely, the trivial one. When there is a
binary classification, which is labeled by “Z2” in Table IV,
there exists an extra symmetry-allowed kinetic term kjγd+1

that can be added to H TI
Dirac. This kinetic term allows us to

deform the doubled version of H TI
Dirac to a trivial state without

closing the bulk gap. Finally, in the case of theZ classification,
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TABLE IV. This table lists the presence or absence of symmetry-
allowed kinetic terms (γi) or mass terms (γ̃j ) for each of the 10
Altland-Zirnbauer symmetry classes. Due to the periodicity of two
and eight for complex and real symmetry classes, respectively, l = 0,1
mod 2 for Cl and l = 0,1, . . . ,7 mod 8 for Rl .

s AZ class (d = 0) Topological invariant Gamma matrix

0 A π0(C0) = Z
1 AIII π0(C1) = 0 γd+1 or γ̃1

0 AI π0(R0) = Z
1 BDI π0(R1) = Z2 γd+1

2 D π0(R2) = Z2 γd+1, γd+2

3 DIII π0(R3) = 0 γd+1, γd+2, γd+3

4 AII π0(R4) = 2Z
5 CII π0(R5) = 0 γ̃1, γ̃2, γ̃3

6 C π0(R6) = 0 γ̃1, γ̃2

7 CI π0(R7) = 0 γ̃1

both symmetry-allowed kinetic terms (γi) and mass terms (γ̃j )
are absent.

2. Gapless materials

The classification of global symmetry-invariant Fermi
points is related to the tenfold classification of fully gapped
systems by the dimensional shift d → d − 1 (see Table I).
In other words, the classification of gapless materials follows
from the homotopy groups [26,33–35]

GC
s (s,d) = π0(Cs−d−1), (A4a)

GR
s (s,d) = π0(Rs−d−1). (A4b)

Equations (A4) are in agreement with the results from the
minimal Dirac-matrix Hamiltonian method, which we will
discuss in the following. Let us consider a Dirac Hamiltonian
describing a Fermi point at a time-reversal-invariant momen-
tum of the BZ (i.e., at k = 0)

H Dirac
s =

d∑
i

kiγi . (A5)

We note that this Hamiltonian is identical to the fully gapped
Dirac Hamiltonian in Eq. (22), except for the mass term mγ̃0.
For real symmetry classes, the Dirac matrices γi (i.e., the
kinetic term) obey Eqs. (A1). Furthermore, we observe that
H Dirac

s in d dimensions can be viewed as the boundary states
of H TI

Dirac in d + 1 dimensions [see Eq. (23)]. In other words,
the Hamiltonian H TI

Dirac in d + 1 dimensions is obtained from
the d-dimensional Hamiltonian H Dirac

s by adding an extra
kinetic term (i.e., kd+1γd+1) and a mass term (i.e., Mγ̃0).
With this, both H TI

Dirac and H Dirac
s satisfy the same global

symmetries. The extra symmetry-preserving mass term mγ̃1

that can (or cannot) be added to H TI
Dirac plays the role of an

SPGT that can (or cannot) be added to H Dirac
s . That is, the

existence of nonexistence of the term mγ̃1 determines the
topology for both H TI

Dirac and H Dirac
s . Following, we will provide

more detail and also show how the minimal Dirac-matrix
Hamiltonian approach allows us to distinguish between Z2

and Z classifications.

But, before doing so, let us add some remarks about the
classification of Fermi surfaces that are located away from
high-symmetry points in the BZ. These gapless materials are
described by Hamiltonian (24) and their (d − p)-dimensional
Fermi surfaces are located at the momenta described by
Eq. (25). We can interpret Eq. (24) as a (p − 1)-dimensional
fully gapped Hamiltonian with mass term(

1 − p +
p∑

i=1

cos ki

)
γ̃0. (A6)

[This mass term corresponds to the term mγ̃0 in H TI
Dirac,

Eq. (22).] Hence, the classification of Fermi surfaces with
codimension p is related to the tenfold classification of topo-
logical insulators and superconductor in (p − 1) dimensions
(see Table I). We note, however, that as opposed to H TI

Dirac,
Eq. (24) can be gapped by two different SPGTs, namely, by the
mass term γ̃1 and by the kinetic term sin kpγp. For symmetry
classes with a Z2-type invariant, the SPGT sin kpγp is always
allowed by symmetry, whereas for classes with a Z-type
number this term is symmetry forbidden. Hence, Z2-type
invariants cannot protect Fermi surfaces located away from
high-symmetry points of the BZ. Nevertheless, because these
Z2-type numbers are well defined in (p − 1)-dimensional
planes in the BZ that are invariant under PHS or TRS, nonzero
Z2 numbers can lead to the appearance of gapless surfaces
states at high-symmetry points of the surface BZ.

a. Topological invariant “0”

Let us now discuss in more detail the different SPGTs that
can be added to the Dirac Hamiltonian (A5). First of all, if any
SPGTs exist, then H Dirac

s belongs to the trivial phase. That is,
the Fermi surface is topologically unstable since the spectrum
can be gapped by the SPGT without breaking any symmetries.
This case is denoted by the label “0” in Table I. For example,
consider the following two-dimensional Dirac Hamiltonian in
class D:

H D
s = kxσx + kyσy, (A7)

which describes a superconductor with a point node at k =
(0,0). Hamiltonian (A7) preserves PHS with C = σxK. The
nodal point at k = (0,0) is topologically unstable since the
spectrum can be gapped by the SPGT mσz.

If there does not exist any SPGT, then H Dirac
s is either

classified by a Z2 or a Z number. To distinguish between Z2

and Z classifications, we need to consider doubled versions of
H Dirac

s and then check whether there exist any SPGTs for the
doubled Hamiltonian.

b. Topological invariant “Z2”

A doubled version of H Dirac
s can be obtained in several

different ways. In general, it can be written as

H2 =
∑

i

kni
γni

⊗ σz +
∑

remain

knj
γnj

⊗ 1. (A8)

Here, the first summation is over an arbitrary set of γni

(ni ⊆ {1,2, . . . ,d − 1,d}) and the second summation is over
γnj

’s that are not picked up by the first summation. We observe
that the enlarged Dirac matrices entering in the definition ofH2
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all anticommute with each other and satisfy the same global
symmetries as the original Hamiltonian H Dirac

s . Now, if for
each choice of the set ni there exists an SPGT that can be
added to H2, then the Hamiltonian exhibits a Z2 classification.
SPGTs for H2 can be constructed by considering even and
odd numbers of terms in the first summation of Eq. (A8)
separately. For an odd number of terms, the SPGTs are given
by M (or iM), with M = m(

∏odd
ni

γni
) ⊗ σu, where the Pauli

matrix σu ∈ {σx,σy} has to be chosen such that M (or iM)
preserves TRS and/or PHS. (The choice between M and iM

is determined by the condition that the SPGT is Hermitian.) For
an even number of terms in the first sum of Eq. (A8), the SPGTs
are given by M (or iM) with M = m(γd+1

∏even
ni

γni
) ⊗ σu. As

before, σu ∈ {σx,σy} has to be chosen such that PHS and/or
TRS is preserved. Note that this formula is always well defined
since, according to Table IV, there always exist a γd+1 term
for systems with Z2-type invariants.

To make this more explicit, let us consider the following
example of a two-dimensional Dirac Hamiltonian with TRS:

hAII
s = kxσx + kyσy, (A9)

which describes a topological semimetal with a Fermi point
at k = (0,0). The time-reversal-symmetry operator is given
by T = iσyK. Since T 2 = −1, Hamiltonian (A9) belongs
to symmetry class AII. We observe that hAII

s is identical to
the surface Hamiltonian of a three-dimensional topological
insulator with spin-orbit coupling. The only possible mass
term, which anticommutes with hAII

s , is σz. However, σz breaks
TRS and is therefore forbidden by symmetry. Hence, hAII

s
describes a topologically stable Fermi point. Next, we examine
different doubled versions of hAII

s , i.e.,

H AII
s =

(
hAII

s 0
0 hAII

s
′
)

, (A10)

with hAII
s

′ ∈ {hAII
s++,hAII

s−−,hAII
s+−,hAII

s−+}, where hAII
s±± = ±kxσx ±

kyσy and hAII
s±∓ = ±kxσx ∓ kyσy . It is not difficult to show that

for each of the four versions of H AII
s there exists at least one

SPGT. For example, for hAII
s++ the SPGT is σz ⊗ σy . Thus,

the Fermi point described by H AII
s is unstable. Therefore, we

conclude that Eq. (A9) exhibits aZ2 topological characteristic.

c. Topological invariant “Z(2Z)”

For systems with a Z (or 2Z) topological invariant, there
does not exist any SPGT both for H Dirac

s and some of its
doubled versions [cf. Eq. (A8)]. To be more specific, when
the first summation in Eq. (A8) includes an odd number of
γni

’s, there exists SPGTs, which open up a gap [i.e., M or
iM, with M = m(

∏odd
ni

γni
) ⊗ σu.] However, when there is an

even number of γni
’s in the first summation of Eq. (A8), an

SPGT does not exist due to the absence of an extra kinetic
term (γd+1). It is important to note that two gapless modes
are only protected if the two blocks in Eq. (A8) have the same
sign. Similarly, the system can be extended to n gapless modes
with the same sign in each block. In the absence of an SPGT
these n gapless modes are protected. This behavior reveals the
signature of the Z invariant.

For concreteness, let us consider the Hamiltonian of a
Weyl semimetal [47,48] as an example. This two-dimensional

system, which does not preserve any symmetry, belongs to
class A. One of the simplest Hamiltonians, which is also a
minimal Dirac-matrix Hamiltonian, can be written as

hA
s = kxσx + kyσy + kzσz. (A11)

It is impossible to find an extra gap term because only three
Dirac matrices can be present in the 2 × 2 matrix dimension.
Therefore, the gapless mode is stable. To distinguish between
Z and Z2 classification, we need to consider two copies of hA

s .
One doubled version of hA

s is given by

H A
s = kxσx ⊗ σz + kyσy ⊗ 1 + kzσz ⊗ 1. (A12)

We find that there are two SPGTs that can be added to H A
s ,

i.e., σx ⊗ σx and σx ⊗ σy . Hence, the gapless modes of H A
s

are unstable. However, there exists another doubled version of
hA

s , namely,

H A
s

′ = kxσx ⊗ 1 + kyσy ⊗ 1 + kzσz ⊗ 1. (A13)

There does not exist any SPGT that can be added to H A
s

′
, so

the two identical gapless modes of H A
s

′
are stable. Since there

exists one doubled version of hA
s which has two protected

gapless modes, we conclude that the system exhibits a Z
classification.

APPENDIX B: CLASSIFICATION OF
REFLECTION-SYMMETRY-PROTECTED TOPOLOGICAL
INSULATORS AND FULLY GAPPED SUPERCONDUCTORS

As discussed in Sec. III, the classification of reflection-
symmetry-protected semimetals (nodal superconductors) can
be related to the classification of reflection-symmetry-
protected insulators (fully gapped superconductors) by di-
mensional reduction. To make this relation more explicit,
we briefly survey in this Appendix the classification of fully
gapped topological materials protected by crystal reflection
symmetries [12,13,26]. This classification scheme crucially
depends on whether the crystal reflection symmetry commutes
or anticommutes with the global nonspatial symmetries.

The classification of reflection-symmetry-protected topo-
logical insulators and fully gapped superconductors is summa-
rized in Table II, where the first row indicates the dimension d

of the fully gapped system [12,13,26]. In even (odd) spatial di-
mension d, 10 (17) out of the 27 symmetry classes allow for the
existence of nontrivial topological insulators/superconductors
protected by reflection symmetry. The different topological
sectors within a given class of reflection-symmetry-protected
topological insulators/superconductors can be labeled by an
integer Z number, a binary Z2 quantity, a mirror Chern or
winding number MZ, a mirror binary Z2 quantity MZ2, or
a binary Z2 quantity with translation symmetry TZ2. Inter-
estingly, reflection-symmetric topological states belonging to
symmetry classes with chiral symmetry can be protected in
some cases by both an integer Z number (binary Z2 quantity)
and a mirror Chern or winding number MZ (mirrorZ2 quantity
MZ2), as indicated by the label MZ ⊕ Z (MZ2 ⊕ Z2) in
Table II. The nontrivial bulk topology characterized by these
invariants manifests itself at the boundary in terms of protected
Dirac or Majorana surface states, which, depending on the type
of the invariant, appear either at any surface (for Z and Z2)
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or only at surfaces that are left invariant under the reflection
symmetry (for MZ and MZ2). As explained in Sec. III, by
use of a dimensional reduction procedure, these surface states
of a d-dimensional fully gapped system can be interpreted
as a reflection-symmetry-protected topological semimetal (or
nodal superconductor) in d − 1 dimensions.

Before discussing in detail the different invariants that char-
acterize reflection-symmetry-protected topological materials,
we remark that the recently discovered topological crystalline
insulator SnTe is included in Table II [28–31]. Specifically,
SnTe belongs to symmetry class AII with T 2 = −1 in d =
3 dimensions and exhibits a reflection symmetry R− that
anticommutes with the time-reversal-symmetry operator T .
As indicated by Table II, this crystalline topological insulator
is described by a mirror Chern number MZ and hence
supports Dirac-cone states at reflection-symmetric surfaces.
These Dirac surface states have recently been observed in
angle-resolved photoemission experiments [28,30,31].

1. MZ and MZ2 invariants

The mirror Chern or winding numbers and mirror Z2

invariants, denoted by MZ and MZ2 in Table II, respectively,
are defined on the hyperplanes in the BZ that are symmetric
under reflection R, i.e., the two hyperplanes k1 = 0 and π .
Since R is Hermitian and anticommutes with the Hamiltonian
H (k) restricted to the hyperplanes k1 = 0 and π , H (k)|k1=0,π

can be block-diagonalized with respect to the two eigenspaces
R = ±1 of the reflection operator. We observe that each of the
two blocks of H (k)|k1=0,π is left invariant only under those
global symmetries that commute with the reflection operator
R. Hence, depending on the nonspatial symmetries of the
R = ±1 blocks of H (k)|k1=0,π , it is possible to define a mirror
Chern or winding invariant [12]

νMZ = sgn
[
νd−1

k1=0 − νd−1
k1=π

](∣∣νd−1
k1=0

∣∣ − ∣∣νd−1
k1=π

∣∣), (B1)

where νd−1
k1=0(π) denotes the Chern or winding number of the

R = +1 block of H (k)|k1=0(π) [91]. Similarly, the mirror Z2

quantity MZ2 is defined by

nMZ2 = 1 − ∣∣nd−1
k1=0 − nd−1

k1=π

∣∣, (B2)

with nd−1
k1=0(π) ∈ {−1, + 1} the Z2 invariant of the R = +1

block of H (k)|k1=0(π). A nontrivial value of these mirror
indices indicates the appearance of Dirac or Majorana states at
reflection-symmetric surfaces, i.e., at surfaces that are perpen-
dicular to the reflection hyperplane x1 = 0. At surfaces that
break reflection symmetry, however, the boundary modes are
in general gapped. Some illustrative examples of topological
crystalline insulators with mirror Chern or winding numbers
have been discussed in Ref. [12].

2. Z and Z2 invariants

For symmetry classes with at least one nonspatial symmetry
that anticommutes with the reflection operator R, it is possible
in certain cases to define a global Z or Z2 number even in the
presence of reflection. These Z and Z2 indices are identical
to the ones of the original tenfold classification in the absence
of mirror symmetry (cf. Table I) and lead to the appearance

of linearly dispersing Dirac or Majorna states at any surface,
independent of the surface orientation.

3. MZ ⊕Z and MZ2 ⊕ Z2 invariants

Topological properties of reflection-symmetric insulators
(superconductors) with chiral symmetry are described in some
cases by both a global Z or Z2 invariant and a mirror index
MZ or MZ2. The global invariant and the mirror invariant are
independent of each other. At surfaces which are perpendicular
to the mirror plane, the number of protected gapless states
is given by max {|nZ| , |nMZ|} [12], where nZ denotes the
global Z invariant, whereas nMZ is the mirror Z invariant.
This should be compared to Sec. IV A 1, where we provide an
example of a gapless topological phases with nontrivial MZ
and Z invariants. Examples of gapless topological phases with
nontrivial MZ2 and Z2 invariants are given in Secs. IV A 3
and IV B 4.

4. TZ2 invariant

In symmetry classes where the reflection operator R

anticommutes with the global antiunitary symmetries TRS
and PHS (R− and R−− in Table II), the second descendant
Z2 invariants [8] are only well defined in the presence of
translation symmetry. That is, the edge or surface states
of these phases can be gapped out by density-wave-type
perturbations, which preserve reflection and global symmetries
but break translation symmetry. Hence, these topological states
are protected by a combination of reflection, translation, and
global antiunitary symmetries. Therefore, we denote their
topological indices by “TZ2” in Table II.

To exemplify the properties of reflection-symmetric insu-
lators (superconductors) with a TZ2 invariant, we consider a
two-dimensional superconductor with R−− reflection symme-
try in class CII given by the 8 × 8 BdG Hamiltonian

H CII
bulk = Mγ0 + sin kxγ1 + sin kyγ2, (B3)

where M = 1 + cos kx + cos ky , γ0 = σz ⊗ 1 ⊗ 1, γ1 = σx ⊗
σx ⊗ 1, and γ2 = σx ⊗ σy ⊗ σx . Superconductor (B3) pre-
serves TRS and PHS with Tbulk = 1 ⊗ σy ⊗ 1K and Cbulk =
σx ⊗ 1 ⊗ σyK, respectively. Reflection symmetry is im-
plemented as R−1

bulkH
CII
bulk(−kx,ky)Rbulk = H CII

bulk(kx,ky), with
Rbulk = 1 ⊗ σy ⊗ 1. This topological crystalline superconduc-
tor is characterized by a TZ2 invariant (cf. Table II), which
indicates that the helical Majorana states at the (01) edge are
only stable in the presence of translation symmetry. We find
that these Majorana-cone edge states appear at kx = ±δ of the
edge BZ and are described by the following edge Hamiltonian
[92]:

hCII
edge = kx σx ⊗ σx + δ σz ⊗ σy. (B4)

The edge Hamiltonian satisfies TRS, PHS, and reflection sym-
metry with Tedge = σy ⊗ 1K, Cedge = σy ⊗ σzK, and Redge =
σz ⊗ 1, respectively. In the absence of reflection symme-
try, the gap-opening mass term m σx ⊗ σy , which preserves
both TRS and PHS, can be added to Eq. (B4). Therefore,
Hamiltonian (B3) is topologically trivial according to the
tenfold classification of Table I. However, with reflection and
translation symmetry, hCII

edge cannot be gapped since m σx ⊗ σy
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breaks reflection symmetry Redge. Considering two copies of
the edge Hamiltonian, i.e., H CII

edge = hCII
edge ⊗ 1, we find that

the symmetry-preserving mass term mσz ⊗ σx ⊗ σy opens up
a gap in the spectrum of the doubled Hamiltonian H CII

edge.
Hence, BdG Hamiltonian (B3) exhibits a nontrivial Z2-type
topological characteristic (cf. Appendix A 2 b). To demonstrate
that the two Majorana edge modes [Eq. (B4)] are unstable
against translation symmetry breaking we consider the density-
wave-type mass term

M̂ = m
∑

−η�kx<η

(ic†kx+η+δ M ckx−η+δ

+ ic
†
−kx+η−δ M c−kx−η−δ + H.c.), (B5)

which is invariant under TRS, PHS, and reflection R̂ =∑
kx

c
†
−kx

σz ⊗ 1 ckx
. In Eq. (B5), M = mσx ⊗ σy and η is

a constant with 0 < η < δ. For m > η, the translation-
symmetry-breaking mass term (B5) fully gaps out all edge
modes.

In closing, we remark that for the classification of gapless
topological materials presented in Sec. III, the presence of
translation symmetry is always assumed. In particular, density-
wave-type mass terms are disregarded since these can gap out
the bulk by coupling Fermi surfaces (nodal lines) located at
different parts of the BZ. Thus, the distinction between Z2 and
TZ2 invariants is irrelevant for the topological classification of
reflection-symmetric semimetals and nodal superconductors.

APPENDIX C: CLASSIFICATION OF FERMI POINTS
OUTSIDE MIRROR PLANES

In this Appendix, we derive the classification scheme of
Table III using the Dirac-matrix Hamiltonian approach. This
should be compared to the discussion in Sec. III D, where
this classification is derived by examining different types
of topological invariants. As in the main text we assume
that reflection symmetry maps k1 → −k1. To derive the
classification, we consider the following reflection-symmetric
Dirac-matrix Hamiltonian:

Hoff =
d∑

i=2

sin kiγi +
(

1 − d +
d∑

i=1

cos ki

)
γ̃0, (C1)

which describes a d-dimensional gapless system with Fermi
points located at

k = (±π/2,0, . . . ,0). (C2)

Reflection symmetry acts on Hamiltonian (C1) as [R,Hoff] =
0. We note that the Fermi surface (C2) lies outside the mirror
plane k1 = 0 and away from the high-symmetry points of the
BZ. Furthermore, observe that by fixing k1 to k0

1 	= ±π/2,
Hamiltonian (C1) can be viewed as a (d − 1)-dimensional
insulator

Hd−1
off =

d∑
i=2

sin kiγi + m̃γ̃0, (C3)

with mass m̃ = (1 − d + cos k0
1 + ∑d

i=2 cos ki).
In order to classify the Fermi surfaces described by

Eq. (C1), two different types of SPGTs need to be considered,

i.e.,

mγ̃1 and sin k1γ1. (C4)

The latter is a kinetic term. It will lead to a classification pattern
which is quite different from the tenfold classification. Let us
now discuss for which of the 27 symmetry classes listed in
Table III there exist topologically stable Fermi points.

1. R+ and R++

We start by considering the case where the reflection opera-
tor R commutes with all global symmetries. For simplicity, we
can choose R = 1. We note that even if the global symmetries
allow the kinetic mass term sin k1γ1, the reflection symmetry
forbids this term due to k1 → −k1. Therefore, the classification
is solely determined by the presence or absence of the regular
mass term mγ̃1. Thus, the classification of d-dimensional
gapless modes described by Eq. (C1) is identical to the
classification of (d − 1)-dimensional fully gapped systems
[described by Eq. (C3)] in the absence of reflection symmetry
[i.e., we have GC

off(R
+,s,d) = π0(Cs−d+1)].

2. R− and R−−

Second, we study the case where R anticommutes with
all global symmetries. In this case, the reflection operator R

can take on three different forms, namely, R = iγd+1γd+2,
R = iγ̃1γ̃2, or R = 1 ⊗ σy . The classification of the gapless
Dirac Hamiltonian (C1) can be inferred from the homotopy
group π0(Rl), where Rl represents the classifying space and
l = s − d + 1 mod 8, with s denoting the symmetry class and
d the spatial dimension. Each symmetry class s and dimension
d needs to be discussed separately. Since the classification
only depends on the difference s − d, we discuss it in terms
of l = s − d + 1. Based on Table IV, we find that for l = 2,3
and l = 5,6 the reflection operator can be defined as follows:

l = 2,3, R = iγd+1γd+2, (C5)

l = 5,6, R = iγ̃1γ̃2. (C6)

For l = 2,3, we find that there exists an SPGT, i.e., sin k1γd+1,
which implies trivial topology. Similarly, for l = 5, the pres-
ence of the symmetry-allowed gap-opening term i sin k1γ̃1γ̃2γ̃3

signals trivial topology. For l = 6, on the other hand, the Fermi
point of Eq. (C1) is stable since there does not exist any
SPGT. To distinguish between Z2 and Z classifications, we
need to consider a doubled version of Hamiltonian (C1) with
two identical gapless modes, i.e.,

H ′
off = Hoff ⊗ 1. (C7)

For l = 6, there exists an SPGT (sin k1γ̃1 ⊗ σy) that can be
added to H ′

off , signaling a Z2 classification.
For l = 0,1,7, it is not possible to implement a reflection

symmetry for the minimal Dirac-matrix Hamiltonian (C1).
Instead, one needs to consider the doubled version of Hoff , i.e.,
Eq. (C7), to study the effects of reflection symmetry. For H ′

off ,
reflection symmetry can be implemented as R = 1 ⊗ σy . For
l = 1 and 7, SPGTs can be found as mγ̃1 ⊗ 1 and mγd+1 ⊗
σy , respectively. For l = 0, however, gap-opening terms are
forbidden by symmetry. We find that also for the quadrupled
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version of Hoff , i.e.,

H ′′
off = Hoff ⊗ 1 ⊗ 1, (C8)

there do not exist any SPGTs in the case of l = 0. Therefore,
the system exhibits a 2Z classification due to the doubled size
of the minimal Hamiltonian (C7).

Finally, for l = 4 the system, which corresponds to 2Z, can
be effectively treated as two identical copies of the Z system
in the spatial dimensions

H 2Z
off = HZ

off ⊗ 1. (C9)

The relations of the global symmetry operators between Z and
2Z are given by T2Z = TZ ⊗ σy and C2Z = CZ ⊗ σy . There-
fore, we can simply define R− = 1 ⊗ σy , which anticommutes
with T2Z and C2Z. Following the similar discussion of l = 0,
we find the system of l = 4 inherits Z topology.

3. AIII with R−, DIII
and CI with R−+, and BDI and CII with R+−

Next, we consider class AIII with R−-type reflection
symmetry, classes DIII and CI with R−+-type reflection
symmetry, and classes BDI and CII with R+−-type reflection
symmetry. That is, we have

R− for class AIII, (C10a)

R+− for classes BDI and CII, (C10b)

R−+ for classes DIII and CI. (C10c)

In all these cases, there is a chiral symmetry operator S

which anticommutes with the Hamiltonian. Using S we can
construct the reflection-symmetry operator R as R = iγd+1S,
where γd+1 represents a kinetic term. Let us clarify how
S is related to the two global symmetry operators T =
UTK and C = UCK. (Here, we assume that UT and UC

are Hermitian and unitary.) In general, S is proportional to
T C. We choose S = T C if [U ∗

C,UT ] = 0 and S = iT C if
{U ∗

C,UT } = 0. This choice ensures that R is Hermitian and
that R and T /C satisfy the commutation and anticommutation
relations of Eqs. (C10b) and (C10c). In order to verify these
(anti)commutation relations, one has to make use of Eq. (A1)
and the fact that

T ST −1 = ±S, CSC−1 = ±S, (C11)

where we pick up the plus sign in front of S when T 2 = ±1 and
C2 = ±1, whereas we pick up the minus sign when T 2 = ±1

and C2 = ∓1.
With these definitions, we find that the kinetic term

sin k1γd+1 is an SPGT for all dimensions and all the cases listed
in Eq. (C10), i.e., sin k1γd+1 opens up a full gap and is allowed
by both the global symmetries and the reflection symmetry.
Hence, for the symmetry classes (C10), the system always
has trivial topology. Therefore, we write GR

off(R
∓±,s − d) = 0

(see Tables V and III).

4. DIII and CI with R+− and BDI and CII with R−+

Last, we discuss classes DIII and CI with R+−-type
reflection symmetry and classes BDI and CII with R−+-type
reflection symmetry. In a similar way as in the previous

TABLE V. Classification of Fermi points outside mirror planes
(cf. Table III). The prefix “C” indicates that theZ2 invariant is defined
in terms of the combined symmetries [see Eq. (26)]. The label “R∓±”
represents R−+ for classes BDI and CI; and R+− for classes CI and
DIII. Similarly, “R±∓” represents R+− for classes BDI and CI; and
R−+ for classes CI and DIII.

s − d 0 1 2 3 4 5 6 7

GR
off (R

+,s − d) CZ2 CZ2 0 2Z 0 0 0 Z

GR
off (R

−,s − d) 0 0 0 2Z 0 CZ2 0 2Z

GR
off (R

∓±,s − d) 0 0 0 0 0 0 0 0

GR
off (R

±∓,s − d) 0 0 0 0 0 0 CZ2 CZ2

subsection, we can construct the reflection operator R in the
form of R = iγ̃1S. This ensures that {T ,R} = 0 and [C,R] = 0
when T 2 = C2 = ±1; and [T ,R] = 0 and {C,R} = 0 when
T 2 = −C2 = ±1. In the following, we discuss the topology
for each symmetry class s and each spatial dimension d

separately. Since the classification only depends on the
difference s − d, we discuss it in terms of l = s − d + 1 (cf.
Sec. C 2). The classification can also be inferred from the
homotopy group π0(Rl) (cf. Table IV).

For l = 5, 6, we find that the reflection operator R can be
defined as R = iγ̃1S, without enlarging the matrix dimension
of the minimal Hamiltonian. According to Table IV, there exist
at least two mass terms, i.e., γ̃1 and γ̃2, which preserve the
global symmetries. The second mass term γ̃2, which preserves
also reflection symmetry, gaps out the Fermi points. Hence,
the topology is trivial and classified as “0”.

For l = 3, there exist three kinetic terms γd+1, γd+2, and
γd+3, which satisfy Eq. (A1). The product of these three kinetic
terms form a mass term iγd+1γd+2γd+3, which preserves
global symmetries. Hence, the reflection-symmetry operator
can be constructed as R = iγd+1γd+2γd+3S. The kinetic
term sin k1γd+1, which also preserves reflection symmetry, is
allowed to be added to Hamiltonian (C1) as an SPGT. Hence,
the case l = 3 is classified as the trivial phase.

For l = 7, there is only one mass term, namely γ̃1, which
is allowed by the global symmetries (see Table IV). So,
it is possible to construct the reflection-symmetry operator
R as R = iγ̃1S. The reflection symmetry forbids γ̃1, which
is the only term that gaps the Fermi points. Although the
Fermi points are stable in the minimal Hamiltonian, to
distinguish Z2 and Z we have to consider doubled versions
of the minimal Hamiltonian. For Hoff ⊗ 1, there exists a mass
term sin k1γ̃1 ⊗ σy which preserves global symmetries and
reflection symmetry with R = iγ̃1S ⊗ 1. Hence, the case l = 7
exhibits Z2 characteristics.

For l = 1,2, the reflection operator R for the minimal
Hamiltonian (C1) in the absence of the mass term γ̃1 cannot
be constructed. In order to study the effects of reflection
symmetry, we need to enlarge the matrix dimension and
consider two identical copies of Hoff , i.e., Hoff ⊗ 1. For
Hoff ⊗ 1, a mass term can be defined as γ̃1 = γd+1 ⊗ σy .
Therefore, the reflection-symmetry operator is given by R =
iγd+1S ⊗ σy . With this, we find that γd+1 ⊗ σx is an SPGT
that can be added to Hoff ⊗ 1. Hence, the case l = 1,2 is
topologically trivial, i.e., classified as “0”.
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For l = 0, we also need to enlarge the matrix dimension in
order to study the effects of reflection symmetry. We consider
the following doubled version of Eq. (C1):

Hl=0
off =

d∑
i=2

sin kiγi ⊗ 1 +
(

d − 1 +
d∑

i=1

cos ki

)
γ̃0 ⊗ σz.

(C12)
We note that there exist several different doubled versions of
Hoff for which a reflection symmetry can be defined. However,
all these different versions are unitarily equivalent, hence,
it is sufficient to study only one of them. For Hamiltonian
(C12), there exists only one mass term (i.e., γ0 ⊗ σx) and
one kinetic term (i.e., γ0 ⊗ σy) that preserve the global
symmetries. The mass term γ0 ⊗ σx can be used to define
a reflection operator, i.e., R = iγ̃0S ⊗ σx . There exist two
mass terms which satisfy the global symmetries (mγ̃0 ⊗ σx

and sin k1γ0 ⊗ σy). However, these two mass terms break
reflection symmetry. Hence, the Fermi points in the case l = 0
are topologically stable. To distinguish between Z2 and Z, the
Hamiltonian has to be doubled, i.e, we consider Hl=0

off ⊗ 1.

We find that for Hl=0
off ⊗ 1 there exists an SPGT, namely,

mγ̃0 ⊗ σy ⊗ σy . Thus, the system is classified as Z2.
For l = 4, a reflection symmetry cannot be implemented

for Eq. (C1) (since mass and kinetic terms are absent). We
need to consider a quadrupled version of Eq. (C1), in order
to study the influence of reflection symmetry. The quadrupled
Hamiltonian can be constructed using Eq. (C12). We have

Hl=4
off = Hl=0

off ⊗ 1. (C13)

The global symmetry operators for this Hamiltonian are given
by

T l=4 = T l=0 ⊗ σy, Cl=4 = Cl=0 ⊗ σy. (C14)

The reflection-symmetry operator can be constructed as R =
iγ̃0S ⊗ σx ⊗ 1, where γ̃0 and S are the mass term and the chiral
symmetry operator of Hl=0

off , respectively. We find that the mass
term mγ̃0 ⊗ σy ⊗ σy , which preserves the global symmetries
and the reflection symmetry, gaps out the Fermi points of Hl=4

off .
Thus, the system is topologically trivial and classified as “0”.
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