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The canonical one-band Hubbard model is studied using a computational method that mixes the Monte Carlo
procedure with the mean field approximation. This technique allows us to incorporate thermal fluctuations and the
development of short-range magnetic order above ordering temperatures, contrary to the crude finite-temperature
Hartree-Fock approximation, which incorrectly predicts a Néel temperature Ty that grows linearly with the
Hubbard U/t. The effective model studied here contains quantum and classical degrees of freedom. It thus
belongs to the “spin fermion” model family widely employed in other contexts. Using exact diagonalization,
supplemented by the traveling cluster approximation, for the fermionic sector, and classical Monte Carlo for
the classical fields, the Hubbard U/t vs temperature T/t phase diagram is studied employing large three- and
two-dimensional clusters. We demonstrate that the method is capable of capturing the formation of local moments
in the normal state without long-range order, the nonmonotonicity of 7y with increasing U/t, the development
of gaps and pseudogaps in the density of states, and the two-peak structure in the specific heat. Extensive
comparisons with determinant quantum Monte Carlo results suggest that the present approach is qualitatively,
and often quantitatively, accurate, particularly at intermediate and high temperatures. Finally, we study the
Hubbard model including plaquette diagonal hopping (i.e., the z-#' Hubbard model) in two dimensions and show
that our approach allows us to study low-temperature properties where determinant quantum Monte Carlo fails
due to the fermion sign problem. Future applications of this method include multiorbital Hubbard models such

as those needed for iron-based superconductors.
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I. INTRODUCTION

The study of strongly correlated electrons continues at-
tracting the interest of the condensed-matter community [1,2].
Theoretical studies in this area of research mainly use model
Hamiltonians since there are no ab initio techniques that can
handle with sufficient accuracy the correlation effects caused
by the Coulombic charge repulsion among the electrons.
The case of the Hubbard model with only one active orbital
(dy>_y) has been widely studied in the context of copper-based
high-temperature superconductors, and a variety of interesting
results and predictions have been unveiled [3-5]. A large
fraction of those studies, however, arise from approximate
analytic many-body techniques that are difficult to control
since there is no obvious small parameter to guide expansions
when one is dealing with correlated electrons. For this reason,
considerable efforts have been devoted to the use of computa-
tional techniques to study Hubbard-like models [3]. Alas, these
computational methods are not without severe limitations as
well. For example, the Lanczos method is restricted to small
clusters [3] while the density matrix renormalization group
(DMRQ) is restricted to quasi-one-dimensional systems [6].
An alternative is the determinant quantum Monte Carlo
(DQMC) technique [7-9], which can handle the one-orbital
Hubbard model in dimensions larger than 1 and employing
clusters of a reasonable size. This technique has been applied
in numerous occasions, leading recently also to studies in
the context of optical lattices [10-12]. DQMC presents the
infamous “sign problem,” however, which severely restricts
its range of applicability. For instance, deviations from the
particle-hole symmetric model, such as when electronic
hopping beyond nearest neighbors is introduced, or when
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doping away from half filling is attempted, severely restricts
the temperature range where DQMC can be applied [8,13].

The limitations of our computational arsenal to deal
with Hubbard-like models have been exposed even more
dramatically by the recent discovery of the iron-based high-
temperature superconductors [ 14—17]. While considerable the-
oretical progress has been achieved in this context via the use of
mean field approximations of several varieties [14,15,17-19],
computational work has been severely restricted. This is
mainly because of the need to incorporate several 3d iron
orbitals in the model Hamiltonian. It is well known that the
Hubbard model for pnictides must have a minimum of two
iron orbitals: d,; and d,., while most experts agree that at least
a third orbital d,, should also be incorporated [20]. Moreover,
the crystal structure indicates that hopping amplitudes must
involve both Fe-Fe nearest and next-nearest neighbors pro-
cesses. All these factors are detrimental to the performance of
Lanczos, DMRG, and DQMC techniques, and the applications
of these methods have been limited in the context of the
iron-based superconductors. In fact, in a recent review [16], a
crude drawing of the phase diagram of a multiorbital Hubbard
model was sketched “by hand” based on physical expectations,
but this prediction has yet to be confirmed due to the lack of
reliable techniques for the calculations.

Motivated by the above-mentioned difficulties in handling
the full problem, simplified versions of multiorbital Hubbard
models have been recently used in a number of contexts. For
instance, in the colossal magnetoresistive manganites [21,22]
the double exchange (DE) model separates the five 3d orbitals
of Mn into mobile and localized degrees of freedom [21].
This is compatible with the splittings caused by the crystal
field; thus the separation of mobile and localized carriers is
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natural. Moreover, it has been shown that the localized spins,
related to the #,, orbitals, can be approximated accurately
by a classical spin [21,23]. Extensive studies employing
computational Monte Carlo techniques have provided ample
evidence that this type of model can properly capture the
physics of manganites [24—-30]. In contrast, employing a full
five-orbital Hubbard model would have been impractical for
the manganese oxides.

The DE model is a well-known example of a more general
family of models referred to as “spin fermion” models,
where “spin” denotes the localized degree of freedom and
“fermion” denotes the mobile one. As in the DE case, the
localized spin is considered classically in practice to allow
for reasonable computational studies. Historically, the success
of the DE model treated computationally has inspired the
use of spin-fermion models for the cuprates as well. Spin
fermion models for Cu oxides are technically similar to DE
models and they have been able to reproduce features of
the one-orbital Hubbard model, such as the dominance of
d-wave pairing tendencies away from half filling [31-35].
A similar approach has been used in the context of the
Bogoliubov de Gennes (BdG) equations, allowing for the study
of regimes beyond weak coupling BCS [36-39]. It should be
stressed that none of the spin-fermion models, either in the
manganite or cuprate context, exhibit a sign problem. Thus,
computational studies are possible at any electronic density,
temperature, and range of electronic hopping. Moreover, in
spin fermion models dynamical observables can be easily
obtained, contrary to dynamical observables in full Hubbard
models that require calculations in imaginary time and a
subsequent transformation to real frequency [40].

Spin fermion models seem to capture the qualitative essence
of Hubbard models. Typically, however, they are defined
“by hand” in cases where the mobile-localized separation
is intuitively expected but it is unclear how this separation
truly occurs in practice. (This is contrary to the DE model,
where e, and 1, orbitals clearly separate the mobile electrons
from the localized electrons). Thus, a method for constructing
spin-fermion models systematically from their parent Hubbard
models is desirable. This also would reveal the relationship
between the effective couplings in the spin-fermion models
and those of the more fundamental Hubbard interactions such
as the repulsion U.

In this publication we explore these issues in depth in
the context of the repulsive one-orbital Hubbard model. The
essence of the computational method described here is to set
up the mean field equations for the problem at hand, and then
raise the mean field parameters, such as the effective staggered
magnetic field that appears for an antiferromagnetic (AFM)
state, to the level of a classical variable, which is then treated
via Monte Carlo simulations at finite temperatures. These
classical variables play the role of the “spin” in the resulting
spin-fermion-like model. For the “fermions” the resulting
Hamiltonian is quadratic and can be solved numerically via
library subroutines or other procedures. This methodology
was proposed in a study of the competition between AFM and
superconducting (SC) tendencies in the one-orbital Hubbard
model [38]. In this earlier work, both the staggered AFM
field and a complex field representing the SC order parameter
deduced from the BdG equations were introduced and han-
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dled via Monte Carlo simulations. Similar studies involving
competing AFM and SC states within the Heisenberg model
were presented in Refs. [37] and [39]. In more recent efforts,
these main ideas were also independently derived in detailed
studies of the Hubbard model on an anisotropic triangular
lattice [41] and on a geometrically frustrated face-centered-
cubic lattice [42]. Applications of the same approach but for
the case of an attractive Hubbard interaction (negative U) that
leads to pairing and superconductivity have been reported in
Refs. [36-39,43-45].

As we will show, an interesting result is that this computa-
tional procedure captures the highly nontrivial nonmonotonic
behavior of the Néel temperature Ty with increasing Hubbard
U at half filling, in excellent agreement with DQMC. This
is a dramatic improvement over standard Hartree-Fock mean
field techniques that incorrectly predict a smooth increase of
Ty with U. This “up and down” behavior of Ty with U was
also observed recently in a similar study of the negative U
Hubbard model [44] (note that there is a mapping between
positive and negative U), and in early studies of models for
d-wave superconductivity with increasing pairing attraction
[36-38]. In addition, many other observables calculated within
this approach, such as the specific heat, are in qualitative,
and often quantitative, agreement with DQMC, as shown
below. Moreover, the spin-fermion model also allows for the
calculation of dynamical observables directly in real time and
frequency. We demonstrate this here by calculating the single-
particle density of states. Finally, we further examine the utility
of this approach by examining the Hubbard model with longer
range hopping. In this case, DQMC cannot be applied due to
a severe fermion sign problem but our method is successful.

In summary, the simple combination of Monte Carlo and
mean field methods allows for a proper treatment of the
temperature effects in Hubbard models, including the study
of regimes where the relevant correlations, such as the spin
correlations, are of short range in space. Although it will
be computationally demanding, after the success of the test
presented here and in the other publications cited above, the
method will be ready to be implemented for multiorbital
Hubbard models of relevance in, e.g., iron superconductors,
where virtually nothing is known about their thermodynamic
behavior.

This paper is organized as follows. The Hubbard model
and the technique are discussed in Sec. II. The technique
is formally introduced by using the Hubbard-Stratonovich
variables employed in Ref. [41]. The main results are presented
in Sec. III, starting with the case of three dimensions and its
comparison with DQMC. This is followed by a presentation
of results for the two-dimensional case, as well as results for a
Hubbard model with hopping beyond nearest neighbors where
DQMC suffers from a severe sign problem. We conclude in
Sec. IV with a brief summary and outlook.

II. MODEL AND METHOD

Let us start the specific application of the ideas outlined in
the Introduction by considering the one-band Hubbard model
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defined below (in a standard notation):

H=H,+H=-tY c,c,,+U> nni. (1)
(i) i

To set up the formalism, it is convenient to perform a
rotationally invariant decoupling of the interaction term in the
following manner [46]:

nigniy = 5(nf) = S7.
= 1(n}) — S; - Q). 2)

Here, the spin operator is S; = %Za’ﬂ C;r,aaa,ﬁci,ﬂ’ h=1,
{o¥,07,0%} are the Pauli matrices, and Q is an arbitrary unit
vector. In the previous identity, we have used the fact that
Si - )2 = (Six)? = (Si,y)2 = (S;..)*. The expression in the
last line of Eq. (2) is rotationally invariant since it is in terms
of the scalars n; and the dot product between S; and Q. It
should be noted that there are other possible decouplings, but
the formula above is the only one whose saddle point leads
to the correct Hartree-Fock equations after implementing a
Hubbard-Stratonovich (HS) decomposition. Below we will
use the notation followed in recent literature [47]. For the
HS decomposition, let us start with the partition function

J
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Z = Tre PH. Here the trace is over all particle numbers
and site occupations. B = 1/T, with kg set to 1. We now
divide the interval [0, 8] into M equally spaced slices, defined
by B = M Az, separated by At and labeled from 1 to M.
For large M, At is a small parameter and allows us to
employ the Suzuki-Trotter decomposition, so that we can
write e PHAH) — (p=AtHop=ATHOM 4 first order in AT.
Then using Eq. (2) and the Hubbard-Stratonovich identity,
e~ ATULLA/H0) =800  for generic time slice '/, can be
shown to be proportional to

/ dei(Dd A (Dd* (1)

s ¢~ ATICCiGi (17 /Ui Dni+5: (D /U =28 D (1) Si DI
Here we have introduced two auxiliary fields, ¢;(/) which
couples to the charge density, and A; (/) that couples to the spin
density. We note that the integration over unit vector, Qi(l ) at
every site shows the SU(2) invariance explicitly. We further
combine the product A; (D (D) into a new vector auxiliary
field, m; (/) at every site. This nomenclature is used from now
on. Using the above decoupling for the quartic term in the
expression of the partition function, we can write

1
NN i b . (D2 /U =2m: (D-S:
Z = const x Tr l—[ /d¢i(l)d3mi(l)€_Ar(_’ Y iy o€t Lildi 0P (Ui (Dnitm; (1) /U =2m; (1):S;]) 3
=M

In the above, trace “Tr” is over all particle numbers and site
occupations as before. The continuous integrals are over the
auxiliary fields, {¢;(/),m;(])} at every site, and the argument /
denotes the imaginary time slice label. The product over / from
M to 1 implies time ordered products over time slices, with the
earlier times appearing to the right. Finally, the d°m;(l) in the
integral implies integration over the amplitude and orientation
of vector auxiliary fields, m; (/).

This allows us to identify an effective Hamiltonian Heg
in which fermions couple to auxialiary fields fluctuating in
both space and (imaginary) time. Typically this is the starting
point of quantum Monte Carlo (QMC) approaches. However
for reasons discussed in the Introduction, we take a different
route by making the following approximations: (i) We drop
the T dependence of the HS auxiliary fields and (ii) we use
the saddle point value i¢; = %(n,-). This allows us to extract
the following effective Hamiltonian (H.¢) where the fermions
couple to the “static” HS field m; and to the average local
charge density:

Her = H, _Mzni +Z%(ni>ni - Zmi - 0
i ; i

+%lzmi2_ %IZ(’%’)Z- 4)

Here, H, contains the fermionic kinetic energy. The redefini-

tion m; — %mi allows us to arrive at the final form of the

(

effective Hamiltonian:

U
Hey = H, + 5 Z((ni)ni —m;.0;)

+%lz(m,~2—<ni>2)—ulzm, ©)

which is our effective model belonging to the spin-fermion
family.

It should be noted that H.¢ coincides with the mean field
Hamiltonian at 7 = 0, where m; has the interpretation of
the local magnetization. As discussed in the Introduction,
to study the model at finite temperature, we simulate Heg
by sampling the m; fields via a classical Monte Carlo (MC)
procedure [38,41,43]. The main result of the present effort
will arise when these MC results at finite temperature are
compared against DQMC results. It will be demonstrated that
retaining thermal fluctuations in the fields m; leads to results
well beyond simple Hartree-Fock mean field calculations at
finite temperature 7' and, more importantly, in good qualitative
and sometimes quantitative agreement with DQMC.

While the HS fields are treated via MC methods, the
quadratic fermionic sector still needs to be handled numeri-
cally. The simplest and most widely employed method, starting
with efforts in the manganite community to study the double
exchange model [24], is simply to carry out an exact diagonal-
ization (ED) of the fermions in a fixed classical m; background,
employing library subroutines. The m; variables are then
updated with a standard classical MC procedure where updates
are accepted/rejected using the Metropolis algorithm. At a
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fixed temperature, this process is repeated until a thermalized
regime is reached where observables can be measured.

Similarly as with the majority of techniques dealing with
strongly correlated electrons, here there is no small parameter
controlling the approximation. In particular there is no rigorous
proof of convergence or bounded errors. However, as long as
the mean field approximation employed as the starting point
of the approximation (in the present example the Hartree-
Fock method) captures the essence of the ground state, then
it is reasonable to assume that the present method will treat
correctly the thermal fluctuations and associated short-range-
order tendencies above the critical temperature.

In the present work, we consider the case of half filling,
where the total density is fixed by adjusting the chemical
potential . The Hamiltonian is studied on cubic lattices with
4% to 16* sites and with periodic boundary conditions. The
magnetic structure factors S(q) are used to perform finite lattice
size scaling to extract thermodynamic Néel temperatures
in three dimensions. Results obtained on two-dimensional
clusters will also be shown. All parameters are specified in
units of the hopping ¢. In practice a total of 4000 MC system
sweeps were performed: 2000 were used to thermalize the
system, while the rest were used for calculating observables.
A MC system sweep consists of sequentially visiting every
lattice site and updating the local m; vector followed by the
fermionic ED, and then accepting/rejecting the proposed local
field change following the Metropolis algorithm. The local
density (n;) is computed from the eigenvectors after each diag-
onalization. In our calculation, we start the simulation at high
temperature with a random configuration of m; variables and
then cool down to lower temperatures. To study the formation
of local moments, as explained below, we start the MC runs at
T/t = 100and cooldowninstepsof AT/t = lupto T/t = 1.
From T/t =1 to 0.1, we use a step size of 0.1z. Below this
temperature, specifically from 0.17 to 0.005¢, we reduce further
the interval and use AT/t = 0.05. This slow process allows
us to avoid metastable states or obtaining results that depend
substantially on the initial conditions of the calculation.

To characterize the Hubbard model, a number of observ-
ables are computed during the MC procedure. In particular, we
calculate the density of states (DOS), N(w) = ), 8(w — wp),
where w,, are the eigenvalues of the fermionic sector and the
summation runs up to 2N 3 i.e., the total number of eigenvalues
of a N* system with spin. N(w) is calculated by implementing
the usual Lorentzian representation of the § function. The
broadening needed to obtain N(w) from the Lorentzians is
~BW /2N?, where BW is the fermionic bandwidth at U = 0.
Numerically for the 4 system, the broadening is about 0.09z.
Two hundred N(w) samples are obtained from the 2000
measurement system sweeps at every temperature. We discard
10 MC steps between measurements to reduce self-correlations
in the data. The 200 N(w) samples are used to obtain the
thermally averaged (N (w))r at a fixed temperature. These are
further averaged over data obtained from 10 to 20 independent
runs with different random number seeds.

Information regarding the Néel AFM order expected at half
filling is obtained from the magnetic structure factor,

! S
S@ = 75 > TITS; - S)), 6)

iJ

PHYSICAL REVIEW B 90, 205133 (2014)

where q = {m, 7,7} is the wave vector of interest. The spins
S; are constructed from the eigenvectors of the equilibrated
configurations.

We also calculate the real-space correlation function be-
tween the S; vectors. This correlation function is defined as

1

Clrh =5 > (=DF(sts3) )

r|=li—jl,a

In C(Jr|) the summation runs over all P pairs of sites at a
distance |r| and is normalized accordingly. The sum over a
runs over the three directions x, y, and z.

The distribution of the magnitude of |m;| on the lattice is
measured by the distribution function P, (|m|). This is defined
as P,(Im|) =), §(jm| — |m;|). For computational purposes,
a Lorentzian representation with suitable broadening is used.
S(q), P,;(Jm]), and C(|r|) are also averaged in the same manner
as described for N(w). We also compute the specific heat
Cc,(U,T)= % by numerically differentiating the average
energy with respect to temperature. Other observables that we
measured are presented below.

III. RESULTS
A. Three-dimensional lattice

Let us start the analysis of results with the T/t — U/t
phase diagram at half filling in three dimensions. In Fig. 1,
we show the Néel temperature Ty (solid squares; 4> cluster)

1.50 = om T
/
L / 4
H-F/
1.00+ / -
/ Preformed
Tt | / Local iy
/‘ Moments
0.50 / &
/ D D D
L ‘ < g O TN i
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0’000 5 IIJ(/) 15 20
t

FIG. 1. (Color online) The T/t — U/t phase diagram for the
one-band Hubbard model. The solid red squares show the dependence
of Ty on U/t obtained using the MCMF technique on 43 clusters.
The crosses are estimations of Ty obtained from finite-size scaling.
The AF-I region denotes the Néel type AFM phase with long-range
order and insulating characteristics. The open squares are the Ty
obtained from the DQMC method, from Ref. [48]. The light blue
region depicts the regime of preformed local moments above the AF-I
phase. The dashed line shows the Ty obtained from the simplistic
Hartree-Fock calculation at finite temperature where the critical
temperature incorrectly grows linearly with U/t at large U/t. The
determination of the crossover between the gray and blue regions,
and the fact that the MCMF local moment region coincides with HF
Ty at temperatures much larger than typical Ty scales, are discussed
in the text.
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at different U/¢’s obtained using the above described Monte
Carlo-mean field (MCMF) method. The open squares are
DQMC results, obtained from Ref. [48]. The most important
characteristic of the MCMF results is that they correctly
capture the “up and down” nonmonotonic behavior of Ty
with increasing U. In particular, comparing our results against
the standard Hartree-Fock (HF) mean field theory predictions
for Ty (shown in dashed blue) highlights the crucial role
of thermal fluctuations. These fluctuations break down the
uniform mean field order with varying degree of ease as U/t
is changed. The MCMF method includes thermal fluctuations
and thus it correctly predicts the presence of a low energy
scale (proportional to the Heisenberg superexchange J) that
regulates the Néel temperature at large U /¢, as opposed to the
scale U/t for Ty favored by the “naive” HF method.

The comparison with DQMC also provides additional
evidence that our technique is not only qualitatively correct,
but it provides reasonably quantitative values for Ty. The
DQMC data shown are for up to 103 clusters [48] while
our MCMF data are shown for 43 clusters via the red
squares (results for larger lattices will be discussed below).
Both capture the t?/U scaling of Ty at large U/t. At
small U/t, Ty tends to zero with decreasing U/t consistent
with the Ty ~ exp[—2nt/U] scaling derived from the weak-
coupling random-phase approximation [49,50]. The crosses
are obtained from a finite-size scaling analysis of the results
generated by the MCMF method, and represent Tx in the
thermodynamic limit. For the numerical ease, we calculate
the majority of the three-dimensional data for 43 systems, so
to be consistent we show prominently the 4° Ty in Fig. 1.
Finally, note that while the MCMF results are close to those
of DQMC, the Ty values are consistently underestimated in
the present approach. Yet, qualitatively the MCMF results
are correct. (Also note that Ref. [48] contains results of
previous DQMC studies and the trend is that the predictions
for Ty are consistently decreasing with time as the results
are more refined.) Nevertheless, for the purposes of testing
the method (and in anticipation of the fact that the important
application of MCMF will arise for multiorbital systems where
semiquantitative information will be sufficient due to the
absence of DQMC), this degree of accuracy is quite acceptable.

Another important feature missing in the standard finite-
temperature HF approach is the presence of local moments
above Ty . The area shaded in blue in Fig. 1 shows the region
with preformed local moments found with MCMF: the gray-
blue boundary demarcates the crossover between regions with
and without preformed local moments (it is just a crossover
because the transition is smooth). The blue dashed line with
triangles indicates the HF Ty, which also corresponds to the
local moments formation in that crude mean field approach.
The crossover temperature increases monotonically with U/t
for U > 6¢. Atlarge U it follows the HF Ty . Similar agreement
has been reported in two-dimensional DQMC results [51]. The
determination of the crossover temperature and its systematics
for U < 6t is discussed below.

(i) Local moments and magnetic order. Typical structure
factors S(q) for q = (r,7,) are shown in Fig. 2(a). Here,
we observe the nonmonotonicity of Ty with increasing U.
This provides the finite-size data for Ty shown in Fig. 1.
The moment formation vs temperature is shown in panel
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FIG. 2. (Color online) (a) The magnetic structure factor S(q) for
q = (m,m,), obtained at various U/t’s as indicated. The data are
from 43 clusters with 4000 MC sweeps at every temperature, while
cooling the system down from high to low temperatures, as described
in Sec. II. (b) The corresponding local moments M vs temperature. We
capture the feature that at large U/t the peak in the moment size shifts
to nonzero temperature. This effect, due to the setting of long-range
order, was reported before in the DQMC studies of Ref. [51]. At small
U the overall shape is also in good agreement with the DQMC data,
indicating that the MCMF method indeed captures the essence of the
problem. Panel (c) shows the expectation value of double occupation
for the various U/t’s indicated. The thin dashed line indicates a cutoff
discussed in the text.

(b). The system-averaged local moment is defined as M =
((ny — n¢)2) = (n) — 2{(nyn ) with (n) = (n4 +n). We note
that for our rotation invariant case, M = 4(522) = 4((S - Q)?),
where €2 is an arbitrary unit vector.

For the half filled (n) =1 uncorrelated case U =0,
(nq4n}) = (n4){ny) = 1/4. Thus for U = 0, or alternatively
T/t>U/t, M = % This is seen in Fig. 2(b) at T/t ~ 100
for all values of U/t. From panel (c) we also observe that
the average double occupation at high temperature for all U/t
values shown tends towards 0.25, the uncorrelated value of
double occupancy. On the other hand, for large U/t and very
low T'/t, the double occupation, (n4n ), is much suppressed
and M ~ 1, i.e., the U = oo result. For any finite U/t there
is some finite double occupation and M is always smaller that
unity. Furthermore, since smaller U/t’s have larger double
occupation, as shown in Fig. 2(c), M(T ~ 0) monotonically
decreases with reducing U/¢, as shown in Fig. 2(b).

We also notice that M (T') has some features at intermediate
temperatures that evolve with U/t. In the intermediate-
temperature range, specifically between 7/t = 1 and 0.01,
we find two kinds of behavior. At small U/t, up to U/t = 4,
M has a minima at T/t ~ 0.2 before reaching its absolute
maximum at 7 = 0. For larger U, the M maxima lies at finite
T/t ~0.1 and ~ 0.5, for U/t = 8§ and 16, respectively. It is
clear that for large U/t the system can be approximated by a
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spin-1/2 Heisenberg antiferromagnet. Excitations at small but
finite temperature that perturb the AFM order also suppress
the virtual exchange due to the Pauli exclusion principle.
This increases the degree of localization and promotes larger
on-site moment size thereby pushing the maxima of M to finite
temperature. The features seen at low temperature for small
U are correlated to the thermal evolution of the fields updated
with MC, as discussed later. Note that similar observations
were reported before in two-dimensional DQMC studies [51],
increasing the evidence that MCMF captures the essence of
the problem.

(ii) Specific heat. The temperature evolution of the local
moment in Fig. 2(b) shows a continuous increase with de-
creasing temperature up to 7'/t = 1. But this does not provide
clear information on the crossover location between regimes
with and without local moments. To address this issue, and to
further test the MCMF method, we calculated the specific heat
C, vs temperature for different values of U. Here, it is expected
that C, vs temperature should have a two peak structure, the
peak at high temperature corresponding to moment formation
and the peak at low temperature corresponding to moment
ordering at large U/t.

In Fig. 3(a) the specific heat vs temperature is shown for
a 4% system, where we find the expected two peak structure.
The locus of the low-temperature peak corresponds well with
the Ty shown in Fig. 1. The high-temperature peak positions
vs U/t are in Fig. 3(b). Here we also show the HF data with
open squares. Clearly, beyond U/t = 10 the MCMF result
coincides with the HF result. At lower values of U (below 4t),
the high-temperature peak appears to saturate to 7/¢ = 1. On
the other hand, the low-temperature peak is suppressed to zero
with low T. We note that we were unable to reliably carry
out the numerical derivative below T/t = 0.02, but the trend
of the low-temperature peak shifting towards zero is apparent
here and is also in Fig. 1 (solid, red squares). Thus, in the
present study we report that the high- and low-temperature
peaks do not merge with reducing temperature at small U/t
in three dimensions. (This is also the case in two dimensions,
which is discussed later.) Previous studies have not agreed on
this issue: dynamical mean field theory (DMFT) [52-54] and
Lanczos on one-dimensional chains [55] find the two peaks
merging together with reducing U while a DQMC study in
two dimensions [51] agrees with our conclusions. Here we
have extended the results to three dimensions.

Another feature arising from the independence of the
high-temperature entropy [51,56] is a universal crossing in C,.
In two-dimensional DQMC, this occurs at 7/t ~ 1.6, with a
spread in temperature of ~0.2¢. This has been observed in
DMFT [52-54] as well. We find a similar crossing both in
three and two dimensions. In three dimensions the crossing is
at approximately 7/t = 2.0 and has a small spread for low
U values, while at larger U there seems to be a systematic
increase to higher temperature with increasing U. This last
conclusion was reported earlier as well [56]. For our main
purpose of testing the MCMF method, in two dimensions once
again our results agree well with DQMC data, as discussed
later.

(iii) Crossover temperatures. At large U, the high-
temperature peak of C, corresponds to the moment for-
mation [51]. Thus, this peak is an indicator of the local
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FIG. 3. (Color online) (a) Specific heat vs temperatures for dif-
ferent U values. Two peak structures are observed: at large U/t the
high-temperature peak corresponds to the moment formation while
the lower one corresponds to moment ordering. The inset shows the
universal crossing of the different C, curves at 7/t ~ 2.0. Panel
(b) shows the position of the high-temperature peak varying U. The
Hartree-Fock results are shown with open squares. Atlarge U, beyond
61, these peak positions are close to the mean field results. At low U,
the high-temperature peak position saturates to 17, while the low-T
peak approaches zero. The nonmerging of the two peaks in three
dimensions is in agreement with DQMC data in two dimensions. The
low-temperature peak corresponds to Ty in Fig. 1. The open circles
in (b) show the crossover temperature from the no local moments
regime to a region of preformed moments as obtained from the data
on double occupation shown in Fig. 2(c). In (a) the data shown are a
smoothed version of the actual data to reduce statistical fluctuations.

moment formation temperature. Below U/t = 10, however,
this high-temperature peak deviates from the linear behavior
seen in Fig. 3(b) and eventually saturates to 7/t = 1. The
approach of the peak location to 7' ~ ¢ at small U indicates
that considerable contribution to this peak comes from electron
delocalization. For this reason, for U/t < 10, the high-
temperature peak cannot be used as a reliable indicator of local
moments. Thus, we use the double occupation, as plotted in
Fig. 2(c), as an alternative indicator. To do so we need to choose
a cutoff because the local moment formation is not abrupt but
occurs with continuity. This cutoff is shown in Fig. 2(c) with
the horizontal dashed line. For a given U, the temperature
where double occupation goes below the cutoff is taken to be
the crossover temperature to a region with preformed local
moments. In principle the choice of such a cutoff is arbitrary,
however, the C, calculation serves as a guide. To address
this issue, we chose a cutoff value such that the location of
the high-temperature peak in temperature and the crossover
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FIG. 4. (Color online) Density of states N(w) for (a) U/t = 12
and (b) U/t = 4 at the temperatures indicated in panel (a). At large
U/t = 12, the Hubbard gap is gradually filled up due to thermal
fluctuations. The weight at @ — & = 0 monotonically increases with
increasing temperature. A DOS pseudogap is seen above Ty ~ 0.2¢.
Atasmaller coupling U/t(= 4), while the gap is filled similarly to the
large U case with the increase of temperature, above Ty we observe
a nonmonotonicity in the dependence of the zero-energy weight with
temperature. (¢) Magnitude of the auxiliary classical fields averaged
over the lattice ((|m|)) vs temperature for the U values in (d). At large
temperature the thermal fluctuations cause ({(|m|)) to grow linearly
with temperature for all the U’s shown (inset). The reason for this
temperature dependence of (|m|) and its correlation with N(w = 0)
is discussed in the text. (d) Shows the N(w = 0) feature remarked in
panel (b) for different U values. This nonmonotonicity was reported
before in a DQMC study; see Ref. [51].

temperature from the cutoff coincide at large U (=18t). The
crossover temperature for all other U values are obtained from
this fixed cutoff. They are plotted in Fig. 3(b) with open circles.
Clearly, there is a good agreement with the high-temperature
C, peak locations for large U. For U/t < 10, we find a sharp
deviation from linearity in the crossover temperature. As seen
from Fig. 2(c), the crossover temperature for U/t = 6 is very
close to the corresponding T in Fig. 1. For lower U values,
for this choice of cutoff, large double occupation considerably
suppresses the local moment formation.

(iv) Density of states. In the half-filled Hubbard model,
the charge gap is directly related to the existence of the
local moments regardless of magnetic order. This charge gap
manifests as a gap (zero spectral weight in a finite energy
range) in the DOS at T = 0. With increasing temperature,
this hard gap softens and is replaced by a pseudogap, with the
spectral weight in the gap gradually increasing with increasing
temperature. At large U/t this monotonic behavior is seen
in Fig. 4(a) from our MCMF results. The DOS is displayed
up to T = 0.55¢, but the monotonicity persists to higher
temperatures. In contrast, at U/t = 4, shown in Fig. 4(b),
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the pseudogap spectral weight has a nonmonotonic behavior:
for T > 0.17¢ the spectral weight at w — u = 0 decreases
with increasing temperature, while for 7 < 0.17¢ the spectral
weight decreases with decreasing temperature. Since the
spectral weight at N(w = 0) results from the scattering of
the electrons from the classical fields, in Fig. 4(c) we show
the evolution of the corresponding system-averaged auxiliary
field values, (im|). For U/t =2 and 4, (im|) has minima
at T/t = 0.05 and 0.1, respectively. For U/t = 8 and 14,
(lm|) ~ 1 for T/t <0.5.

The behavior shown in Fig. 4 can be explained as follows.
At high enough temperatures with negligible local moments,
the value of (m|) is governed by thermal fluctuations. At
these temperatures the auxiliary fields behave as harmonic
oscillators with a mean amplitude proportional to /7 /U.
Thus, (Jm|) grows with increasing temperature. On the
other hand, the T = 0 equilibrium value of (|m|) is directly
proportional to U, as seen in Fig. 4(c). For smaller values of
U, thermal fluctuations dominate to low enough temperatures,
causing (/m|) to reduce to values smaller than their 7 = 0
value. On further reduction in temperature, these thermal
fluctuations are suppressed and (|m|) starts to increase towards
its mean value at 7 = 0. The minima in (|m|) vs temperature
corresponds to the location of the maxima in N(0) in Fig. 4(d)
for U/t = 2 and 4. This indicates that the N(0) suppression
at high temperature results from the scattering of electrons
from thermally fluctuating large {m;} fields, while at small
temperatures, the reduction in N (0) results from the depletion
of spectral weight due to the opening of the Mott gap. The
peak in the N(0) occurs between the two regimes.

With increasing U, the dominance of thermal fluctuations in
governing (|m|) is pushed to progressively higher temperatures
as is also seen from the peaks of N(0) for U/t = 8 and 16 in
Fig. 4(d). At these temperatures (|m|) is higher than their
T = 0 values, thus no minima are found for these cases in
Fig. 4(c).

We stress that the high-temperature increase in the auxiliary
field magnitude does not imply an increasing magnetic
moment. As seen in Fig. 2(b) the magnetic moment M saturates
at its uncorrelated value of 1/2 at high temperature. The
nontrivial effect of the fluctuations in the auxiliary fields is
in the DOS, in the low-temperature feature in M at small U,
and possibly in the conductivity.

Another feature observed in the inset of Fig. 4(c) is that the
magnitude of the auxiliary fields vs temperature for different
U’s cross between T/t = 1 and T/t = 2. Since at large T,
(Im|) grows as /T/U, the auxiliary fields magnitude for
smaller U grows more rapidly than those for larger U. At
small temperatures, however, the (|m|) values are directly
proportional to U as discussed before, naturally explaining
the observed crossing. Note that this crossing coincides with
the universal crossing of the specific heat in Fig. 3(a).

(v) Real-space spin correlation. Figure 5(a) shows the
spin-spin correlation C(|r|) at T/t = 0.4 > Ty /t for different
values of |r|. The special case |r| =0 corresponds to M
and with increasing U/t, C(Jr = 0|) saturates. The most
prominent real-space AFM correlation at this temperature
is for C(Jr = 1]). While it is almost zero for U/t < 4, it
increases as a function of U/¢, reaches a maximum at U ~ 8¢,
and then reduces with further increases in U/t. The large
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FIG. 5. (Color online) (a) Real-space spin-spin correlations
C(r]), for |r| =0,1,4/2,4/3,2, at T/t =04, ie., a temperature
above Ty. See the text for the definition of C(|r|). The |r| = O curve
corresponds to the square of the local moment and shows that the
size of the preformed magnetic moment increases with U/t and
saturates beyond U/t ~ 8,i.e., where Ty is maximized. The rest of the
curves show the real-space AFM correlations, q = (w,7,7), among
the moments. Again the correlations are the largest for U/t ~ 8. On
the large U side the decrease in the correlation results from thermal
fluctuations competing with the AFM spin order stiftness which scales
ast?/U. (b) Shows the dependence of C(|r|) on temperature for large
U/t(= 14). The magnitude of the moment is almost independent of
the temperature, while there is a clear short-range AFM correlation
between the moments at all temperatures shown. Longer range
correlations for |r| > 1 are suppressed rapidly above Ty ~ 0.12f.
(c) The real-space correlations C(|r| = 1) using only the x, y, or z
components of the spin. The data confirm explicitly the rotational
invariance expected to exist in Heg. The AFM structure factor is also
displayed for comparison. Results are similar for |r| > 1 as well.

U/t suppression is due to the t2/U suppression of the spin
ordering stiffness. While a similar trend is seen for larger
|r|, the magnitude of the correlation is greatly suppressed. In
Fig. 5(b) we show the evolution of C(|r|) with temperature at a
typical large value of U /¢. While the magnitude of the moment,
given by C(|r = 0]), increases slightly with temperature, the
short-range correlations are suppressed rapidly beyond Ty.
The increase in C(|r = 0]) or the size of the local moment
were discussed earlier. Only C(|r = 1]) is robust above Ty.
Finally in Fig. 5(c) we also show individually the x, y, and z
components of C(|r|) for |r| = 1 for U = 14¢. This confirms
explicitly the rotational invariance of the calculation.

Summarizing this subsection, we have established that
the nonmonotonic dependence of 7y on U, the physics of
preformed local moments, and the pseudogap features in the
DOS can all be captured within the MCMF method.
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B. Accessing larger system sizes

ED+MC is numerically expensive since an exact diagonal-
ization must be performed at every step in the process. The
numerical cost of a sequential sweep scales as O(N?) x N,
with N the total number of lattice sites. To overcome this
O(N*) scaling we employ a recently developed variation
of real-space ED+MC that scales linearly with the system
size [57]. This technique, called “traveling cluster approxima-
tion” (TCA), defines a region (the traveling cluster) around the
site where a MC update is attempted. A change is proposed and
the update is accepted or rejected based on the energy change
computed within the traveling cluster, thus bypassing the costly
diagonalization of the full system. Only when observables are
calculated, after equilibrium has been reached, is a full system
diagonalization performed. This adds only a few hundred full
system diagonalizations to the computational cost. For TCA,
the computation cost of ED for a system with N sites is O(N?),
where N, is the traveling cluster size. The cost of a full sweep
of the lattice is N¢® x N or linear in N as opposed to N*.
This allows us to solve much larger systems. We now discuss
our benchmarks for the TCA and the results on large two- and
three-dimensional lattices.

(1) Benchmarking. Let us begin by comparing the results
from TCA with ED4+MC. In Fig. 6 we compare various
observables on two-dimensional 8 clusters with periodic
boundary conditions. Results are shown for two different
traveling cluster sizes, namely N, = 42 (squares) and N. = 8>
(triangles), while results for the full ED4+MC are given as the
solid lines. Figure 6(a) shows S(q) for q = (7,7), Figs. 6(b)
and 6(c) show the DOS, and Figs. 6(d) and 6(¢) show P,(|m])
at low (T = 0.01¢) and high (T = 0.5¢) temperatures. All of
the results are for U = 6t. The Ty obtained is about 0.15¢
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FIG. 6. (Color online) Comparison of results for an 8> system
at U/t = 6, obtained using ED+MC (solid line) and TCA with two
different sizes of traveling cluster sizes, 4> (squares) and 8 (triangles).
Panel (a) shows S(,7), (b) and (c) show the DOS, while (d) and
(e) display the P,(|m|), for the three cases. The DOS and P,(|m|)
are shown at low T'(= 0.01¢) and high T (= 0.5¢) temperatures, as
indicated.
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from both methods. The Mott gap is found to be about
4t at low temperature [see 6(b)]. The pseudogap feature at
T/t = 0.5 in Fig. 6(c) is also captured very accurately within
TCA. Finally, all sites at low temperature show m; ~ 1 which
evolves into a broad distribution at high temperatures. We
find a satisfactory agreement between ED4+MC and TCA data
for all the observables and at all temperatures. Furthermore,
these results show that employing a 4 traveling cluster is
adequate as the results are virtually indistinguishable from
those obtained using a 8 traveling cluster. In the following
we will employ 42 and 43 traveling clusters in two and three
dimensions, respectively.

(2) Finite-size scaling. With TCA-based MCMF now we
can study up to 163 lattices. As a result the S(r,7,7) data
are available for N = 43 to 16° system sizes. Moreover, the
magnetic structure factor obtained with the TCA agrees with
the ED+MC data at all temperatures. This indicates that
finite-size effects associated with the TCA do not affect the
finite temperature evolution of the magnetic state. Hence we
can employ a finite-size scaling analysis to the TCA data in
order to obtain the Néel temperature in the thermodynamic
limit.

On a finite system, estimates of 7T) can be obtained either
from an inspection of the S(;,7,7) data or from the maxima
of thermodynamic quantities such as the specific heat or the
magnetic susceptibility. Then, assuming that the correlation
length &(Tn(L) — TAT,he”“O) =alL on a L* system, and given
that £(x) o |x|™", one arrives at the scaling form, Ty(L) =
Tyheme 4 pL1/7. Here, L denotes data from a L3 cluster size.
We plot the finite cluster Néel temperatures against 1/L and
use T;hem“’, b, and v as fit parameters. A typical data fit is
presented in Fig. 7(b). For reference, we provide the S(w,7,7)
data for different system sizes in Fig. 7(a). The crosses in Fig. 1
are TyM*™° obtained from this finite-size scaling analysis.

C. Two-dimensional lattice

We now turn to results for large two-dimensional system
sizes using a 4° traveling cluster. The results shown in Fig. 8
are for a 322 system. The method can typically be pushed up to
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FIG. 7. (Color online) Finite-size scaling analysis for the 3D
case. Panel (a) shows S(mr,7,7) for U/t = 8 for three system sizes
obtained using TCA. To find Ty in the thermodynamic limit we
fit Ty(L), the Néel temperature for a cluster of size L3, against
1/L. Fitting to a scaling form (see text) provides Ty"™, the Néel
temperature in the thermodynamic limit. As a typical example, in (b)
we show the MCMF Ty (L) data and the fit using the scaling form for
U = 8t. The dashed line is a guide to the eye. See text for discussion.
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FIG. 8. (Color online) (a) Ty vs U/t and (b) representative
S(m,7)’s, both for a 32% system. The results are obtained using a
42 traveling cluster.

407 sizes. Figure 8(a) shows the AFM Néel temperature. Note
that in principle the Mermin-Wagner theorem establishes that
there is no true Ty in two dimensions for an O(3) magnet. This
theorem is valid only for short-range spin-spin interactions,
however. In our case, the integration of the fermions leads to
effective spin-spin interactions at all distances, although the
rate of the decay of the couplings with distance is unknown.
To be cautious we should refer to this scale as 7., instead of
Tn, but below we will continue using the Ty notation for this
temperature scale since this is the convention widely used in
the literature. Here, we observe that Ty has the correct scaling
of t?/U at large U. The corresponding spin structure factors
are shown in Fig. 8(b).

To make a comparison with two-dimensional DQMC
data [51], Cy(T) as well as the locus of the high- and low-
temperature peaks of the specific heat are shown in Fig. 9. As
in the three-dimensional case, we observe a two-peak structure
in the specific heat and also capture the universal crossing of
the C,(T) for different U values in (a). The crossing occurs
at T/t = 1.6 and has a small spread in temperature values.
These are in agreement with the DQMC data for the same
system size. In Fig. 9(b) we show the comparison between
our data and the peak locations in DQMC. We find that the
saturation of the high-temperature peak (Ty;gy) for U/t < 4,
persists in two dimensions. The small U saturation of Tpign can
be understood by studying the U = 0 limit, where the specific
heat peaks at T ~ #(= 1). For the behavior at large U we can
analyze the limiting case of = 0 (single site problem), where
it is easy to see that Ty;e, grows linearly proportional to U.
This linear growth of Ty;en at large U is seen in Fig. 9(b), and
is in good agreement with DQMC results [51].

The large system sizes accessible to MCMF allows a
detailed analysis of the spatial evolution with temperature of
the {m;} field configurations, as shown in Fig. 10. Here, the
top and bottom panels contain the spatial maps of |m;| for
U/t =4 and 14, respectively. The maps are shown for four
different temperatures, decreasing from left to right.

The temperature range here was chosen to show that in
the small U case the {m;} grows with decreasing temperature,
similar to the case in three dimensions. The strong thermal
fluctuations that make the MCMF approach accurate at high
temperatures are clearly visible. At U/t = 4, the magnitude
of |m| has a broad distribution, with regions of small and
large values [see Fig. 10(a)]. At temperatures above but
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FIG. 9. (Color online) The specific-heat vs temperature data in
two dimensions for various U values. The twin peak structure and
universal crossing are clearly seen. The corresponding loci of the
high- and low-temperature peaks are shown in (b). Here we also
show DQMC data for the high-temperature peaks. For comparison
with DQMC, we show these data for a 62 system size. The dashed
line is a guide to the eye.

close to Ty ~ 0.08¢, regions with |m| ~ (.7 start spanning
the entire system, as exemplified in Figs. 10(b) and 10(c).
Figure 10(d) shows the system below Ty. These thermal
fluctuations imply fluctuating spin moments in a MC snapshot;
however, averaging over spin moments from many such
MCMF configurations, at a fixed temperature, results in

T=0.37t T=0.12t  T=0.08t T=0.01t

cococoo~
[ o o)

s gty .

FIG. 10. (Color online) Spatial snapshots of {|m;|} for U/t = 4
(top) and U/t = 14 (bottom). Panels (a)-(d) and (e)—(h) show the
snapshots for 7'/t = 0.37, 0.12, 0.08, and 0.01 for the two cases,
respectively. At U/t = 14 (bottom), values as high as j[m| ~ 1.0 exist
at all temperatures shown, much above Ty (~ 0.06¢). |m|, however,
grows with reducing temperature and shows thermal fluctuations at
the higher temperatures for U/t =4 (top). In the figure, yellow
implies |m| = 1 and black |m| = 0. The snapshots are for a 322
system size.
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FIG. 11. (Color online) P,(|m|) for U/t =4 and 14 at various
temperatures indicated on the right. (a) At U/t =4 and high
temperature, lattice sites acquire values of |m| between 0 and 1 in a
uniform manner. This distribution starts peaking at 7'/t ~ 0.08 which
is close to Ty. At lower T, the auxiliary field distribution peaks at
about [m| = 0.7. (b) At large U/t, the |m| values are well defined
moments (about 1) at all sites at the temperatures shown, much above
Tn. There is only a small thermal broadening even at 7 ~ 107y.

moments that are uniform in space. We stress that there is
no spatial phase separation implied in these snapshots.

The corresponding distribution of the {m;} configurations
for Fig. 10 is shown in Fig. 11. In Fig. 11(a), we observe a
gradual increase in the sharpness and peak height of P,(|m])
with reducing temperature. At large U, P,(|m|) shows little
thermal fluctuations in the temperature range shown. This
corresponds to almost saturated (|m|) as in three dimensions
at temperatures below 7'/t ~ 1. The uniformity in the bottom
panel of Fig. 10 translates into a sharp P,(|m|) in Fig. 11
for typical large values of U/¢, as shown in Fig. 11(b) for
U/t =14.

D. Half-filled Hubbard model with longer-range hopping

In this section we extend our analysis and apply the MCMF
method to study the Hubbard model on a two-dimensional
square lattice with nearest-neighbor and next-nearest-neighbor
hopping ¢ and ¢/, respectively. The ¢ hopping processes
have been widely considered important in the context of
the cuprate superconductors, both directly in the Hubbard
model [58], as well as in the ¢-'-J model [59]. In addition,
understanding the role of #’ is in general relevant to the study
of frustrated systems. For this model DQMC studies suffer a
severe fermion sign problem due to the broken particle-hole
symmetry introduced by t’. Thus, the ground-state properties
remain inaccessible. DMFT studies have had more success
but with limited or no spatial correlations [60]. There are other
approaches to access the ground-state properties [61-63], but
they are difficult to generalize to finite temperature. MCMF
can fill this void.

The MCMF approach used here reduces to unrestricted
Hartree-Fock at 7 = 0, but, as shown by comparison with
DQMC results earlier, it rapidly improves its accuracy with
increasing temperature. Moreover, MCMF does not have a
sign problem. Thus, it allows controlled calculations of both
finite temperature and ground-state properties on very large
two- and three-dimensional clusters, under a broad variety
of circumstances. With this in mind, here we address the
U-t-t' model using MCMF. We also use DQMC to solve the
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FIG. 12. (Color online) DQMC results showing S(m,7) for sev-
eral U’s at (a) ' = 0 and (b) ¢ = —0.3¢. The inset in (b) contains
the average sign vs temperature. For t' = —0.3¢, sign error increases
rapidly preventing the access to low temperatures. Panels (c) and (d)
show the S(ir,77) obtained from MCME. The data shown here are for
a 6% system.

same problem for the lowest temperature allowed by the sign
problem.

(1) Comparison with DOMC. In Figs. 12(a) and 12(c), we
show S(m,m) calculated using DQMC and MCMF, respec-
tively, for ' = 0. For this case, DQMC does not have sign
problems and in principle we could obtain results for lower
temperatures. However, given the [O(L)?] scaling in CPU
time (where L is the number of imaginary time slices [8])
and the existence of results in the literature, we stopped
the DQMC calculation at 7'/t ~ 0.1. It is clear that even at
these temperatures we do observe AFM correlations beginning
to grow with reducing 7. We also observe that magnetic
correlations begin to grow at a higher temperature for U/t = 8
compared to U/t = 4 and 16. This is indicative of the
nonmonotonicity of Ty with U, as extensively discussed
earlier. By comparison, MCMF ordering happens at a lower
temperature. An additional difference with DQMC is the
high-temperature tail seen in Fig. 12(a), which is absent
in Fig. 12(c). As shown for three dimensions in Fig. 5(b),
however, short-range spatial correlation, in particular C(|r =
1]), survives up to high temperatures. Similar correlations
survive in two dimensions as well, but the presence of quantum
effects makes the AFM correlations survive to longer length
scales in DQMC contributing to the high-temperature tail.
In contrast, since only C(Jr = 1|) is significant in MCMEF,
the magnetic structure factor in Fig. 12(c) has a suppressed
tail. This comparison highlights the effect of the mean field
approximation in MCMF at low T on long-range correlations
and may explain the reduced values of Ty as compared with
DQMC.

In Fig. 12(b) we present S(;r,7) for the physically relevant
case t'/t = —0.3 [3]. In the inset, we show the average value
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FIG. 13. (Color online) MCMF results for ¢ # 0. Panel (a) con-
tains the evolution of 7y with increasing ¢/t for different values of
U/t and forq = (7r,7)and q = (0,7). The case q = (ir,0) is identical
toq = (0,7) and it is not shown. Panel (b) displays the typical S(,7)
for U/t = 16 at various t'/t, as indicated. Panels (c) and (d) show
N(w) for U/t =4 and U/t = 16 respectively, at different values
of t'/t.

of the fermion sign as a function of temperature. The loss of
particle-hole symmetry causes the average sign to rapidly fall
to zero. As a result it becomes impossible to obtain reliable
results below 7'/t = 0.2 using DQMC. In contrast, the MCMF
approach easily captures the long-range AFM order as shown
in Fig. 12(d).

(2) Ground-state properties. Earlier T = 0 studies [61-63]
have established that at small U, a small finite ¢’ destroys
magnetic order in favor of paramagnetism (PM). For ¢'/¢
below 0.7, the paramagnetic phase evolves into a q = (,7)
antiferromagnet with increasing U. At larger ¢’ and larger U,
there is a transition to a state that is a linear superposition
of ¢ = (0,7) and q = (7r,0) states from the PM state. Finally
for U greater than 10z, there is a possible spin-liquid phase
in between the q = (,7) and q = (0,7)/q = (7,0) phases.
The Gutzwiller approximation combined with the random-
phase approximation (GA+RPA) also find a number of
incommensurate magnetic phases sandwiched between the
low U (PM) and large U [q = (r,) or q = (0,7)/q = (7,0)]
orders [63].

Here, we present some of the ground-state and finite
temperature properties with the goal to show the ability of
MCMF to capture essential physics both at low and high
temperatures. Detailed quantitative comparison with existing
literature will be presented elsewhere. Figure 13 shows our
results. In Fig. 13(a), the locus of the q = (;r,7) and q = (0,7)
Néel temperatures is shown as a function of #'/¢. The U/t
values used represent small, intermediate, and large U/t
regimes. At U/t = 4, the q = (7,) phase is progressively
weakened and ultimately destroyed in favor of a paramagnetic
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state. In Fig. 13(c) we show the DOS for U/t = 4. Att'/t ~
—0.35, there is an insulator-to-metal transition accompanying
the magnetic to PM transition. For U/t = 8 and 16, there is a
similar loss of the q = (7,7) magnetic order with increasing
t'/t. The critical '/ t needed shows nonmonotonic dependence
on U/t similar to that of Ty with varying U/¢. The collapse of
the q = (7r,7r) order with increasing ¢’/ ¢ is shown in Fig. 13(b)
forU/t = 16.

In Fig. 13(d), the DOS for U/t = 16 is presented. Clearly,
the gap in N(w) changes only slightly with ¢’ /¢ varying from
0 to —1. A similar evolution occurs for U/t = 8 as well. The
gap survives because there is a transition from q = (7r,7) to a
linear combination of the q = (0,7)/q = (s7,0). The locus of
the peak of q = (0,7) is shown in Fig. 13(a). In the region in
between the two phases we only find a weak order difficult
to distinguish from a PM state. Note that since this method
reduces to the HF theory at T = 0, a spin-liquid phase cannot
be captured within this approach due to the lack of quantum
fluctuations; however, the MCMF method is able to suggest
regions in parameter space where spin-liquid phases are
possible.

IV. CONCLUSIONS

In this paper, a many-body technique which is “intermedi-
ate” between the canonical mean field Hartree-Fock approxi-
mation and the numerically exact determinant quantum Monte
Carlo method has been discussed and tested for the case of the
one-band Hubbard model. The thermal fluctuations that are
properly considered in this method were shown to be sufficient
to reproduce the expected “up and down” nonmonotonic
behavior of the Néel temperature with increasing U/t at
half filling, unveiling a normal-state regime where there are
preformed local moments but no magnetic long-range order.

A necessary condition for this method to work properly
is that the mean field approximation used (either the HF
method employed here or some other mean field method)
captures the essence of the ground-state magnetic, orbital,
or even superconducting properties. After that step, the MC-
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MF technique is expected to address reasonably well the
temperature fluctuations and generation of short-range order
near the critical temperature. There are no obvious restrictions
in parameters such as couplings: if the mean field method
works at a particular coupling, the MC-MF will work as
well varying the temperature. The coupling range where the
method works best, in the sense of improving substantially over
naive mean field finite-7 approximations, is strong coupling
where fluctuations start developing when cooling down at
temperatures much higher than the true long-range-order
critical temperature. Our technique captures the regime where
local moments are formed but they are coupled effectively
only at short distances. In superconducting systems with
strong attraction, the method would capture the formation
of individual Cooper pairs upon cooling, followed at lower
temperatures by the true superconducting state.

Another advantage of the MCMF method is that it can be
applied to other Hubbard models that cannot be treated by
DQMC due to the fermion sign problem. As in the case of
the addition of realistic # < 0 next-nearest-neighbor hopping
amplitudes where DQMC cannot reach the ordering temper-
ature upon cooling because of the sign problem, the good
performance of the MC-MF remains unchanged with regard to
the case t+ = 0. Thus, examples where the MC-MF approach
can be applied include the one-orbital Hubbard model with
hopping beyond nearest neighbors, as demonstrated here, or
the multiorbital Hubbard models that are widely discussed for
iron-based superconductors. The latter will be the focus of
future efforts in this context.
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