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Emergence of localized magnetic moments near antiferromagnetic quantum criticality
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We revisit an antiferromagnetic quantum phase transition with Q = 2kF , where Q is an ordering wave
vector and kF is a Fermi momentum. Reformulating the Hertz-Moriya-Millis theory within the strong-coupling
approach to diagonalize the spin-fermion coupling term and performing the scaling analysis for an effective-field
theory with quantum corrections in the Eliashberg approximation, we propose an interacting fixed point for this
antiferromagnetic quantum phase transition, where antiferromagnetic spin fluctuations become locally critical to
interact with renormalized electrons. The emergence of local quantum criticality suggests a mechanism of ω/T

scaling for antiferromagnetic quantum criticality, generally forbidden in the context of the Hertz-Moriya-Millis
theory.
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I. INTRODUCTION

A standard theoretical framework for quantum phase
transitions in “good” metals is the Hertz-Moriya-Millis theory,
describing non-Fermi-liquid physics near quantum criticality
in terms of local order-parameter fluctuations [1]. An essential
aspect of this field-theory approach is that it does not allow the
frequency (ω) over temperature (T ) scaling physics around
quantum criticality, which originates from the existence of
abundant soft modes near the Fermi surface, giving rise to
the fact that the Hertz-Moriya-Millis (HMM) theory lives
above its upper critical dimension and breaks the hyperscaling
relation [2,3]. It has been pointed out that the structure of
the HMM theory may be modified, where the interaction
parameter in the quartic term of the HMM theory is not
a constant but a complicated function for frequency and
momentum, effectively giving rise to nonlocal correlations,
if one goes beyond the Eliashberg approximation [4–8].
Unfortunately, the role of such nonlocal interactions remains
inconclusive.

Recently, the possibility of ω/T scaling has been addressed
in a study of heavy-fermion quantum criticality [9]. Based
on the nonlinear σ model description for the dynamics
of localized spins, Kondo fluctuations are shown to cause
nonlocal interactions between such spin fluctuations. Perform-
ing the renormalization-group analysis, nonlocal interactions
between spin-wave modes turn out to make the spin-wave
velocity vanish logarithmically at the quantum critical point.
Local quantum criticality [10] driven by nonlocal interactions
between order-parameter fluctuations will allow the ω/T

scaling physics in dynamic response functions.
In this study, we revisit an antiferromagnetic quantum

phase transition in the system of itinerant electrons with
Fermi-surface nesting. In particular, we focus on the case
of Q = 2kF , where Q is an ordering wave vector and kF

is a Fermi momentum. An idea is to take a strong-coupling
approach in the HMM theory [11], which diagonalizes the
spin-fermion coupling term, reformulating the HMM theory
in terms of fermionic holons (renormalized electrons) and
bosonic spinons (directional spin fluctuations) [12], referred to
as U(1) slave spin-rotor theory (Sec. II). As a result, we obtain

an effective-field theory in the two-patch construction [13],
describing holons, longitudinal (amplitude) antiferromagnetic
(critical) and ferromagnetic (gapped) fluctuations, transverse
spin fluctuations (spinons), spin-singlet (gauge) fluctuations
(gapless), and their interactions (Sec. III A). Introducing
quantum corrections into the effective-field theory within the
Eliashberg approximation (Sec. III A), we perform the scaling
analysis at the “tree” level. Considering the standard scaling
analysis [13,14] in this renormalized effective theory, we fail
to find a critical field theory, where interaction vertices turn
out to be relevant (Sec. III C). On the other hand, assuming
that the “transverse” momentum along the Fermi surface does
not change under the scale transformation, we find a critical
field theory in terms of renormalized electrons and transverse
spin fluctuations, where the dynamics of transverse spin
fluctuations becomes locally critical (Sec. III D). This local
quantum criticality suggests a mechanism of ω/T scaling,
generally forbidden in the context of the HMM theory, since
this fixed point is interacting in nature, distinguished from
that of the HMM theory. Although we focus on the case of
two dimensions, we find the same critical field theory in three
dimensions. Emergence of localized magnetic moments is the
nature of this fixed point in the antiferromagnetic quantum
phase transition with Q = 2kF .

A viewpoint of the present study can be described by the
schematic phase diagram in Fig. 1, where the x axis is the
inverse of a spin-fermion coupling constant and the y axis is
temperature, constituting a conventional phase diagram. We
suggest to add an additional axis to this phase diagram, which
corresponds to an ordering wave vector, but appropriately
changeable to be related to Fermi-surface nesting. It is a
conventional view that the fixed point of an antiferromagnetic
quantum critical point with Q �= 2kF is described by the HMM
theory. Applying the strong-coupling approach above to the
antiferromagnetic quantum phase transition with Q �= 2kF ,
we check the possibility of a fixed point beyond the HMM
theory (Sec. III B). Although the HMM theory is a critical field
theory for this antiferromagnetic quantum critical point, the
U(1) slave spin-rotor formulation allows us to reach another
fixed point, for which interactions between transverse spin
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FIG. 1. (Color online) A schematic phase diagram for antiferro-
magnetic quantum phase transitions. The x axis is the inverse of
a spin-fermion coupling constant, and the y axis is temperature,
constituting a conventional phase diagram. Here, we suggest to
add an additional axis into this phase diagram, which corresponds
to an ordering wave vector, but appropriately changeable to be
related to Fermi-surface nesting. SDW and FL denote spin-density
wave and Fermi liquid, respectively. U1SSR FP represents a U(1)
slave spin-rotor fixed point, and HMM and LQC express Hertz-
Moriya-Millis quantum criticality and local quantum criticality,
respectively. It is a conventional view that the fixed point of an
antiferromagnetic quantum critical point with Q �= 2kF is described
by the HMM theory. Applying the U(1) slave spin-rotor formulation
to this antiferromagnetic quantum phase transition, regarded to be a
strong-coupling approach, we find the possibility for the emergence
of another fixed point, where the HMM theory becomes modified to
contain relevant interactions between transverse spin fluctuations and
renormalized electrons (Sec. III B). It is not possible to clarify the
condition for which the fixed point will be realized between the HMM
and U(1) slave spin-rotor fixed points at present. An essential aspect of
the present study is that the structure of the HMM theory breaks down
at an antiferromagnetic quantum critical point with Q = 2kF , where
interactions between longitudinal spin fluctuations and renormalized
electrons, usually referred to as the spin-fermion coupling, turn out to
be irrelevant (Secs. III C and III D). This situation differs from the case
with Q �= 2kF , where the structure of the HMM theory is preserved
at least partially for the U(1) slave spin-rotor fixed point. The role of
transverse spin fluctuations becomes more dominant in the antiferro-
magnetic quantum criticality with Q = 2kF , giving rise to a critical
field theory within the U(1) slave spin-rotor formulation, where renor-
malized electrons interact with localized transverse spin fluctuations
(Sec. III D).

fluctuations and renormalized electrons are responsible. As a
result, the HMM theory becomes modified to contain such
additional relevant interactions. It is not possible to clarify the
condition for which the fixed point will be realized between
the the HMM and U(1) slave spin-rotor fixed points at present.
Our critical observation is that the HMM theory is not invariant
under the renormalization-group transformation when the
ordering wave vector is near Q = 2kF (Secs. III C and III D).
This situation differs from the case with Q �= 2kF , where the

structure of the HMM theory is preserved at least partially
for the U(1) slave spin-rotor fixed point. Interactions between
longitudinal spin fluctuations and renormalized electrons,
usually referred to as the spin-fermion coupling, turn out to
be irrelevant, responsible for breakdown of the HMM theory
(Secs. III C and III D). Instead, the role of transverse spin
fluctuations becomes more dominant in the antiferromagnetic
quantum criticality with Q = 2kF , giving rise to a critical field
theory within the U(1) slave spin-rotor formulation, where
renormalized electrons interact with localized transverse spin
fluctuations (Sec. III D), as discussed above.

II. U(1) SLAVE SPIN-ROTOR THEORY

A. A minimal model: Two-patch construction

We start from the Hubbard model,

H = −t
∑
ij

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓, (1)

where ciσ represents an electron field with spin σ at site
i, and t and U are hopping and interaction parameters,
respectively.

Focusing on magnetic instability, we perform the
Hubbard-Stratonovich transformation for the spin-triplet
channel,

Z =
∫

Dciσ D�i exp

{
−
∫ β

0
dτ

[∑
i

c
†
iσ (∂τ − μ)ciσ

− t
∑
ij

(c†iσ cjσ + H.c.) −
∑

i

c
†
iα�i · σ αβciβ

+ 1

2g

∑
i

�2
i

]}
, (2)

where �i is an order parameter of magnetization at site i, g is
an interaction parameter for the triplet channel, proportional
to U , and μ is a chemical potential.

In this study, we consider an antiferromagnetic transition,
where the ordering wave vector Q is given by twice the
Fermi momentum kF , i.e., Q = 2kF . On the other hand,
one may consider the case of Q �= 2kF , where the structure
of a Fermi surface is shown in Ref. [8], for example, to
be associated with high-Tc cuprates. The key difference
between these two cases lies in the scale transformation for
longitudinal and transverse momenta, orthogonal to and along
the Fermi surface, respectively. We discuss this issue in the next
section.

We write down an order-parameter field as follows:

�i · σ αβ = (ei Q·r i m + δmi)ni · σ αβ, (3)

where m is an antiferromagnetic order parameter with a
nesting vector Q of the Fermi surface, δmi is an amplitude-
fluctuation field, and ni is a directional-fluctuation field at
site i.
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Inserting this expression into the partition function, we obtain

Z =
∫

DciσDδmiDniδ(|ni |2 − 1) exp

⎧⎨
⎩−

∫ β

0
dτ

⎡
⎣∑

i

c
†
iσ (∂τ − μ)ciσ − t

∑
ij

(c†iσ cjσ + H.c.)

−
∑

i

(ei Q·r i m + δmi)c
†
iαni · σ αβciβ + 1

2g

∑
i

(ei Q·r i m + δmi)
2

⎤
⎦
⎫⎬
⎭ . (4)

It is straightforward to perform the Fourier transformation, given by

Z =
∫

DckσDδmk′Dnqδ

(∑
q

nq n−q − 1

)
exp

{
−
∫ β

0
dτ

[∑
k

c
†
kσ (∂τ − μ + εk)ckσ

−
∑

k

1

Ld

∑
q

mc
†
kαnq · σ αβck+ Q+qβ −

∑
k

1

Ld

∑
k′

1

Ld

∑
q

δmk′c
†
kαnq · σ αβck+k′+qβ

+ 1

2g

∑
q

{δmqδm−q + m[δ(q − Q) + δ(q + Q)]δmq} + Ld 1

2g
m2

]}
, (5)

where Ld is a volume of the system. Since ckσ is coupled to ck+ Qσ , it is natural to introduce a spinor ckσ = ( ckσ

ck+ Qσ
) in the

momentum space. Performing the Fourier transformation for this spinor, we obtain ciσ = (ci+σ

ci−σ
), where ci+(−)σ is an electron field

near the + (−) patch of the Fermi surface. In the same way, we introduce δmk′ = ( δmk′
δmk′+ Q

) and obtain δmi = (δmi1
δmi2

) after the Fourier
transformation, where δmi1 and δmi2 represent “ferromagnetic” and “antiferromagnetic” amplitude fluctuations, respectively.

Resorting to this double-patch construction, we obtain an effective theory that is valid at low energies,

Z =
∫

Dcisσ DδminDniδ(|ni |2 − 1) exp

⎧⎨
⎩−

∫ β

0
dτ

⎡
⎣∑

i

c
†
isσ (∂τ − μ)cisσ − st

∑
ij

(c†isσ cjsσ + H.c.) − m
∑

i

c
†
isαni · σ αβci−sβ

−
∑

i

δmi1c
†
isαni · σ αβcisβ −

∑
i

δmi2c
†
isαni · σ αβci−sβ + 1

2g

∑
i

(
δm2

in + 2mδmi2
)+ Ld 1

2g
m2

⎤
⎦
⎫⎬
⎭ . (6)

We emphasize that cisσ should be regarded as a low-energy
electron field near the Fermi surface, defined on the patch
of s = ±; see Fig. 2. We note that ferromagnetic amplitude
fluctuations are involved with low-energy electrons in the same
patch, while antiferromagnetic ones are associated with those
in the opposite patch. Although we use the symbol of

∑
i with

a lattice index i, this should be regarded as just a formality. A
continuum field theory will be constructed in the next section.
We point out that the Fermi velocity has an opposite sign in

FIG. 2. (Color online) A schematic diagram of a Fermi surface
in the double-patch construction. Red curved lines denote a pair of
Fermi surfaces, connected by 2kF , which are filled with electrons. A
coordinate system is defined as the figure for each patch of s = ±.

each patch, denoted by st in the hopping term, which reflects
the Q = 2kF antiferromagnetic ordering. If Q �= 2kF is taken
into account, the Fermi velocity cannot be parallel to each
other.

An idea is to take the strong-coupling approach [11,12],
which diagonalizes the three spin-fermion coupling terms
of the second line in Eq. (6). Resorting to the CP 1

representation,

ni · σ αβ = Uiαγ σ 3
γ δU

†
iδβ , (7)

where

U i =
(

zi↑ z
†
i↓

zi↓ −z
†
i↑

)
(8)

is an SU(2) matrix field to describe directional spin fluctua-
tions, we introduce a fermion field fisβ , given by the unitary
transformation

cisα = Uiαβfisβ . (9)

It is straightforward to rewrite the pre-HMM theory in terms
of the bosonic spinon ziσ and the fermionic holon fisα as
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follows:

Z =
∫

Dfisσ DδminDUiαβδ(detU i − 1) exp

{
−
∫ β

0
dτ

[∑
i

f
†
isα[(∂τ − μ)δαβ − U

†
iαγ ∂τUiγβ]fisβ

− st
∑
ij

(f †
isαU

†
iαγ Ujγβfjsβ + H.c.) − m

∑
i

f
†
isασ 3

γ δfi−sβ −
∑

i

δmi1f
†
isασ 3

γ δfisβ −
∑

i

δmi2f
†
isασ 3

γ δfi−sβ

+ 1

2g

∑
i

(
δm2

in + 2mδmi2
)+ Ld 1

2g
m2

]}
, (10)

where all spin-fermion coupling terms are diagonalized.
The diagonalization procedure gives rise to complex correlations in kinetic-energy terms of spinons and holons. Such

correlations between spinons and holons are decomposed, resorting to the Hubbard-Stratonovich transformation [11,12]. The
time part is

−f
†
isαU

†
iαγ ∂τUiγβfisβ → −xiσf

†
isσ fisσ + yiz

†
iσ ∂τ ziσ − xiyi, (11)

and the spatial part is

− stf
†
isαU

†
iαγ Ujγβfjsβ = −st{f †

is+(z†iσ zjσ )fjs+ + f
†
is+(εσσ ′z

†
iσ z

†
jσ ′)fjs− + f

†
is−(εσσ ′zjσ ziσ ′)fjs+ + f

†
is−(z†jσ ziσ )fjs−}

→ −t
(
sf

†
is+χ

f

ij fjs+ + z
†
iσ χz+

ij zjσ − χ
f

ij χ
z+
ij + sf

†
is−χ

f ∗
ij fjs− + z

†
jσ χz−

ij ziσ − χ
f ∗
ij χz−

ij

)
, (12)

where spin-singlet pairing fluctuations are assumed to be not relevant and neglected. Then, an effective theory reads

Z =
∫

Dfisσ DziσDδminDxiDyiDχ
f

ij Dχz±
ij Dλi

× exp

[
−
∫ β

0
dτ

{∑
i

[f †
isσ (∂τ − μ)fisσ − σmf

†
isσ fi−sσ − σ (δmi1 + xi)f

†
isσ fisσ − σδmi2f

†
isσ fi−sσ ]

− st
∑
ij

(f †
is+χ

f

ij fjs+ + f
†
is−χ

f ∗
ij fjs− + H.c.) +

∑
i

yiz
†
iσ ∂τ ziσ − t

∑
ij

(
z
†
iσ χz+

ij zjσ + z
†
jσ χz−

ij ziσ + H.c.
)

+ i
∑

i

λi(|ziσ |2 − 1) + 1

2g

∑
i

(
δm2

in + 2mδmi2
)+ Ld 1

2g
m2

}
+ β

∑
i

xiyi − βt
∑
ij

(
χ

f

ij χ
z+
ij + χ

f ∗
ij χz−

ij + H.c.
)⎤⎦ ,

(13)

where λi incorporates the unimodular constraint for the spinon field. Although spin-singlet pairing fluctuations are neglected,
relevant approximations have not been made. In other words, integration for xi , yi , χ

f

ij , and χz±
ij recovers Eq. (10) essentially.

Next, we perform integrals for xi and yi . But, we determine hopping parameters of χ
f

ij and χz±
ij in the saddle-point

approximation, resulting in band renormalization for spinons and holons. The saddle-point value of iλi → λ plays the role
of a mass in spinon excitations. Then, we reach the following expression:

Z =
∫

Dfisσ DziσDδmin exp

⎛
⎝−

∫ β

0
dτ

{∑
i

[f †
isσ (∂τ − μ)fisσ − σmf

†
isσ fi−sσ − σδmi1f

†
isσ fisσ − σδmi2f

†
isσ fi−sσ ]

− st
∑
ij

(
f

†
isσ χ

f

ij fjsσ + H.c.
)+ 1

2g

∑
i

(z†iσ ∂τ ziσ − δmi1)2 − t
∑
ij

(
z
†
iσ χz

ij zjσ + H.c.
)+ λ

∑
i

|ziσ |2

+ 1

2g

∑
i

(
δm2

i2 + 2mδmi2
)+ Ld 1

2g
m2

}
− β

⎡
⎣t

∑
ij

(
χ

f

ij χ
z
ij + H.c.

)− Ldλ

⎤
⎦
⎞
⎠ , (14)

where the saddle-point analysis for hopping parameters of
spinons gives

χz+
ij = χz−∗

ij = χz
ij . (15)

We call this formulation U(1) slave spin-rotor theory, the name
of which is to benchmark U(1) slave-rotor theory for charge
fluctuations [15]. Unfortunately, U(1) slave spin-rotor theory
turns out to be not stable in contrast with U(1) slave charge-
rotor theory. The positive sign in 1

2g

∑
i(z

†
iσ ∂τ ziσ − δmi1)2
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favors stronger directional fluctuations, while it is negative in the U(1) slave-rotor theory, serving a parabolic potential for charge
fluctuations. This difference originates from the opposite sign when the Hubbard-U term is decomposed into charge and spin
channels.

B. Integration of amplitude fluctuations

An idea to overcome the inconsistency in the dynamics of transverse spin fluctuations is to introduce quantum corrections
from amplitude (ferromagnetic) fluctuations, renormalizing their dynamics. Taking the Luttinger-Ward functional approach [16]
within the Eliashberg approximation [17], we construct the partition function as follows:

Z =
∫

Dfisσ Dziσ exp

⎛
⎝−

∫ β

0
dτ

⎧⎨
⎩
∑

i

[f †
isσ (∂τ − μ)fisσ − σmf

†
isσ fi−sσ ] − st

∑
ij

(
f

†
isσ χ

f

ij fjsσ + H.c.
)

− 1

2

∫ β

0
dτ ′ ∑

i

∑
i ′

(
σf

†
isσ fisσ + 1

g
z
†
iσ ∂τ ziσ

)
τ

D
(1)
ii ′ (τ − τ ′; m)

(
σ ′f †

i ′s ′σ ′fi ′s ′σ ′ + 1

g
z
†
i ′σ ′∂τ ′zi ′σ ′

)
τ ′

− 1

2

∫ β

0
dτ ′ ∑

i

∑
i ′

(
σf

†
isσ fi−sσ − 1

g
m

)
τ

D
(2)
ii ′ (τ − τ ′; m)

(
σ ′f †

i ′s ′σ ′fi ′−s ′σ ′ − 1

g
m

)
τ ′

⎫⎬
⎭

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(1)(q,i; m)

]
+ �(1)(q,i; m)D(1)(q,i; m)

}

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(2)(q,i; m)

]
+ �(2)(q,i; m)D(2)(q,i; m)

}

−
∫ β

0
dτ

⎡
⎣ 1

2g

∑
i

(z†iσ ∂τ ziσ )2 − t
∑
ij

(
z
†
iσ χz

ij zjσ + H.c.
)+ λ

∑
i

|ziσ |2
⎤
⎦ −β

⎡
⎣t ∑

ij

(
χ

f

ij χ
z
ij + H.c.

)+ Ld 1

2g
m2 − Ldλ

⎤
⎦
⎞
⎠ ,

(16)

where D(n)(q,i; m) = 1
1

4g
−�(n)(q,i;m)

with n = 1,2 is the propagator of ferromagnetic and antiferromagnetic amplitude

fluctuations, respectively, and �(n)(q,i; m) is the self-energy of the amplitude-fluctuation propagator, given by the fermion
polarization bubble.

Performing the Fourier transformation, we obtain

Z =
∫

DfksσDzkσ exp

(
−
{∑

iω

∑
k

[
f

†
ksσ (−iω − μ − zstχf γk)fksσ + σm

�(2)(m)
1

4g
− �(2)(m)

f
†
ksσ fk−sσ

]

− 1

2

∑
i

1

β

∑
iω

1

β

∑
iω′

∑
q

∑
k

∑
k′

[σf
†
ksσ (iω)fk+qsσ (iω + i)]D(1)(q,i; m)[σ ′f †

k′s ′σ ′(iω′)fk′−qs ′σ ′(iω′ − i)]

− 1

2

∑
i

1

β

∑
iω

1

β

∑
iω′

∑
q

∑
k

∑
k′

[σf
†
ksσ (iω)fk+q−sσ (iω + i)]D(2)(q,i; m)[σ ′f †

k′s ′σ ′(iω′)fk′−q−s ′σ ′(iω′ − i)]

+ 1

g

∑
i

1

β

∑
iω

1

β

∑
iω′

∑
q

∑
k

∑
k′

[σf
†
ksσ (iω)fk+qsσ (iω + i)]D(1)(q,i; m)

(
iω′ − 1

2
i
)

[z†k′σ ′(iω′)zk′−qσ ′(iω′ − i)]

}

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(1)(q,i; m)

]
+ �(1)(q,i; m)D(1)(q,i; m)

}

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(2)(q,i; m)

]
+ �(2)(q,i; m)D(2)(q,i; m)

}

−
∑
i

∑
q

[
− 1

4g
(z†iσ ∂τ ziσ )q,i

�(1)(q,i; m)
1

4g
− �(1)(q,i; m)

(z†i ′σ ′∂τ ′zi ′σ ′)−q,−i + (λ − ztχzγq)z†qσ zqσ

]

−βLd

[
2ztχf χz − λ − m2

8g

�(2)(m)
1

4g
− �(2)(m)

])
, (17)
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where ztχf (z)γk is a Fourier-transformed expression of χ
f (z)
ij tij with a coordination number z, taking χ

f

ij = χf and χz
ij = χz

in the saddle-point approximation. First of all, the inconsistency for the dynamics of transverse spin fluctuations is
resolved by the renormalization of ferromagnetic amplitude fluctuations. In the temporal part of transverse spin fluctuations,
− 1

4g
(z†iσ ∂τ ziσ )q,i

�(1)(q,i;m)
1

4g
−�(1)(q,i;m)

(z†i ′σ ′∂τ ′zi ′σ ′)−q,−i, we observe the sign change from 1
2g

> 0 to − 1
4g

�(1)(q,i;m)
1

4g
−�(1)(q,i;m)

< 0, where
1

4g
− �(1)(q,i; m) > 0. As a result, the dynamics of transverse spin fluctuations is well defined, as it must be. It is also noticeable

that the magnetization order parameter is renormalized to m �(2)(m)
1

4g
−�(2)(m)

.

We would like to compare this effective theory with the HMM theory, given by

Z =
∫

Dcksσ exp

(
−
{∑

iω

∑
k

[
c
†
ksσ (−iω − μ − zstγk)cksσ + σm

�(2)(m)
1

4g
− �(2)(m)

c
†
ksσ ck−sσ

]

− 1

2

∑
i

1

β

∑
iω

1

β

∑
iω′

∑
q

∑
k

∑
k′

[σc
†
ksσ (iω)ck+qsσ (iω + i)]D(1)(q,i; m)[σ ′c†k′s ′σ ′(iω′)ck′−qs ′σ ′(iω′ − i)]

− 1

2

∑
i

1

β

∑
iω

1

β

∑
iω′

∑
q

∑
k

∑
k′

[σc
†
ksσ (iω)ck+q−sσ (iω + i)]D(2)(q,i; m)[σ ′c†k′s ′σ ′(iω′)ck′−q−s ′σ ′(iω′ − i)]

}

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(1)(q,i; m)

]
+ �(1)(q,i; m)D(1)(q,i; m)

}

− 1

2

∑
i

∑
q

{
ln

[
1

4g
− �(2)(q,i; m)

]
+ �(2)(q,i; m)D(2)(q,i; m)

}
+ βLd m2

8g

�(2)(m)
1

4g
− �(2)(m)

)
,

where only amplitude fluctuations are taken into account. In this respect, U(1) slave spin-rotor theory consistently deals with
not only amplitude fluctuations but also transverse spin fluctuations. In this study, we show that an effective interaction between
renormalized electrons and transverse spin fluctuations, that is, 1

g

∑
i

1
β

∑
iω

1
β

∑
iω′
∑

q

∑
k

∑
k′[σf

†
ksσ (iω)fk+qsσ (iω +

i)]D(1)(q,i; m)(iω′ − 1
2 i)[z†k′σ ′(iω′)zk′−qσ ′(iω′ − i)], gives rise to local quantum criticality in an antiferromagnetic

quantum phase transition, characterized by the emergence of localized magnetic moments.
It is straightforward to obtain the Luttinger-Ward free-energy functional in the Eliashberg approximation [17],

F (m,λ; μ,g,T )

= −Nσ

β

∑
iω

∑
k

tr

⎧⎨
⎩ln

⎡
⎣
⎛
⎝−iω − μ − ztχf γk σm �(2)(m)

1
4g

−�(2)(m)

σm �(2)(m)
1

4g
−�(2)(m)

−iω − μ + ztχf γk

⎞
⎠+ �f (k,iω; m)

⎤
⎦+ �f (k,iω; m)Gf (k,iω; m)

⎫⎬
⎭

+ Nσ

β

∑
iω

∑
k

ln[λ − ztχzγk + �z(k,iω; m)] + 1

2β

∑
i

∑
q

ln

[
1

4g
− �(1)(q,i; m)

]

+ 1

2β

∑
i

∑
q

ln

[
1

4g
− �(2)(q,i; m)

]
+ Ld

[
2ztχf χz − λ − m2

8g

�(2)(m)
1

4g
− �(2)(m)

]
, (18)

where

�(1)(q,i; m) = Nσ

β

∑
iω

∑
k

{
G11

f (k + q,iω + i; m)G11
f (k,iω; m) + G22

f (k + q,iω + i; m)G22
f (k,iω; m)

}
,

�(2)(q,i; m) = Nσ

β

∑
iω

∑
k

{
G11

f (k + q,iω + i; m)G22
f (k,iω; m) + G22

f (k + q,iω + i; m)G11
f (k,iω; m)

}
,

(19)

�f (k,iω; m) = − 1

β

∑
i

∑
q

Gf (k + q,iω + i; m)D(1)(q,i; m) − 1

β

∑
i

∑
q

Gf (k + q,iω + i; m)D(2)(q,i; m),

�z(k,iω; m) = − 1

β

∑
i

∑
q

Gz(k − q,iω − i; m)
(iω + i/2)2�(1)(q,i; m)

1 − 4g�(1)(q,i; m)

205129-6



EMERGENCE OF LOCALIZED MAGNETIC MOMENTS NEAR . . . PHYSICAL REVIEW B 90, 205129 (2014)

are self-energies of ferromagnetic, antiferromagnetic amplitude fluctuations, renormalized electrons, and transverse spin
fluctuations, respectively, and

Gf (k,iω; m) = −
⎡
⎣
⎛
⎝−iω − μ − ztχf γk σm �(2)(m)

1
4g

−�(2)(m)

σm �(2)(m)
1

4g
−�(2)(m)

−iω − μ + ztχf γk

⎞
⎠+ �f (k,iω; m)

⎤
⎦

−1

,

D(1)(q,i; m) = 1
1

4g
− �(1)(q,i; m)

, D(2)(q,i; m) = 1
1

4g
− �(2)(q,i; m)

, (20)

Gz(k,iω; m) = 1

λ − ztχzγk + �z(k,iω; m)

are Green’s functions of holons, ferromagnetic, antiferromag-
netic amplitude fluctuations, and spinons, respectively. The
self-energy of ferromagnetic (antiferromagnetic) amplitude
fluctuations is given by the polarization bubble of renor-
malized electrons within the same (opposite) patch. The
holon self-energy results from scattering with both amplitude
fluctuations, and the spinon self-energy originates from the
renormalization by ferromagnetic amplitude fluctuations. All
quantum corrections in the Eliashberg approximation are
shown in Fig. 3.

Performing the mean-field analysis for the magnetization
order parameter m and the mass parameter of spinons λ, one
can find a phase diagram for an antiferromagnetic quantum
phase transition, where the condensation transition of spinons
is expected to allow novel physics. Generally speaking, one
may speculate that the antiferromagnetic transition given by
the formation of an antiferromagnetic order parameter m will

not coincide with the condensation transition of spinons given
by λ = 0. Although this scenario may be possible, we suggest
another scenario based on the renormalization-group analysis
of an effective-field theory within the U(1) slave spin-rotor
representation, where both transitions meet at one point. The
spinon-holon interaction vertex, not taken into account in the
Luttinger-Ward free-energy functional, turns out to play a
central role in the emergence of localized magnetic moments
at an antiferromagnetic quantum critical point.

III. RENORMALIZATION-GROUP ANALYSIS

A. A field theory for antiferromagnetic quantum criticality
approaching from the Fermi-liquid state

Following the patch construction of Ref. [13], we write
down an effective-field theory in the U(1) slave spin-rotor
representation,

Z =
∫

Dfsσ DzσDφnDa exp
(

−
∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
f †

sσ

(
∂τ − isvF ∂x − vF

2γ
∂2
y

)
fsσ

+φ1
(
∂τ − v2

1∂
2
x − v2

1∂
2
y + m2

1

)
φ1 + u1

2
φ4

1 + φ2
(−∂2

τ − v2
2∂

2
x − v2

2∂
2
y + m2

2

)
φ2 + u2

2
φ4

2 + a
(−∂2

τ − v2
a∂

2
x − v2

a∂
2
y

)
a

− g1φ1σf †
sσ fsσ − g2φ2σf †

sσ f−sσ − ef svF aσf †
sσ fsσ − gzφ1z

†
σ ∂τ zσ + z†σ

(−v2
z ∂

2
x − v2

z ∂
2
y + m2

z

)
zσ + uz

2
|zσ |4

− ieza[z†σ (∂xzσ ) − (∂xz
†
σ )zσ ]

})
, (21)

regarded to be a continuum version of Eq. (14). fsσ is
a low-energy renormalized electron field (holon) with spin
σ on the Fermi surface of a s = ± patch. Its dispersion
relation is given by ε(k‖,k⊥) = svF k‖ + vF

2γ
k2
⊥, where k‖ is

the longitudinal momentum out of the Fermi surface and
k⊥ is the transverse momentum along the Fermi surface.
vF is a Fermi velocity and γ is a Landau-damping co-
efficient [14]. See Fig. 2 for our coordinate system. φn

with n = 1,2 represent ferromagnetic and antiferromagnetic
amplitude fluctuations, where their dispersion relations are
given by nonrelativistic E1(k‖,k⊥) = v2

1(k2
‖ + k2

⊥) + m2
1 and

relativistic E2(k‖,k⊥) = ±
√

v2
2(k2

‖ + k2
⊥) + m2

2, respectively,

although these bare dispersions are not very relevant for
their renormalized dynamics. Since only antiferromagnetic
amplitude fluctuations are allowed to be critical, we safely

assume that ferromagnetic amplitude fluctuations are gapped
(m1 �= 0) but antiferromagnetic ones are gapless (m2 = 0) at
the antiferromagnetic quantum critical point. un with n = 1,2
are their self-interaction constants. a is a transverse gauge

field with the relativistic dispersion Ea(k‖,k⊥) = va

√
k2
‖ + k2

⊥.

zσ is a transverse spin-fluctuation field (spinon), where the
temporal part is given by the one-loop correction from
gapped ferromagnetic amplitude fluctuations, giving rise to
consistency for their dynamics, as discussed in the last
section. vz and mz are the velocity and mass of spinons,
respectively. An essential feature of the present study is that
both the velocity and mass of spinons become renormalized
to vanish at the antiferromagnetic quantum critical point of
m2 = 0, identified with local quantum criticality. uz is the
self-interaction parameter of spinons. Gapped ferromagnetic
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FIG. 3. (Color online) Feynmann diagrams in the Eliashberg approximation. Renormalized electrons fsσ and longitudinal antiferromagnetic
fluctuations φ2 consist of the Hertz-Moriya-Millis theory while transverse spin fluctuations zσ and U(1) gauge fields a appear in the U(1) slave
spin-rotor formulation. Longitudinal ferromagnetic fluctuations φ1 give rise to consistency for dynamics of transverse spin fluctuations zσ .
All interaction vertices are given by diagrams with three lines, which characterize the U(1) slave spin-rotor theory. Self-energy corrections of
three bosonic fields, φ2, φ1, and a are given by polarization bubbles of renormalized electrons and transverse spin fluctuations. Self-energy
corrections of renormalized electrons and transverse spin fluctuations are given by typical one-loop diagrams with a bosonic line. Since
longitudinal ferromagnetic fluctuations are gapped, one may neglect all diagrams involved with φ1 except for the spinon self-energy, where it
makes dynamics of spinons consistent. In the lattice-model construction, dynamics of gauge fluctuations are neglected, not incorporated into
the free energy.

amplitude fluctuations couple to both holons and spinons
with coupling constants of g1 and gz, respectively. Critical
antiferromagnetic amplitude fluctuations couple to only holons
with g2, while gapless gauge fluctuations couple to both holons
and spinons with ef and ez, respectively.

Next, we introduce quantum corrections into this field
theory within the Eliashberg approximation, as discussed in
the last section. All quantum corrections in the one-loop level
are shown in Fig. 3. Then, we obtain

Z =
∫

Dfsσ DzσDφnDa exp
(
−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk‖
2π

∫ ∞

−∞

dk⊥
2π

{
f †

sσ

[
−iω − svF k‖ − vF

2γ
k2
⊥ − i

c2sgn(ω)

Nσ

|ω| 1
2 − i

casgn(ω)

Nσ

|ω| 2
3

]
fsσ

+φ1

(
γ

|ω|
|k⊥| − iω + v2

1k
2
‖ + v2

1k
2
⊥ + m2

1

)
φ1 + φ2

(
γ2|ω| + ω2 + v2

2k
2
‖ + v2

2k
2
⊥
)
φ2 + a

(
γ

|ω|
|k⊥| + ω2 + v2

ak
2
‖ + v2

ak
2
⊥

)
a

− g2
z

2Nσ

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk′
⊥

2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

z†σ (ω + ,k‖ + q‖,k⊥ + q⊥)zσ (ω,k‖,k⊥)

×
(
iω + i 

2

)(
iω′ − i 

2

)
γ

||
|q⊥| − i + v2

1q
2
‖ + v2

1q
2
⊥ + m2

1

z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥) + z†σ

(
v2

z k
2
‖ + v2

z k
2
⊥ + m2

z

)
zσ

− g1gz

Nσ

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk⊥
2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

× iω′ − i 
2

γ
||
|q⊥| − i + v2

1q
2
‖ + v2

1q
2
⊥ + m2

1

z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥)
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−
∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫
dq⊥
2π

[
ef√
Nσ

sa(,q‖,q⊥)vF σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

+ g1√
Nσ

φ1(,q‖,q⊥)σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

+ g2√
Nσ

φ2(,q‖,q⊥)σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)f−sσ (ω,k‖,k⊥)

+ ez√
Nσ

a(,q‖,q⊥)

(
k‖ + q‖

2

)
z†σ (ω + ,k‖ + q‖,k⊥ + q⊥)zσ (ω,k‖,k⊥)

+ gz√
Nσ

φ1(,q‖,q⊥)

(
iω + i



2

)
z†σ (ω + ,k‖ + q‖,k⊥ + q⊥)zσ (ω,k‖,k⊥)

]})
, (22)

where σ = ↑,↓ is generalized to σ = 1,2, . . . ,Nσ . Critical
antiferromagnetic amplitude fluctuations give rise to the |ω| 1

2

self-energy correction with a numerical constant c2 in holon
dynamics (�2

f in Fig. 3), originating from the z = 2 dynamics
of critical fluctuations [18], where z is the dynamical critical
exponent. On the other hand, z = 3 gauge fluctuations result
in the |ω| 2

3 self-energy correction with a numerical constant ca

in holon dynamics (�a
f in Fig. 3) [14]. Gapped ferromagnetic

amplitude fluctuations do not cause any singular corrections
(�1

f in Fig. 3). The polarization bubble of �(1)(q,i) within
the same patch gives rise to Landau damping for both
ferromagnetic amplitude and gauge fluctuations, where γ is
a damping coefficient (�f

1 and �
f
a in Fig. 3). On the other

hand, the polarization bubble of �(2)(q,i) given by the
opposite patch results in the self-energy correction of |ω| to
antiferromagnetic amplitude fluctuations (�f

2 in Fig. 3) [18],
where the transverse momentum in the denominator of the

Landau-damping term is cut by 2kF , absorbed into the damp-
ing coefficient γ2. One may be concerned that the polarization
bubble at q = 2kF will result in a more singular dependence
when there exist z = 3 gauge fluctuations, extensively dis-
cussed in Ref. [14]. However, we believe that this differs
from our case, where critical antiferromagnetic amplitude
fluctuations give rise to more singular self-energy corrections
in holon dynamics. This issue will be further addressed below.
Ferromagnetic amplitude fluctuations give rise to consistency
in the dynamics of transverse spin fluctuations (�1

z in Fig. 3),
as discussed in the last section. They also cause the holon-
spinon coupling term, which turns out to play an important
role in our antiferromagnetic phase transition. The role of
the spinon-gauge coupling term will be taken into account
below.

Performing the Fourier transformation toward the real
space, we obtain

Z =
∫

Dfsσ DzσDφnDa exp
(

−
∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
f †

sσ

[
−i

c2

Nσ

(− ∂2
τ

) 1
4 − i

ca

Nσ

(− ∂2
τ

) 1
3 − isvF ∂x − vF

2γ
∂2
y

]
fsσ

+φ1

(
γ

√−∂2
τ√

−∂2
y

− v2
1∂

2
y + m2

1

)
φ1 + φ2

(
γ2

√
−∂2

τ − v2
2∂

2
y

)
φ2 + u2

2
φ4

2 + a

(
γ

√−∂2
τ√

−∂2
y

− v2
a∂

2
y

)
a

− g1√
Nσ

φ1σf †
sσ fsσ − g2√

Nσ

φ2σf †
sσ f−sσ − ef√

Nσ

svF aσf †
sσ fsσ − g1gz

Nσ

σf †
sσ fsσ

1

γ

√
−∂2

τ√
−∂2

y

− v2
1∂

2
y + m2

1

(z†σ ′∂τ zσ ′)

− g2
z

2Nσ

(z†σ ∂τ zσ )
1

γ

√
−∂2

τ√
−∂2

y

− v2
1∂

2
y + m2

1

(z†σ ′∂τ zσ ′) + z†σ
(− v2

z ∂
2
y + m2

z

)
zσ + uz

2
|zσ |4

− gz√
Nσ

φ1z
†
σ ∂τ zσ − i

ez√
Nσ

a[z†σ (∂xzσ ) − (∂xz
†
σ )zσ ]

})
, (23)

where nonanalytic expressions in derivatives encode self-energy corrections. Resorting to the robustness of the Fermi surface,
we keep the dynamics along the transverse momentum for boson excitations [13]. In other words, boson dynamics along −∂2

x

are not relevant.
Since ferromagnetic amplitude fluctuations are gapped, they can be neglected safely at low energies. In addition, the self-energy

correction from critical antiferromagnetic amplitude fluctuations is more singular than that from gauge fluctuations at low energies,
allowing us to keep (−∂2

τ )
1
4 only in the holon dynamics. As a result, we find a consistent U(1) slave spin-rotor effective-field

theory in terms of renormalized electrons, critical longitudinal spin fluctuations, transverse spin fluctuations, gauge fluctuations,
and their interactions, where quantum corrections are taken into account in the Eliashberg approximation near antiferromagnetic
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quantum criticality,

Z =
∫

Dfsσ DzσDφ2Da exp
(

−
∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
f †

sσ

[
−i

c2

Nσ

(− ∂2
τ

) 1
4 − isvF ∂x − vF

2γ
∂2
y

]
fsσ

+φ2
(
γ2

√
−∂2

τ − v2
2∂

2
y

)
φ2 + u2

2
φ4

2 + a

(
γ

√−∂2
τ√

−∂2
y

− v2
a∂

2
y

)
a − g2√

Nσ

φ2σf †
sσ f−sσ − ef√

Nσ

svF aσf †
sσ fsσ

− g1gz

Nσm2
1

σf †
sσ fsσ (z†σ ′∂τ zσ ′) + z†σ

(
− g2

z

2Nσ m2
1

∂2
τ − v2

z ∂
2
y + m2

z

)
zσ + uz

2
|zσ |4 − i

ez√
Nσ

a[z†σ (∂xzσ ) − (∂xz
†
σ )zσ ]

})
. (24)

For the temporal part of the spinon dynamics, the unimodular constraint has been utilized, keeping the mass term only in the
denominator at low energies. An essential aspect of this field theory is that the |ω| 1

2 self-energy in the holon dynamics will affect
the scaling properties for all fields and interaction vertices.

B. Scaling analysis in the case of Q �= 2kF

Equation (24) is our starting point for the renormalization-group analysis, which reveals the structure of possible fixed points.
Before going further, however, it is necessary to understand which critical field theory appears for antiferromagnetic quantum
criticality of Q �= 2kF , which is expected to clarify the difference between Q = 2kF and Q �= 2kF ordering transitions. In order
to understand the importance of Q = 2kF for the emergence of local quantum criticality, we apply the U(1) slave spin-rotor
formulation to the HMM theory and reach the following expression for an effective-field theory:

Z =
∫

Dfsσ DzσDφ2DaT exp
(

−
∫ β

0
dτ

∫
d2r

{
f †

sσ

[
−i

c2

Nσ

(−∂2
τ

) 1
4 − iv

(s)
F · ∇

]
fsσ + φ2

(
γ2

√
−∂2

τ − v2
2∇2

)
φ2

+ u2

2
φ4

2 + aT

(
γ

√−∂2
τ√−∇2

− v2
a∇2

)
aT + z†σ

(
− g2

z

2Nσ m2
1

∂2
τ − v2

z∇2 + m2
z

)
zσ + uz

2
|zσ |4 − g2√

Nσ

φ2σf †
sσ f−sσ

− ef√
Nσ

svF · aT σf †
sσ fsσ − g1gz

Nσm2
1

σf †
sσ fsσ (z†σ ′∂τ zσ ′) − i

ez√
Nσ

aT · [z†σ (∇zσ ) − (∇z†σ )zσ ]

})
, (25)

where the Fermi velocity v
(1)
F in patch 1 is no longer parallel to the Fermi velocity v

(2)
F in patch 2. Recall the band structure of

high-Tc cuprates, shown in Ref. [8]. The Fermi-surface curvature is omitted in this expression. Then, it is clear that the main
difference between Eqs. (24) and (25) lies in the dispersion of renormalized electrons, which turns out to play an essential role.

Performing the Fourier transformation, we obtain

Z =
∫

Dfsσ DzσDφ2DaT exp
(

−
∫ ∞

−∞

dω

2π

∫
d2k

(2π )2

{
f †

sσ

[
−i

c2sgn(ω)

Nσ

|ω| 1
2 − v

(s)
F · k

]
fsσ + φ2

(
γ2|ω| + v2

2 |k|2)φ2

+ aT

(
γ

|ω|
|k| + v2

a |k|2
)

aT + z†σ

(
g2

z

2Nσ m2
1

ω2 + v2
z |k|2 + m2

z

)
zσ − g1gz

Nσm2
1

∫ ∞

−∞

dω′

2π

∫
d2k′

(2π )2

∫ ∞

−∞

d

2π

×
∫

d2q
(2π )2

σf †
sσ (ω + ,k + q)fsσ (ω,k)

(
iω′ − i



2

)
z
†
σ ′(ω′ − ,k′ − q)zσ ′(ω′,k′)

−
∫ ∞

−∞

d

2π

∫
d2q

(2π )2

[
g2√
Nσ

φ2(,q)σf †
sσ (ω + ,k + q)f−sσ (ω,k) + ef√

Nσ

aT (,q) · v
(s)
F σf †

sσ (ω + ,k + q)fsσ (ω,k)

+ ez√
Nσ

aT (,q) ·
(

k + q
2

)
z†σ (ω + ,k + q)zσ (ω,k)

]})
. (26)

Taking the scale transformation as follows:

ω = b−1ω′, k = b− 1
2 k′, (27)

we obtain

fsσ (ω,k) = b
5
4 f ′

sσ (ω′,k′), φ2(ω,k) = b
3
2 φ′

2(ω′,k′), (28)

which lead their kinetic energies invariant under this
scale transformation. Then, it is straightforward to ver-
ify the spin-fermion coupling constant g2 marginal.

As a result, we observe that the HMM theory
of SHMM = ∫ β

0 dτ
∫

d2r{f †
sσ [−i c2

Nσ
(−∂2

τ )
1
4 − iv

(s)
F · ∇]fsσ +

φ2(γ2

√−∂2
τ − v2

2∇2)φ2 − g2√
Nσ

φ2σf
†
sσ f−sσ } remains a critical

sector at this fixed point.
However, there exist more emergent excitations in the

U(1) slave spin-rotor formulation, spinons, and gauge fields.
Unfortunately, we cannot make the kinetic energy of the gauge
field and that of the spinon field invariant under this scale
transformation. Assuming the Landau-damping term invariant
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for the dynamics of gauge fluctuations and the frequency-
dependent term invariant for the dynamics of spinons, we
obtain

a(ω,k) = b
5
4 a′(ω′,k′), zσ (ω,k) = b2z′

σ (ω′,k′). (29)

Since the Landau-damping term is singular, not renormalized,
and the consistency results from the renormalization in the
frequency sector, we believe that these assumptions seem
plausible for the renormalization-group analysis. Assuming
that the momentum sector in the spinon dynamics is invariant
under the scale transformation, one may consider the scaling
of the spinon field, given by zσ (ω,k) = b3/2z′

σ (ω′,k′) with
vz = v′

z. Then, the prefactor of the frequency sector follows the
scale transformation of (g2

z /m2
1) = b1(g2

z /m2
1)′, i.e., relevant,

which implies condensation of spinons. The condensation of
spinons allows us to neglect gauge fluctuations, where they
become gapped due to the Higgs mechanism. As a result, only
renormalized electrons and longitudinal antiferromagnetic

fluctuations appear to describe an antiferromagnetic quantum
critical point, identified with the HMM fixed point. On the
other hand, if we assume the invariance of the frequency sector
in the spinon dynamics, we find that both the velocity and mass
of spinons become irrelevant. Below, we focus on this scaling.
The velocity of U(1) gauge fields turns out to be relevant, given
by v2

a = b
1
2 v2

a

′
.

Based on these scale transformations, we can determine the
relevance of interaction vertices. Although the spin-fermion
coupling constant g2 is marginal, preserving the structure of
the HMM theory, both the gauge charge of holons and the
spinon-holon coupling constant turn out to be relevant, given
by

ef = b
1
4 e′

f ,

(
g1gz

Nσ m2
1

)
= b

1
2

(
g1gz

Nσm2
1

)′
, (30)

but the gauge charge of spinons is irrelevant.
Incorporating these scale transformations into the effective-

field theory, we obtain

Z =
∫

Dfsσ DzσDφ2DaT exp
(

−
∫ ∞

−∞

dω

2π

∫
d2k

(2π )2

{
f †

sσ

[
−i

c2sgn(ω)

Nσ

|ω| 1
2 − v

(s)
F · k

]
fsσ + φ2

(
γ2|ω| + v2

2 |k|2)φ2

−
∫ ∞

−∞

d

2π

∫
d2q

(2π )2

g2√
Nσ

φ2(,q)σf †
sσ (ω + ,k + q)f−sσ (ω,k)

}
−
∫ ∞

−∞

dω

2π

∫
d2k

(2π )2

{
aT

(
γ

|ω|
|k| + v2

a |k|2
)

aT

+ z†σ
g2

z

2Nσ m2
1

ω2zσ −
∫ ∞

−∞

d

2π

∫
d2q

(2π )2

ef√
Nσ

aT (,q) · v
(s)
F σf †

sσ (ω + ,k + q)fsσ (ω,k)

− g1gz

Nσm2
1

∫ ∞

−∞

dω′

2π

∫
d2k′

(2π )2

∫ ∞

−∞

d

2π

∫
d2q

(2π )2
σf †

sσ (ω + ,k + q)fsσ (ω,k)

(
iω′ − i



2

)
z
†
σ ′(ω′ − ,k′ − q)zσ ′(ω′,k′)

})
.

(31)

Finally, we reach the following expression for an effective-field theory, expected to describe an antiferromagnetic quantum
criticality with Q �= 2kF :

Z =
∫

Dfsσ DzσDφ2DaT

× exp
(

−
∫ β

0
dτ

∫
d2r

{
f †

sσ

[
−i

c2

Nσ

(− ∂2
τ

) 1
4 − iv

(s)
F · ∇

]
fsσ + φ2

(
γ2

√
−∂2

τ − v2
2∇2

)
φ2 − g2√

Nσ

φ2σf †
sσ f−sσ

}

−
∫ β

0
dτ

∫
d2r

{
aT

(
γ

√−∂2
τ√−∇2

− v2
a∇2

)
aT − ef√

Nσ

aT · v
(s)
F σf †

sσ fsσ + |∂τ zσ (τ,x,y)|2 − g1gz

Nσm2
1

σf †
sσ fsσ (z†σ ′∂τ zσ ′)

})
.

(32)

This expression is quite interesting due to the follow-
ing reasoning. First, we note that the HMM theory
of SHMM = ∫ β

0 dτ
∫

d2r{f †
sσ [−i c2

Nσ
(−∂2

τ )
1
4 − iv

(s)
F · ∇]fsσ +

φ2(γ2

√−∂2
τ − v2

2∇2)φ2 − g2√
Nσ

φ2σf
†
sσ f−sσ }, regarded to be

the standard critical field theory for antiferromagnetic quantum
criticality, becomes modified in the strong-coupling approach
of the U(1) slave spin-rotor representation. In particular,
the effective interaction ef between holons and U(1) gauge
fluctuations is relevant, originating from the fact that the
self-energy correction for holons results from the z = 2 critical
dynamics of longitudinal spin fluctuations, not matched with
the z = 3 dynamics of U(1) gauge fluctuations. In addition,

such renormalized electrons strongly interact with emergent
localized transverse spin fluctuations. We also point out that
the propagating velocity of U(1) gauge fields is relevant,
modifying the dispersion at low energies. We suspect the
possibility that the gauge dynamics becomes renormalized into√−∇2, turning from z = 3 to z = 2. Then, not only g2 but also
ef become marginal. Even in this scenario, the spinon-holon
interaction is still relevant. As a result, we conclude that the
fixed point described by the U(1) slave spin-rotor theory should
be distinguished from the HMM fixed point. We suggest to call
it the U(1) slave spin-rotor fixed point for antiferromagnetic
quantum criticality with Q �= 2kF .
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FIG. 4. (Color online) A schematic diagram for renormalization-
group flows in an antiferromagnetic quantum phase transition with
Q �= 2kF . The U(1) slave spin-rotor theory suggests the possible
existence of another fixed point beyond the HMM theory on the HMM
critical surface. When spinons are forced to condense, the HMM fixed
point would be realized. On the other hand, if the dynamics of such
transverse spin fluctuations becomes localized, we expect to reach
the U(1) slave spin-rotor fixed point, differentiated from the HMM.
In this study, the nature of the U(1) slave spin-rotor fixed point is not
clarified.

Figure 4 shows a schematic diagram for renormalization-
group flows in an antiferromagnetic quantum phase transition
with Q �= 2kF . An essential feature is that the U(1) slave
spin-rotor theory allows another fixed point, not described

by the HMM theory, as discussed above. One may define a
critical surface given by g2 = gc

2 as usual. The U(1) slave
spin-rotor theory gives rise to a fine structure on this critical
surface, where two types of effective interactions denoted by
ef (between holons and gauge fluctuations) and g1gz

Nσ m2
1

(between
renormalized electrons and transverse spin fluctuations) sep-
arate the HMM fixed point from the other. When spinons are
forced to condense, the HMM fixed point would be realized,
as discussed before. On the other hand, if the dynamics of such
transverse spin fluctuations becomes localized, we reach the
U(1) slave spin-rotor fixed point. Unfortunately, we are not in
a position to resolve this problem, which means when the U(1)
slave spin-rotor fixed point occurs. We also point out that the
nature of the U(1) slave spin-rotor fixed point is not clarified
in this study. Although we speculate that there appears to be
screening that results in a finite-coupling fixed point given by
( g1gz

Nσ m2
1
)c, we do not exclude a possible run-away flow along this

direction.

C. Scaling analysis I

We return to our original problem of antiferromagnetic
quantum criticality with Q = 2kF . Performing the Fourier
transformation for our effective-field theory given by Eq. (24),
we obtain

Z =
∫

Dfsσ DzσDφ2Da exp
(

−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk‖
2π

∫ ∞

−∞

dk⊥
2π

{
f †

sσ

(
−i

c2sgn(ω)

Nσ

|ω| 1
2 − svF k‖ − vF

2γ
k2
⊥

)
fsσ

+φ2
(
γ2|ω| + v2

2k
2
⊥
)
φ2 + a

(
γ

|ω|
|k⊥| + v2

ak
2
⊥

)
a + z†σ

(
g2

z

2Nσ m2
1

ω2 + v2
z k

2
⊥ + m2

z

)
zσ

− g1gz

Nσ m2
1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk⊥
2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

×
(

iω′ − i


2

)
z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥)

−
∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

[
g2√
Nσ

φ2(,q‖,q⊥)σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)f−sσ (ω,k‖,k⊥)

+ ef√
Nσ

sa(,q‖,q⊥)vF σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

+ ez√
Nσ

a(,q‖,q⊥)
(
k‖ + q‖

2

)
z†σ (ω + ,k‖ + q‖,k⊥ + q⊥)zσ (ω,k‖,k⊥)

]})
. (33)

Assuming the robustness of fermion dynamics, we
introduce the scale transformation of

ω = b−1ω′, k‖ = b− 1
2 k′

‖, k⊥ = b− 1
4 k′

⊥, (34)

which leads the holon’s renormalized kinetic-energy invariant
under the transformation of

fsσ (ω,k‖,k⊥) = b
9
8 f ′

sσ (ω′,k′
‖,k

′
⊥). (35)

On the other hand, the kinetic energy of critical longitudinal
spin fluctuations cannot be invariant under this scale transfor-
mation. It is natural to assume the invariance of the Landau-
damping term under the scale transformation, resulting in

φ2(ω,k‖,k⊥) = b
11
8 φ′

2(ω′,k′
‖,k

′
⊥). (36)

Then, we find

v2 = b− 1
4 v′

2, (37)

which turns out to be irrelevant at low energies. In the same
way, it is natural to keep the invariance of the Landau-damping
term under the scale transformation for dynamics of gauge
fluctuations, which gives

a(ω,k‖,k⊥) = b
5
4 a′(ω′,k′

‖,k
′
⊥). (38)

Then, the velocity of gauge fluctuations also turns out to
be irrelevant. For the scale transformation in transverse spin
fluctuations, we keep the invariance of the frequency term. If
we consider the scale invariance of the momentum term in the
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dynamics of transverse spin fluctuations, the frequency term
turns out to be relevant. Then, the spinon dynamics becomes
static at low energies since only the zero-frequency sector is
allowed, as discussed before. The condensation of spinons
leads us to return to the HMM description. However, we
find that the spin-fermion coupling g2 becomes irrelevant,
which means that the dynamics of localized longitudinal
antiferromagnetic fluctuations is decoupled from that of renor-
malized electrons in the zero-temperature limit. Of course,
there must be quantum corrections at finite temperatures due to
effective interactions between renormalized electrons and such
localized longitudinal antiferromagnetic fluctuations, given
by SHMM = ∫ β

0 dτ
∫

d2r{f †
sσ [−i c2

Nσ
(−∂2

τ )
1
4 − iv

(s)
F · ∇]fsσ +

γ2φ2

√−∂2
τ φ2 − g2√

Nσ
φ2σf

†
sσ f−sσ }. We no longer consider this

local quantum criticality in this study. We focus on the case

where spinons do not condense. The scale invariance of the
frequency part is achieved by

zσ (ω,k‖,k⊥) = b
15
8 z′

σ (ω′,k′
‖,k

′
⊥). (39)

As a result, we find that both the velocity and mass of spinons
become irrelevant, which decrease to vanish at low energies.

It is straightforward to show that both g2 and ez are
irrelevant. On the other hand, ef is marginal. The interaction
vertex between renormalized electrons and transverse spin
fluctuations turns out to be relevant, given by(

g1gz

Nσm2
1

)
= b

1
4

(
g1gz

Nσm2
1

)′
. (40)

As a result, we reach the following expression for an effective-
field theory at this fixed point:

Z =
∫

Dfsσ DzσDa exp

(
−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk‖
2π

∫ ∞

−∞

dk⊥
2π

{
f †

sσ (ω,k‖,k⊥)

[
−i

c2sgn(ω)

Nσ

|ω| 1
2 − svF k‖

− vF

2γ
k2
⊥

]
fsσ (ω,k‖,k⊥) + a(ω,k‖,k⊥)γ

|ω|
|k⊥|a(−ω, − k‖, − k⊥) + z†σ (ω,k‖,k⊥)ω2zσ (ω,k‖,k⊥)

−
∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

ef√
Nσ

sa(,q‖,q⊥)vF σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

− g1gz

Nσm2
1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk⊥
2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

×
(

iω′ − i


2

)
z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥)

})
. (41)

Performing the Fourier transformation, we express the above effective-field theory as follows:

Z =
∫

Dfsσ DzσDa exp

(
−
∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
f †

sσ (τ,x,y)

[
−i

c2

Nσ

(−∂2
τ

) 1
4 − isvF ∂x − vF

2γ
∂2
y

]
fsσ (τ,x,y) + a(τ,x,y)

× γ

√−∂2
τ√

−∂2
y

a(τ,x,y) − ef√
Nσ

sa(τ,x,y)vF σf †
sσ (τ,x,y)fsσ (τ,x,y) + |∂τ zσ (τ,x,y)|2 − g1gz

Nσm2
1

σf †
sσ fsσ (z†σ ′∂τ zσ ′)

})
. (42)

It is interesting to notice that the dynamics of gauge fluctuations becomes local, which means that they do not propagate in
space. This locality originates from the fact that the renormalization in fermion dynamics results from z = 2 critical dynamics of
longitudinal spin fluctuations, while the dynamics of gauge fluctuations is given by z = 3. Although it may be possible to reach
a fixed point of ( g1gz

Nσ m2
1
)c, we fail to find the corresponding critical field theory within the Eliashberg approximation.

D. Scaling analysis II

We emphasize that Eq. (42) is not a critical field theory since the holon-spinon coupling term is relevant. In order to find a
fixed-point theory within the one-loop level, we consider another scale transformation, given by

ω = b−1ω′, k‖ = b− 1
2 k′

‖, k⊥ = k′
⊥, (43)

where the transverse momentum along the Fermi surface does not change under the scale transformation. We speculate that it is
hidden in this scale transformation one-dimensional physics associated with an emergent localized magnetic moment.

Following the same procedure, we find that all field variables change as follows:

fsσ (ω,k‖,k⊥) = b1f ′
sσ (ω′,k′

‖,k
′
⊥), φ(ω,k‖,k⊥) = b

5
4 φ′(ω′,k′

‖,k
′
⊥),

(44)
a(ω,k‖,k⊥) = b

5
4 a′(ω′,k′

‖,k
′
⊥), zσ (ω,k‖,k⊥) = b

7
4 z′

σ (ω′,k′
‖,k

′
⊥),

under the effectively one-dimensional scale transformation. It turns out that all interaction vertices become irrelevant except
for the spinon-holon coupling term, which is marginal. As a result, we reach the following expression for a critical field
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theory:

Z =
∫

Dfsσ Dzσ exp

(
−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk‖
2π

∫ ∞

−∞

dk⊥
2π

{
f †

sσ (ω,k‖,k⊥)

[
−i

cφsgn(ω)

Nσ

|ω| 1
2 − svF k‖

]
fsσ (ω,k‖,k⊥)

+ z†σ (ω,k‖,k⊥)ω2zσ (ω,k‖,k⊥) − g1gz

Nσm2
1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk′
⊥

2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

× σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

(
iω′ − i



2

)
z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥)

})
. (45)

Performing the Fourier transformation, we obtain a critical field theory given by

Z =
∫

Dfsσ Dzσ exp

(
−
∫ β

0
dτ

∫ ∞

−∞
dx

{
f †

sσ (τ,x)

[
−i

cφ

Nσ

(−∂2
τ

) 1
4 − isvF ∂x

]
fsσ (τ,x)

+ |∂τ zσ (τ,x)|2 − g1gz

Nσm2
1

σf †
sσ (τ,x)fsσ (τ,x)[z†σ ′(τ,x)∂τ zσ ′(τ,x)]

})
, (46)

evaluated within the Eliashberg approximation.
This critical field theory describes the dynamics of renor-

malized electrons interacting with locally critical transverse
spin fluctuations at the antiferromagnetic quantum critical
point with Q = 2kF . We would like to point out that not
only longitudinal spin fluctuations but also transverse gauge
fluctuations have been introduced to renormalize the dynamics
of both renormalized electrons and transverse spin fluctuations
in the Eliashberg approximation, and their renormalized
interactions no longer play any roles in the dynamics of
both renormalized electrons and transverse spin fluctuations
at this “tree” level. Considering the fact that the dynamics of
transverse spin fluctuations becomes localized, we interpret
that localized magnetic moments appear to be critical at this
antiferromagnetic quantum critical point.

Figure 5 shows a schematic diagram for renormalization-
group flows in an antiferromagnetic quantum phase transition
with Q = 2kF . Here, we took into account three possibilities,
based on the U(1) slave spin-rotor formulation. The first case
is given by the condensation of spinons, reproducing the
HMM description. However, it turns out that the dynamics of
longitudinal antiferromagnetic fluctuations becomes localized
and the spin-fermion coupling is irrelevant in the low-energy
limit. As a result, we reach the HMM fixed point of Q = 2kF ,
described by SHMM = ∫ β

0 dτ
∫

d2r{f †
sσ [−i c2

Nσ
(−∂2

τ )
1
4 − iv

(s)
F ·

∇]fsσ + γ2φ2

√−∂2
τ φ2 − g2√

Nσ
φ2σf

†
sσ f−sσ }, where the spin-

fermion coupling is expected to govern anomalous scaling
at finite temperatures. Of course, this HMM fixed point differs
from that of Q �= 2kF . The second fixed point is described
by Eq. (42) but not a critical field theory, where the dynamics
of all bosonic excitations of gauge fields, longitudinal an-
tiferromagnetic fluctuations, and transverse spin fluctuations
becomes localized and g2 is irrelevant, but g1gz

Nσ m2
1

is relevant
while ef is marginal. Although we speculate the existence of
a finite-coupling fixed point for g1gz

Nσ m2
1
, it is not completely

clarified yet. The last is described by Eq. (46), a critical
field theory in terms of renormalized electrons and localized
transverse spin fluctuations. All interaction vertices turn out
to be irrelevant except for the holon-spinon coupling g1gz

Nσ m2
1
,

marginal in the one-loop level. This well-defined fixed point is

identified with antiferromagnetic local quantum criticality of
Q = 2kF , which may be regarded to be our main result.

It is straightforward to extend the present analysis into
the three-dimensional case, where the fermion self-energy
is proportional to |ω| linearly. It is rather unexpected to
find that not only the scaling ansatz II but also the scaling
ansatz I gives rise to exactly the same critical field theory,
that is, Eq. (46), although it is trivial to see that the scaling
ansatz II preserves the critical field theory of Eq. (46) in three
dimensions. This three-dimensional demonstration suggests

FIG. 5. (Color online) A schematic diagram for renormalization-
group flows in an antiferromagnetic quantum phase transition with
Q = 2kF . The U(1) slave spin-rotor formulation allows three
possible fixed points. The first fixed point is realized by the
condensation of spinons, described by the HMM scenario, but the
dynamics of longitudinal antiferromagnetic fluctuations becomes
localized at this fixed point. Since the spin-fermion coupling turns
out to be irrelevant (not shown here), the local quantum criticality
given by longitudinal antiferromagnetic fluctuations is decoupled
from the dynamics of renormalized electrons in the low-energy
limit. The second is described by Eq. (42), but not a critical field
theory, where the dynamics of all bosonic excitations of gauge
fields, longitudinal antiferromagnetic fluctuations, and transverse
spin fluctuations becomes localized and g2 is irrelevant, but g1gz

Nσ m2
1

is relevant while ef is marginal (left). The last fixed point is well
defined, described by the critical field theory of Eq. (46) in terms
of renormalized electrons and localized transverse spin fluctuations.
All interaction vertices turn out to be irrelevant, except for the
holon-spinon coupling g1gz

Nσ m2
1
, marginal in the one-loop level (right).
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the robustness of the local critical field theory of Eq. (46).
Below, we confirm this robustness, assuming possible singular
corrections in the self-energy of longitudinal antiferromagnetic
fluctuations. However, it is not clarified at all when this local
quantum critical point is realized beyond the HMM fixed point,
regarded to be quite stable in three dimensions. Here, we
point out the existence of another fixed point in the U(1) slave
spin-rotor theory, expected to generalize the HMM theory into
the strong-coupling regime.

E. Consideration of possible singular physics
of the 2kF susceptibility

One may be concerned that the self-energy correction
�(2)(q ≈ 2kF ,i) for longitudinal spin (antiferromagnetic
amplitude) fluctuations contains more singular dependence
in frequency than the form of Landau damping since there
exist z = 3 transverse gauge fluctuations. Actually, the 2kF

antiferromagnetic-ordering transition has been investigated in
the U(1) spin-liquid state, described by fermionic spinons
strongly coupled to U(1) gauge fluctuations of z = 3 [19].
This study addressed that the 2kF susceptibility is possible to
show a divergent behavior at low energies, which is expected to
modify the dynamics of spin fluctuations in the HMM theory.

First of all, we point out that an antiferromagnetic transition
from a Fermi-liquid state is being considered instead of the

U(1) spin-liquid phase. Of course, the 2kF susceptibility
does not show such a singular behavior in the Fermi-liquid
state. Even if it did, one may suspect that the emergence
of U(1) gauge fluctuations, which arises from the strong-
coupling approach for the antiferromagnetic quantum critical
point, can cause the similar singular behavior for the 2kF

susceptibility. However, we would like to argue that the correct
way of renormalization for the dynamics of longitudinal
spin fluctuations may differ from that in the U(1) spin-
liquid state, where both U(1) gauge fluctuations and critical
longitudinal spin fluctuations should be taken into account
on equal footing. In this respect, we performed the scaling
analysis for an effective-field theory with quantum corrections
in the Eliashberg approximation, showing that the effective
interaction between holons and U(1) gauge fluctuations turns
out to be irrelevant for the fixed point given by the scale
transformation of Eqs. (43) and (44). This implies that singular
vertex corrections for the 2kF susceptibility given by U(1)
gauge fluctuations may not exist at this fixed point, suggesting
the local quantum criticality.

In this section, we extend the scaling analysis for the z = 2
critical dynamics of longitudinal spin fluctuations to a general
z. This consideration is meaningful since more elaborate
treatments for renormalizations may change the z = 2 critical
dynamics into the other. Modifying the Landau-damping term
|ω| into |ω| 2

z , we obtain an effective-field theory with quantum
corrections in the one-loop level,

Z =
∫

Dfsσ DzσDφ2Da exp
(

−
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk‖
2π

∫ ∞

−∞

dk⊥
2π

{
f †

sσ

[
−i

c2sgn(ω)

Nσ

|ω| z−1
z − svF k‖ − vF

2γ
k2
⊥

]
fsσ

+φ2
(
γ2|ω| 2

z + v2
2k

2
⊥
)
φ2 + a

(
γ

|ω|
|k⊥| + v2

ak
2
⊥

)
a + z†σ

(
g2

z

2Nσ m2
1

ω2 + v2
z k

2
⊥ + m2

z

)
zσ

− g1gz

Nσ m2
1

∫ ∞

−∞

dω′

2π

∫ ∞

−∞

dk′
‖

2π

∫ ∞

−∞

dk⊥
2π

∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

×
(

iω′ − i


2

)
z
†
σ ′(ω′ − ,k′

‖ − q‖,k′
⊥ − q⊥)zσ ′(ω′,k′

‖,k
′
⊥)

−
∫ ∞

−∞

d

2π

∫ ∞

−∞

dq‖
2π

∫ ∞

−∞

dq⊥
2π

[
g2√
Nσ

φ2(,q‖,q⊥)σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)f−sσ (ω,k‖,k⊥)

+ ef√
Nσ

sa(,q‖,q⊥)vF σf †
sσ (ω + ,k‖ + q‖,k⊥ + q⊥)fsσ (ω,k‖,k⊥)

+ ez√
Nσ

a(,q‖,q⊥)
(
k‖ + q‖

2

)
z†σ (ω + ,k‖ + q‖,k⊥ + q⊥)zσ (ω,k‖,k⊥)

]})
, (47)

where the holon self-energy has been also changed from |ω|1/2 to |ω| z−1
z . If one inserts z = 3, he has |ω|2/3 as expected [14].

First, we consider the scale transformation,

ω = b−1ω′, k‖ = b− z−1
z k′

‖, k⊥ = b− z−1
2z k′

⊥, (48)

where z � 1 is required. Then, consistent transformations for all field variables are given by

fsσ (ω,k‖,k⊥) = b
7z−5

4z f ′
sσ (ω′,k′

‖,k
′
⊥), φ2(ω,k‖,k⊥) = b

5z+1
4z φ′

2(ω′,k′
‖,k

′
⊥),

a(ω,k‖,k⊥) = b
3z−1

2z a′(ω′,k′
‖,k

′
⊥), zσ (ω,k‖,k⊥) = b

9z−3
4z z′

σ (ω′,k′
‖,k

′
⊥), (49)

following the same strategy of the scaling analysis I. As a result, we obtain

v2
2 = b− 3−z

z v2
2
′
, v2

a = b− 1
z v2

a

′
, v2

z = b− z+1
z v2

z

′
, m2

z = b−2m2
z

′
. (50)
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Interaction parameters are transformed as follows:(
g1gz

Nσm2
1

)
= b− 1−z

2z

(
g1gz

Nσm2
1

)′
, g2 = b− 3−z

4z g′
2, ef = e′

f , ez = b− 1−z
z e′

z. (51)

If we consider the case of 1 < z < 3, both the spinon-holon coupling constant ( g1gz

Nσ m2
1
) and spinon-gauge coupling constant ez

turn out to be relevant, while the holon-gauge coupling constant ef is marginal. The coupling constant g2 is irrelevant, implying
that the HMM theory should be modified for this antiferromagnetic quantum criticality. As a result, we obtain an effective-field
theory,

Z =
∫

Dfsσ DzσDa exp

(
−
∫ β

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
dy

{
f †

sσ (τ,x,y)

[
−i

c2

Nσ

(−∂2
τ

) z−1
2z − isvF ∂x − vF

2γ
∂2
y

]
fsσ (τ,x,y)

+ a(τ,x,y)γ

√−∂2
τ√

−∂2
y

a(τ,x,y) − ef√
Nσ

sa(τ,x,y)vF σf †
sσ (τ,x,y)fsσ (τ,x,y) + |∂τ zσ (τ,x,y)|2

− g1gz

Nσm2
1

σf †
sσ fsσ (z†σ ′∂τ zσ ′) − i

ez√
Nσ

a[z†σ (∂xzσ ) − (∂xz
†
σ )zσ ]

})
, (52)

not a fixed-point theory.
On the other hand, if we take the scale transformation as follows:

ω = b−1ω′, k‖ = b− z−1
z k′

‖, k⊥ = k′
⊥, (53)

we obtain

fsσ (ω,k‖,k⊥) = b
3z−2

2z f ′
sσ (ω′,k′

‖,k
′
⊥), φ2(ω,k‖,k⊥) = b

2z+1
2z φ′

2(ω′,k′
‖,k

′
⊥),

(54)
a(ω,k‖,k⊥) = b

3z−1
2z a′(ω′,k′

‖,k
′
⊥), zσ (ω,k‖,k⊥) = b

4z−1
2z z′

σ (ω′,k′
‖,k

′
⊥).

Then, all interactions turn out to be irrelevant under this scale transformation as follows:

g2 = b− 1
2z g′

2, ef = b− 2z−1
2z e′

f , ez = b− z+3
2z e′

z, (55)

except for the spinon-holon coupling constant, which remains marginal,(
g1gz

Nσm2
1

)
=
(

g1gz

Nσm2
1

)′
. (56)

The critical field theory for this fixed point is given by

Z =
∫

Dfsσ Dzσ exp

(
−
∫ β

0
dτ

∫ ∞

−∞
dx

{
f †

sσ (τ,x)

[
−i

c2

Nσ

(−∂2
τ

) z−1
2z − isvF ∂x

]
fsσ (τ,x)

+ |∂τ zσ (τ,x)|2 − g1gz

Nσm2
1

σf †
sσ (τ,x)fsσ (τ,x)[z†σ ′(τ,x)∂τ zσ ′(τ,x)]

})
, (57)

which implies the robustness of local quantum criticality.

IV. SUMMARY

In this study, we revisited an antiferromagnetic quantum
phase transition from a Fermi-liquid state. In particular, we
focused on the ordering wave vector of Q = 2kF , where the
Fermi velocity of one patch is parallel to that of the other,
where both patches are connected by the nesting vector. In
this situation, the scale transformation for the longitudinal
momentum orthogonal to the Fermi surface differs from that
for the transverse momentum along the Fermi surface. An
idea was to extract out the dynamics of directional spin
fluctuations explicitly from the Hertz-Moriya-Millis theory.
Taking the strong-coupling approach, which diagonalizes the
spin-fermion coupling term in the HMM theory, we could
deal with both amplitude and directional fluctuations of
the antiferromagnetic order parameter on equal footing. As

a result, we constructed an effective-field theory given by
Eq. (21) in the two-patch construction. Recall Eq. (14) for
the lattice construction. Introducing quantum corrections into
the U(1) slave spin-rotor effective-field theory in the one-loop
level, we found a renormalized field theory, given by Eq. (24),
for the antiferromagnetic phase transition with Q = 2kF ,
which describes the dynamics of renormalized electrons, z = 2
critical longitudinal spin (antiferromagnetic amplitude) fluctu-
ations, z = 1 transverse (directional) spin fluctuations, z = 3
U(1) gauge fluctuations, and their interactions, where z is the
dynamical critical exponent. Considering several ways of scale
transformations, we could find a critical field theory in terms
of renormalized electrons and transverse spin fluctuations,
where only their interactions turn out to be marginal while all
others become irrelevant. A characteristic feature was that such
transverse spin fluctuations become localized, which means
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that their propagating velocity is renormalized to vanish at this
fixed point. The emergence of localized magnetic moments is
an interesting feature of this study, proposing local quantum
criticality for the antiferromagnetic quantum phase transition
with Q = 2kF .
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