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Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates
and phase diagram in an infinite-D approximation
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Motivated by the recent synthesis of two insulating Li2IrO3 polymorphs, where Ir4+ Seff = 1/2 moments form
3D (“harmonic”) honeycomb structures with threefold coordination, we study magnetic Hamiltonians on the
resulting β-Li2IrO3 hyperhoneycomb lattice and γ -Li2IrO3 stripyhoneycomb lattice. Experimentally measured
magnetic susceptibilities suggest that Kitaev interactions, predicted for the ideal 90◦ Ir-O-Ir bonds, are sizable
in these materials. We first consider pure Kitaev interactions, which lead to an exactly soluble 3D quantum
spin liquid (QSL) with emergent Majorana fermions and Z2 flux loops. Unlike 2D QSLs, the 3D QSL is
stable to finite temperature, with Tc ≈ |K|/100. On including Heisenberg couplings, exact solubility is lost.
However, by noting that the shortest closed loop � is relatively large in these structures, we construct an � → ∞
approximation by defining the model on the Bethe lattice. The phase diagram of the Kitaev-Heisenberg model
on this lattice is obtained directly in the thermodynamic limit, using tensor network states and the infinite-system
time-evolving-block-decimation (iTEBD) algorithm. Both magnetically ordered and gapped QSL phases are
found, the latter being identified by an entanglement fingerprint.
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I. INTRODUCTION

Recently, there has been growing interest in studying
quantum phases of matter that are characterized by long-range
entanglement [1], in contrast to conventional symmetry broken
states. In particular, gapped quantum phases that feature long-
range entanglement exhibit remarkable emergent properties
such as excitations with unusual statistics and fractional
quantum numbers. These properties are known to occur in two-
dimensional phases such as the fractional quantum Hall states,
which are realized in 2D electron gases in strong magnetic
fields. In solids, frustrated insulating magnets are believed to be
prime candidates for avoiding conventional ordering in favor
of a long-range entangled phase of matter—the quantum spin
liquid phase. Recent numerical studies have found mounting
evidence for gapped spin liquids, phases which are long-range
entangled [2–7], on two-dimensional geometrically frustrated
lattices such as the kagome lattice [8–10].

However, frustration need not arise from geometry alone.
In quantum magnets of heavy elements, spin-orbit coupling
leads to anisotropic interactions that may engender quantum
disordered ground states even in the absence of the usual
geometrical frustration. A prime example is the honeycomb
lattice—a bipartite lattice on which both ferromagnetic and
antiferromagnetic Heisenberg couplings host ordered ground
states. However, a peculiar set of anisotropic interactions
proposed by Kitaev [12], where neighboring spins are coupled
by Ising interactions along an axis that is set by the spatial
orientation of the bond, has been shown to be in a quantum
spin liquid phase. Furthermore, this is demonstrated via an
exact solution—in contrast to the numerical tour de force
required for identifying the spin liquid phase in the kagome
antiferromagnet [6,10].

Interestingly, the requirement for obtaining an exactly solu-
ble spin liquid is not specific to the honeycomb lattice. Instead,
the key ingredients are the threefold coordination of the sites

and the peculiar Ising interaction with rotating axes. If such a
network would be created in three dimensions, it would lead
to an example of a 3D quantum spin liquid. Such long-range
entangled quantum phases in 3D are less well explored than
their 2D counterparts. While basic constraints on long-range
entangled quantum phases in 3D have been discussed [13,14],
few suggestions for materials candidates exist. An exception is
the 3D hyperkagome material [15] Na4Ir3O8, for which a spin
liquid ground state with bosonic [16] or fermionic [17,18]
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FIG. 1. (Color online) The stripyhoneycomb lattice of iridium in
γ -Li2IrO3. The recently synthesized stripyhoneycomb lattice (space
group No. 66 Cccm) has threefold coordinated sites, which form
hexagons arranged in stripes of alternating orientation. It is the n = 1
member of the harmonic-honeycomb [11] series of structures; the
distinct hyperhoneycomb lattice of β-Li2IrO3 (Fig. 2) has n = 0.
Parent orthorhombic coordinate system and unit cell (boxed) are
shown. In the limit of superexchange via ideal oxygen octahedra,
the magnetic Hamiltonian is dominated by Kitaev-type couplings
(x,y,z labels at bottom), leading to an exactly solvable model of a
3D quantum spin liquid.
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FIG. 2. (Color online) The hyperhoneycomb lattice of Ir in β-
Li2IrO3. The hyperhoneycomb lattice (space group is No. 70 Fddd)
has threefold coordinated sites and is the n = 0 member of
the harmonic-honeycomb structural series. Its shortest loops are
decagons, motivating the large-� loop length approximation for
solving the frustrated quantum Hamiltonian on the 3D lattice. (Right)
Z2 flux loops in the QSL phase. Selected bonds (dark orange) of type
z (top right) or x,y (bottom right) are chosen to host nonzero vector
potential ui,j = −1 within the QSL Z2 gauge sector, producing a Z2

closed flux loop excitation, which encircles these bonds.

spinon excitations has been proposed. Related U(1) spin
liquids [19,20] have been proposed for quantum spin ice
materials [21] on the pyrochlore lattice. Here, we discuss a 3D
example of quantum spin liquid behavior induced by spin-orbit
coupling in a 3D model with Kitaev exchanges, and explore a
possible physical realization.

At first sight, the Kitaev interactions seem rather unphys-
ical. However, as pointed out by Jackeli and Khaliullin [23],
they may actually be realized under certain circumstances
in iridium oxides. An Ir4+ ion at the center of an oxygen
octahedron is expected to be in a Kramers doublet state
J = 1/2, with the doublet wave function set by the spin-
orbit coupling. This leads to unusual magnetic exchange
interactions. For example, when a pair of Ir4+ moments are
coupled via an intermediate oxygen with a 90◦ bond, the usual
Goodenough-Kanamori-Anderson rules would have predicted
a ferromagnetic Heisenberg exchange. Here, however, due
to the special nature of the Kramers doublets, the coupling
was shown [23] to be ferromagnetic, but of the Ising type,
with the spin component involved being perpendicular to the
bond’s iridium-oxygen plane. Other exchange paths around the
Ir-O-Ir-O square and involving higher energy states including
the Ir4+ eg orbitals [24,25] also generate this type of coupling,
with either sign. For the compound Na2IrO3 in which Ir
forms independent honeycomb lattices, these mechanisms
were argued [23] to lead to couplings identical to Kitaev’s
honeycomb model, although additional spin interaction, min-
imally a Heisenberg term, is also expected. An appropriate
minimal model for the low-energy magnetic Hamiltonian is
then the nearest-neighbor Kitaev-Heisenberg model [24].

In the C2/m layered structure [26] of Na2IrO3, and
even more dramatically in the Cccm and Fddd 3D-Li2IrO3

structures we discuss below (see Figs. 1 and 2), space group
symmetries single out the subset of Ir-Ir bonds that are oriented
along a particular axis. Recent ab initio work [27] has found

TABLE I. Iridates of the harmonic-honeycomb series: Ir lattice
conventional name and dimensionality. We focus on γ -Li2IrO3 single
crystal measurements to extract magnetic Hamiltonians, which we
study on the β- and γ - Li2IrO3 structures as well as on their tree
tensor network approximation.

Harmonic-
Material honeycomb No. Lattice name Dim.

α-Li2IrO3 n = ∞ Honeycomb 2D
β-Li2IrO3 n = 0 Hyperhoneycomb 3D
γ -Li2IrO3 n = 1 Stripyhoneycomb 3D

that already for Na2IrO3, the magnitude of both Kitaev and
Heisenberg couplings can be quite different between these
symmetry-distinguished subsets of bonds. Allowing the cou-
plings to take a different value on the symmetry-distinguished
“c bonds” compared to the remaining “d bonds” produces the
bond-anisotropic Kitaev-Heisenberg Hamiltonian,

H =
∑

cbond〈ij〉

(
KcS

γij

i S
γij

j + Jc
�Si · �Sj

)
+

∑
dbond〈ij〉

(
KdS

γij

i S
γij

j + Jd
�Si · �Sj

)
. (1)

The geometry of IrO6 octahedra implies that the spin compo-
nent γij coupled in a Kitaev term KS

γij

i S
γij

j is, on any bond,
one of the Ir-O Cartesian axes x, y, or z.

The additional Heisenberg interactions are important; in-
deed, the ground state of Na2IrO3 is magnetically ordered
and not a quantum spin liquid. The “zigzag” (wave vector M)
magnetic ordering seen [26,28,29] in Na2IrO3, as well as other
measured magnetic and electronic properties, remain consis-
tent with Kitaev-Heisenberg as well as with more conventional
Hamiltonians with SU(2) rotation symmetry [25,26,30–38].
Other anisotropic exchanges related to the Jackeli-Khaliullin
mechanism [23] have been described [39–42] for Na2IrO3

and related iridates [43–45]. Alternative starting scenarios for
Na2IrO3 have also been proposed [46–49], which paint a pic-
ture of it different from a Mott insulator. Since the Chaloupka
et al. original formulation and solution of the Kitaev-
Heisenberg model [24], much research has elucidated its
various properties [33,50–54]; as a model containing a QSL, it
has been especially interesting to investigate its behavior under
charge doping [55–59]. While the Kitaev-Heisenberg model
may or may not apply to the particular compound Na2IrO3, the
key point is that the Jackeli-Khaliullin mechanism can arise in
any lattice of edge-sharing IrO6 octahedra with roughly cubic
local symmetry, as long as any distortion from cubic symmetry
is weaker than the spin orbit coupling [23,25,54].

Recently, Li2IrO3 has been successfully synthesized in
two insulating polymorph crystal structures consisting of
edge-sharing IrO6 octahedra. In the β-Li2IrO3 polymorph,
synthesized in powder form [60], iridium ions form the 3D
hyperhoneycomb lattice as shown in Fig. 2, with space group
Fddd (No. 70). In the γ -Li2IrO3 polymorph, synthesized
as single crystals [11], iridium ions form the stripyhoney-
comb lattice as shown in Fig. 1, with space group Cccm

(No. 66). Each of these three-dimensional lattices is locally
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FIG. 3. (Color online) Strong Kitaev exchanges capturing γ -
Li2IrO3 anisotropic susceptibility. Magnetic susceptibility (inset:
inverse susceptibility) along principal axes (z = b, x ± y = a,c),
measured [11] for a γ -Li2IrO3 crystal (bright lines) and theoretical
mean-field fit (dark lines). Susceptibility is fitted by the minimal
Hamiltonian (1) with parameters (Kc,Kd,Jc,Jd ) at (−17,−7,6.3,

0.8) meV; magnetic order (recently found [22] to be a noncoplanar
spiral) is captured [22] by Eq. (1) at (−15,−12,5,2.5) meV,
supplemented by c-axis Ising exchange on c bonds and J2 Heisenberg
exchange on second neighbors. In both cases, large Kitaev exchanges
Kc and Kd are necessary to describe the material.

honeycomblike, preserving threefold connectivity for every
site. Their unified geometry suggests an extension to a
structural series, the “harmonic-honeycomb” series [11]; each
structure in the series is labeled by an integer n, denoting the
number of adjacent hexagon strips found in the lattice. In this
notation, the stripyhoneycomb lattice γ -Li2IrO3 polymorph is
the n = 1 harmonic-honeycomb iridate; the hyperhoneycomb
lattice β-Li2IrO3 is the n = 0 member, and the layered
honeycomb α-Li2IrO3 is described by n = ∞ (Table I).

The γ -Li2IrO3 single crystals undergo a magnetic transition
at about 38 K, as evidenced by large anisotropic peaks in
magnetic susceptibility [11]. As also pointed out in the experi-
mental analysis [11], the bond-anisotropic Kitaev-Heisenberg
model (1) is sufficient for capturing the large susceptibility
anisotropy observed in experiment; within this scenario, large
ferromagnetic Kitaev exchanges are necessary to fit the
experimental data. The susceptibility fit is shown in Fig. 3;
we elaborate on the magnetic couplings required for this fit
in Sec. III C below. We study the Hamiltonian (1) with the
parameters of the fit, classically as well as using the fully
quantum large-� approximation discussed below, and find in
both cases a ground state with stripy-X/Y magnetic order. In
this pair of symmetry-related degenerate ground states, spins
exhibit ferromagnetic correlations of the spin component Sx

across Kitaev x-type bonds or Sy across y-type bonds. Based
on the susceptibility anisotropy, we predict that these stripy
magnetic correlations occur in the low-temperature phase of
γ -Li2IrO3. Indeed, since this work was presented, recently,
the magnetic order of γ -Li2IrO3 has been determined [22]
to be a counter-rotating noncoplanar spiral order in which
the dominant spin correlations are exactly these stripy-X and
stripy-Y correlations, again requiring a magnetic Hamiltonian
with strong FM Kitaev exchange.

In parallel with this work, a few other studies of 3D
Kitaev-Heisenberg models have appeared. Various properties
of the hyperhoneycomb lattice model’s magnetic phases and
exact spin liquids were studied [61], while the magnetic phases
at finite fields and temperature were explored using classical
and semiclassical techniques [62]. The spin liquid was also
studied at finite temperature using an Ising mapping of its toric
cCode limit [63]. Another lattice related to the hyperkagome
but with higher symmetry, dubbed the “hyperoctagon lattice,”
was introduced and the Kitaev spin liquid it supports was
characterized [64].

Results here are complimentary to these studies, and
are distinguished in three ways. First, we pull together the
existing experimental results to make the case, based on
single-crystal measurements, for strong Kitaev exchange in the
3D-Li2IrO3 materials. Second, we focus our attention on the
hitherto-unstudied stripyhoneycomb lattice recently obtained
as the structure of γ -Li2IrO3. Our magnetic Hamiltonians are
informed by the experimental measurements and incorporate
bond anisotropies dictated by the symmetries of the crystals.
Most others [61–63,65] exclusively studied the hyperhoney-
comb lattice, which we also study below. Third, in addition
to studying the exactly solvable 3D spin liquids, we employ
tensor product states—higher-dimensional generalizations of
1D matrix product states—to obtain the fully quantum phase
diagram in a large-� limit. The phase diagram we compute, for
the frustrated quantum Hamiltonians motivated by the experi-
ments, contains both magnetic and quantum spin liquid phases.

II. SUMMARY OF RESULTS

We begin (Sec. III) by analyzing the relevance of the
Kitaev interactions to Li2IrO3 using γ -Li2IrO3 single-crystal
measurements. We discuss the interplay of chemistry and
geometry in the A2IrO3 structures, aiming to understand the
newly synthesized stripyhoneycomb and hyperhoneycomb lat-
tices within a framework encompassing other 3D honeycomb
lattices of edge-sharing IrO6 octahedra. We analyze in detail
the argument, based on fitting the magnetic susceptibility, that
the magnetic properties of 3D-Li2IrO3 are captured by the
bond-anisotropic Kitaev-Heisenberg model (1). Its key is
the geometrical contrast between the crystalline anisotropy,
distinguishing the spatial c-axis, and the magnetic suscep-
tibility anisotropy, distinguishing the b = z spin axis: the
two are coupled by the SzSz Kitaev exchange on c bonds.
We demonstrate this mechanism by analytically fitting the
measured susceptibility to mean-field theory of Eq. (1), and
find (Fig. 3) that it requires strong FM Kitaev exchange.

With this motivation for Eq. (1) as a minimal Hamiltonian
with dominant Kitaev exchange, we proceed (Sec. IV) to study
its spin liquid phase in the Kitaev limit through the Majorana
fermion exact solution. We extend the previous analysis of the
hyperhoneycomb-graph Kitaev model [65], and also analyze in
detail the model on the stripyhoneycomb lattice of γ -Li2IrO3.
We compute the spin correlators as well as the spectrum of
the emergent Majorana fermions, and find that the low-energy
excitations occur on a ringlike nodal contour, identical for the
two 3D lattices. Introducing bond-strength anisotropy shrinks
the nodal contour, and we find that the phase boundary between
the gapped and gapless spin liquids is identical on all the
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FIG. 4. (Color online) Quantum phase diagram in the large-�
limit. Phase diagram of the frustrated quantum Hamiltonian (1),
computed via tensor network states within an infinite-D or large-
� → ∞ approximation to the hyperhoneycomb’s � = 10. Except for
quantitative extent of QSLs (not to scale), we expect it to describe the
stripyhoneycomb and hyperhoneycomb lattices of γ - and β-Li2IrO3,
for which we argue this is a physical model. The two-parameter space
shown here [Eqs. (1) and (11)] has polar axes r tuning symmetry
allowed Kitaev bond anisotropy and φ setting relative strength of
Kitaev and Heisenberg interactions. The QSL phases, successfully
stabilized on the Bethe lattice by the algorithm’s finite entanglement
cutoff χ , were identified by an entanglement fingerprint.

finite-D lattices and independent of whether the bond
anisotropy breaks or preserves the lattice symmetries.

We give a simple but general counting argument based
on the Euler characteristic formula that explicitly illustrates
the lack of monopoles in (3+1)D Z2 lattice gauge theories,
showing that closed flux loops rather than individual fluxes
are the gauge-invariant objects. The energy of the flux loop
excitations is described not as a flux gap but rather by a loop
tension, which we compute within the zero-temperature exact
solution to be τ = 0.011|K| on both lattices. This tension
combines with the extended nature of the loops to control the
finite-temperature behavior of the models, producing the finite-
temperature loop proliferation transition which confines the
Majorana fermions. Together with the robustness of fermionic
statistics (since flux attachment is impossible), this stability
to finite-temperature hallmarks the features unique to three-
dimensional fractionalization.

Computing the quantum phase diagram of the full frustrated
Hamiltonian is exponentially difficult; while such problems
have been tackled in two dimensions, an unbiased phase dia-
gram computation of the three-dimensional model is currently
impossible. We are able to capture it (Fig. 4 and Sec. V)
by employing a limit inspired by the hyperhoneycomb lattice,
whose shortest loops are � = 10 decagons. Treating � as a large
control parameter and taking it to infinity, we reach the loopless
Bethe tree lattice, which is infinite-dimensional but preserves
the key z = 3 connectivity. This �→∞ approximation is not
analytically tractable, but rather admits an entanglement-based

numerical solution using tensor product states (TPS). Gapped
states can be efficiently represented as a TPS on a tree
lattice (tree tensor networks); on the tree, as in 1D systems,
the full entanglement between two halves of the system is
carried by the single bond connecting them. We employ a
TPS time evolving block decimation algorithm, which works
directly in the thermodynamic limit (iTEBD) [66], which has
been previously extended to the Bethe lattice for magnetic
phases [67–69] and other nonfractionalized phases [70,71].
The iTEBD straightforwardly captures the FM and Neel
magnetic orders as well as their duals [24,54], the stripy and
zigzag magnetic orders.

However, quantum spin liquids are generally difficult to
identify positively since they lack an order parameter. Positive
signatures can be elusive. Studies in 2D have relied on
the subleading entanglement term known as the topological
entanglement entropy [6,72], but this quantity is not defined
nor computable on the tree lattice. Instead, we complement
the TPS computation by analytically studying the gapped
Kitaev QSLs on the loopless tree using the Majorana solution,
computing the entanglement entropy from the fermion and
gauge sectors on each bond as a function of anisotropy.
We find that the TPS algorithm partially quenches the Z2

gauge-field entanglement, utilizing the finite entanglement
cutoff of the TPS representation to produce a minimally
entangled ground state, and thereby circumventing the usual
artifacts of the Bethe lattice. The resulting entanglement serves
as a fingerprint, which, alongside the vanishing magnetic order
parameters, we use to identify the QSL phase within the iTEBD
computation. Ours is the first positive-signature identification
of a fractionalized quantum phase in the large-� limit. This
solution of the QSLs with their adjacent phases in the quantum
large-� approximation augments the ground state and finite-
temperature analysis within the solvable three-dimensional
QSLs, yielding a remarkably complete picture of a fractional-
ized phase in a potentially realizable solid state system.

III. RELEVANCE OF KITAEV INTERACTIONS TO THE
3D LITHIUM IRIDATES

A. Chemical bonding with IrO6 octahedra

Oxides with octahedrally coordinated transition metals can
bond in a variety of ways, sharing octahedral corners, edges,
faces or a combination of these. Each bonding geometry results
in a set of structures with various shared properties. Bond
lengths are one such property, with nearest-neighbor distances
in iridates measuring ∼3 Å in edge sharing compounds
compared to ∼4 Å in corner sharing ones. Symmetries are also
correlated with bonding geometry; in corner sharing iridates
where one oxygen is shared by exactly two iridia, fourfold
symmetric structures generally arise, as in perovskite and
layered perovskite structures. Compounds with edge sharing
octahedra also occur in a variety of related structures; the
triangular lattice NaCoO2, the hyperkagome Na4Ir3O8 and the
layered honeycomb Na2IrO3 are all examples.

In the edge sharing iridates we consider, two oxygens are
shared by exactly two iridia, and every iridium is coordinated
by three others, belonging to a single plane. In a fixed coordi-
nate system, there are multiple choices for the orientation of the
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triangular Ir-Ir-Ir plaquette, which are locally indistinguishable
from the perspective of any given iridium atom. In general, the
octahedral symmetry will not be perfect and the distortion
may favor the situation of the layered honeycomb compound
Na2IrO3, where all of the Ir-Ir bonds lie within a common
plane.

However, for sufficiently high local symmetry approaching
the full Oh group, alternatives to the layered geometry become
increasingly favorable. Consider now the compounds with
chemical formula Li2IrO3: this substitution of Na by Li is
known to lead to much smaller distortions, since the Ir and Li
ions are more similar in size. With the decreased octahedral
distortion, multiple spatial orientations of the bonds should be
more likely to occur. This can result in complex structures,
such as the stripyhoneycomb lattice of γ -Li2IrO3 and the
hyperhoneycomb lattice of β-Li2IrO3.

B. Symmetry and geometry of the harmonic-honeycomb lattices

Consider the harmonic-honeycomb structures, which in-
clude all three currently known polymorphs of Li2IrO3.
Except for the n = ∞ layered honeycomb with its vastly
reduced crystal symmetry, these possess bonds with various
orientations comprising all but one of the possible orientations
for edge-sharing octahedra. This scenario is shown in Fig. 5:
two opposite octahedra edges are forbidden from bonding, and
distinguish the spatial direction c, parallel to these edges. The
other edges on the same square create Ir-Ir bonds lying along
the c axis, resulting in the bond anisotropy described above.
The c axis is thus distinguished for all harmonic-honeycomb
lattices; this is also reflected in the symmetry properties of each
particular lattice. For example, in the stripyhoneycomb lattice,
the space group Cccm has a single mirror plane, whose normal
is the c direction. This unifying feature also suggests that a
single global orthorhombic a,b,c parent coordinate system can
describe the various lattices, as is indeed true. The vectors of
these parent orthorhombic axes, as well as explicit coordinates
for the stripyhoneycomb and hyperhoneycomb lattices, are
given in Appendix A.

Recall that Kitaev spin coupling along the Bloch sphere
Cartesian axis γ ∈ {x,y,z} occurs [23] for the four octahedra
edges (and associated Ir-Ir bonds) whose plane is normal
to the spatial Cartesian axis γ . The relation between the
a,b,c crystallographic axes of Fig. 1 and the octahedral
Ir-O Cartesian axes, as shown in Fig. 5, is {â,b̂,ĉ} = {(x̂ +
ŷ)/

√
2,ẑ,(x̂−ŷ)/

√
2}. The c bonds (i.e., the bonds lying along

the c axis) carry Kitaev coupling of spin component b̂ = ẑ,
and will also be denoted interchangeably by their Kitaev label,
with the notation “z bonds.” The remaining bonds on the lattice
(“d bonds”), which are all related to each other by symmetries,
carry Kitaev labels x and y. For the stripyhoneycomb lattice,
the c bonds are further distinguished into two types, those
within hexagons and those between hexagons, which are
themselves not related to each other by symmetry. For the
sake of simplicity, here we have not introduced additional
parameters in the Hamiltonian to distinguish these two c bond
types, as we expect such bond strength anisotropy between the
different c bonds to be a secondary effect.

a

b,z

c

x y

FIG. 5. (Color online) Edge sharing IrO6 octahedra in the 3D
lattices. Iridium (purple sphere) is coordinated by six oxygens
forming vertices of an octahedra. When octahedra share edges as
shown, the exchange pathways (dotted purple lines) give rise to Kitaev
interactions, coupling a spin component γ ∈ {x,y,z} normal to that
Ir-Ir bond and to the shared edge (shown in corresponding color {red,
green, blue}). Octahedron at left shows the relation between the Ir-O
x,y,z axes and the crystallographic parent orthorhombic a,b,c axes of
the 3D lattices. The symmetry-distinguished c axis is also a preferred
axis for Ir-Ir bonds (thick blue bond shown); the perpendicular edge
(X’ed out gray lines) is not shared by any two IrO6 octahedra. The c

bonds host z = b Kitaev exchange.

C. Capturing γ -Li2IrO3 susceptibility with bond-anisotropic
Kitaev interactions

The symmetry distinction between z and x,y type bonds
implies that if the Kitaev coupling is strong, the magnetic sus-
ceptibility should have a distinctive z-axis response compared
to its x,y axes response, at least at temperatures above the
magnetic transition. If the Kitaev coupling Kc on the z bonds
is more ferromagnetic than the Kitaev coupling Kd on the
x and y bonds, it suggests an anisotropic susceptibility with
larger response along z. Exactly such an anisotropy is observed
in the γ -Li2IrO3 experiment [11]. However, to preserve the
strong z-axis susceptibility, which is observed also below the
ordering transition, the resulting magnetic order should not
have any significant spin component aligned along the z axis.
This places a condition on the magnetic coupling, to disfavor
magnetic order alignment along z, which is partially at odds
with the condition necessary to favor susceptibility anisotropy
with large χz.

To achieve strong anisotropy in the susceptibility χ ,
the Heisenberg couplings must be small compared to the
anisotropic single-spin-component exchanges, in this case
the large ferromagnetic Kitaev exchanges. Since the low-
temperature phase is not a ferromagnet, the Heisenberg
couplings should be antiferromagnetic. This region of pa-
rameter space hosts two types of magnetic order, stripy-Z
and stripy-X/Y, with different symmetry properties. With no
additional anisotropies, stripy-Z nominally hosts spins aligned
along the z axis and can thus be ruled out. A more general
property of the stripy-Z phase is that, because of the two
symmetry-inequivalent z-type bonds of the stripyhoneycomb
lattice, it should generically exhibit a nonzero net moment. We
therefore focus on Hamiltonians within the stripy-X/Y phase
(Fig. 6), as the simplest “minimal order,” which is consistent
with magnetic susceptibility and captured by the minimal
Hamiltonian (1). We expect additional small exchange terms
to modify the ground state order, but preserve the stripy-X/Y
correlations of this minimal phase.
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FIG. 6. (Color online) Stripy-X magnetic pattern on the stripy-
honeycomb lattice. The classical magnetic pattern associated with the
stripy-X/Y AF ordered phase, here shown for stripy-X correlations.
Spins, collinear along Sx (white/gray sites correspond to Sx up/down
spins), are aligned along x-type (red) bonds and anti-aligned along
y-type (green) and z-type (blue) bonds. The unit cell is doubled
[ordering wave vector (π,π,0)] to form the full unit cell of the parent
orthorhombic a,b,c axes. These stripy-X/Y correlations are predicted
by the strong FM Kitaev exchanges necessary for the mean-field fit
to the γ -Li2IrO3 magnetic susceptibility.

The constraints on the couplings can be seen explic-
itly by treating the Hamiltonian classically, and extracting
susceptibility by mean-field theory (details are given in
Appendix F). The magnetic interactions of Eq. (1) were
supplemented by a g-factor tensor chosen to match the
susceptibility at the highest temperatures measured, with
principal values gx+y = gz = 1.95, gx−y = 2.35. Within the
mean-field treatment of the stripy-X/Y phase (in the regime
K < 0, J > 0), the transition temperature is given by TN =
(Jc + |Kd |)/4. The susceptibility peaks at this temperature,
taking values

χbb(TN ) = (gb)2μ2
B/[2(Jc + Jd ) − (|Kc| − |Kd |)],

(2)
χaa(TN ) = (ga)2μ2

B/[2(Jc + Jd )],

and with χcc similar to χaa . The observed susceptibility
anisotropy then suggests a large value for the difference
|Kc| − |Kd |. However, the stability of the stripy-X/Y phase
against stripy-Z order is controlled by the constraint

|Kc| − |Kd | < 2(Jc − Jd ). (3)

There is a finite window of parameters which fit the data within
these analytical constraints. One possibility for the couplings,
as shown in Fig. 3, is (in meV): Kc = −17,Kd = −7,Jc =
6.3,Jd = 0.8. The Hamiltonian with this set of parameters
was also studied beyond the classical limit, using tensor
product states within the infinite-dimensional large-� approx-
imation, and determined to lie within the stripy-X/Y quantum
phase.

This parameter regime of the fit, large ferromagnetic Kitaev
exchange and small antiferromagnetic exchange, is consistent
with Jackeli and Khaliullin’s original proposal [23,24] and
with the recent Na2IrO3 ab initio study [27]. The extent of the
anisotropy is qualitatively similar to the Na2IrO3 ab initio
prediction as well; the parameters computed for Na2IrO3

are [27] Kc = −30.7,Kd = −23.9,Jc = 4.4,Jd = 2.0 meV,
and larger anisotropy is expected for the stripyhoneycomb
lattice because the special c bonds directly form the special
axis of its Cccm space group.

D. Necessity of large Kitaev interactions for describing
magnetic measurements on γ -Li2IrO3

The analysis in the previous section showed analytically
that within mean-field theory, fitting the observed anisotropic
susceptibility required a large ferromagnetic Kitaev exchange,
dominant over a smaller AF Heisenberg exchange. The
bond-dependent Kitaev interactions Kc,Kd then capture the
observed susceptibility at temperatures both above and below
the ∼40 K magnetic transition.

The primary conclusion of this analysis is the argument
that the bond-anisotropic Kitaev-Heisenberg Hamiltonian is
appropriate for describing current experimental data on 3D-
Li2IrO3 and requires quite large Kitaev exchanges |K| � J .
The nominal ground state of the fitted Hamiltonian is the
simple collinear phase stripy-X/Y, but in the real crystal we do
not expect the spin direction to be locked to x̂ or ŷ, but rather
expect it to sample across the (a,c) [or equivalently (x,y)]
plane. A secondary conclusion is therefore a susceptibility-
based prediction for the low-temperature magnetic pattern of
γ -Li2IrO3, namely, presence of the stripy-X/Y correlations of
the fitted Hamiltonian.

As mentioned in the introduction, this four-parameter fit
to magnetic susceptibility, with parameters (Kc,Kd,Jc,Jd ) =
(−17,−7,6.3,0.8) meV, is consistent with the six-parameter
Hamiltonian that captures the noncoplanar spiral magnetic
order which has just been recently observed [22] in γ -
Li2IrO3. That six-parameter fit supplements Eq. (1) by c-axis
Ising exchange I c

c on c bonds and J2 Heisenberg exchange
on second neighbors, and gives the values I c

c = −4.5,

J2 = −0.9, (Kc,Kd,Jc,Jd ) = (−15,−12,5,2.5) meV. The as-
sociated stripy-X and stripy-Y correlations expected for such
a quantitatively similar Hamiltonian are also observed in the
complex spiral order. Most importantly, we observe that in
each analysis, independently, large and FM Kitaev exchanges
Kc and Kd are necessary to describe the material.

IV. QUANTUM SPIN LIQUIDS IN THREE DIMENSIONS

Let us now tune the Heisenberg couplings J to zero, taking
the limit of a pure Kitaev Hamiltonian. Though this limit does
not describe the experiments on Li2IrO3, it offers a wide range
of interesting phenomena associated with 3D fractionalization,
which may turn out to be experimentally accessible at a future
date.

A. Solution via Majorana fermion mapping

Kitaev’s solution [12] of the honeycomb spin model
relies on a local condition—each site touches three bonds
carrying the three different Kitaev labels—and hence may
be generalized to lattices with z = 3 coordination number.
In order to discuss important subtleties which will arise later
(in infinite dimensions), let us briefly review the solution here.
The S = 1/2 algebra is represented in an enlarged Hilbert
space via four Majorana fermions:

Sa
i → 1

2 iχ0
i χa

i ,
{
χa

i ,χa′
i ′

} = 2δi,i ′δa,a′ . (4)

The enlarged Hilbert space Kitaev Hamiltonian H̃ is then a
free Majorana fermion χ0 minimally coupled to a Z2 vector
potential ai,j with eiπai,j ≡ ui,j = iχ

γij

i χ
γij

j living on links 〈ij 〉.
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The gauge-field operators ui,j all commute with each other and
with H̃ , so H̃ may be diagonalized by solving a free fermion
problem for each gauge-field configuration {ui,j = ±1}. Here
ui,j is identified as a gauge field because, while in the enlarged
Hilbert space, it is a simple Z2 bond variable set by the
Majorana fermion occupancy, there is a set of site operators
Di ≡ χ0

i χ1
i χ2

i χ3
i , which are the identity within the physical

spin Hilbert space but act as a lattice gauge transformation
on the link variable ui,j . Projection to the physical spin
Hilbert space is implemented by symmetrizing over all local
gauge transformations Di , with the projection operator P =∏

i(1 + Di)/2.
Let us now discuss the consequences of this Majorana

fermion solution for the 3D trivalent lattices. Some of the
phenomenology was previously explored [65] for a 3D lattice
whose connectivity graph matches the hyperhoneycomb’s.
The projection from gauge to physical Hilbert space is aided
by gauge invariant operators whose eigenvalues, commuting
with the Hamiltonian, label physical sectors of states. These
closed Wilson loops are the usual Z2 fluxes piercing the
elementary plaquettes. Flipping ui,j on a bond inserts flux
in adjoining plaquettes. As discussed earlier, the 3D lattices
possess symmetries as well as graph connectivity which
distinguish one bond type, z, from the other two bond types
x and y. On the hyperhoneycomb lattice, flipping ui,j on a z

type bond creates fluxes on the eight adjacent plaquettes, while
flipping ui,j on x or y type bonds changes the flux on the only
six adjacent plaquettes. On the stripyhoneycomb lattice, the
elementary plaquettes come in multiple forms, consisting of
� = 6 hexagons together with larger � = 14 plaquettes.

B. Extended flux loop excitations in the 3D QSL

The gauge-field sector on the 3D-lattices Kitaev models is a
3+1D Z2 lattice gauge theory [73]. The product of ui,j around
a minimal closed contour gives the flux through an elementary
plaquette of the lattice. The product of fluxes on plaquettes
surrounding an elementary volume element multiplies to the
identity: this is equivalent to the fact that there are no magnetic
monopoles in the Z2 theory. Each elementary volume carries
a zero monopole charge and thus acts as a constraint, forcing
the number of flux lines piercing the volume to be even. These
constraints ensure that the flux lines only appear within closed
flux loops.

It is important to note that while in the 2D honeycomb case
the magnetic fluxes are the gauge invariant result of projecting
the gauge theory, in the case of three spatial dimensions,
individual fluxes are not gauge invariant. Rather, only closed
flux loop configurations are the physical gauge invariant
excitations of the model. The individual fluxes cannot be
gauge invariant labels of sectors of the Hamiltonian since they
do not even correctly count the physical degrees of freedom
of the gauge theory. The constraint of closed loops fixes this
counting; the closed magnetic loop configurations exactly label
the gauge invariant sectors of the {ui,j } after projection.

This can be seen as follows (explicitly verifying this state-
ment in the stripyhoneycomb and hyperhoneycomb lattices
is also straightforward). Consider the lattice with periodic
boundary conditions (rigorously it is a CW-complex topologi-
cally equivalent to the 3-torus), and count the number of cells

of every dimension—sites, bonds, plaquettes, and enclosed
volumes. The Euler characteristic formula (as generalized by
homology theory) then shows that

Nsites − Nbonds + Nplaquettes − Nvolumes = 0. (5)

The combination Nplaquettes − Nvolumes is of interest here, since
every plaquette is associated with a flux, but each enclosed
volume presents a condition on the adjacent fluxes (they must
multiply to the identity). This constraint, due to the lack of
monopoles in the Z2 gauge theory, is responsible for the flux
lines forming closed flux loops. The number of independent
such loops is given by the number of possible flux lines minus
the number of constraints, ie Nfluxloops = Nplaquettes − Nvolumes.
Furthermore, let us restrict to our case of interest where sites
have coordination number z = 3 and so Nbonds = (3/2)Nsites.
Then the formula becomes

Nfluxloops = Nsites/2 (6)

as required; the gauge-field flux sector hosts half of the spin
degrees of freedom, while the Majorana fermion particle sector
hosts the other half.

This observation implies the following important fact: while
in the 2D Kitaev model, the flux sector is described by a gap
to flux excitation, this is not the correct description for this 3D
model. Rather, in 3D, the fluxes form closed loops, of arbitrary
size. These loops possess a loop tension. The gap for a loop
of a particular length is found by multiplying its length by the
loop tension. We have computed a numerical value for this
loop tension, as further discussed below.

Lieb’s flux phase theorem [74], which shows that the 2D
honeycomb ground state has zero flux per � = 6 hexagon,
suggests that the � = 6, 10, and 14 loops of the stripyhoney-
comb and hyperhoneycomb lattices, whose length is equal to
2 mod 4, should also carry zero flux in the ground state. We
have checked numerically that the ground state on small finite
systems lies in the sector with no flux loops.

C. Majorana fermion excitations

The Kitaev QSL possesses emergent quasiparticles which
are fermionic, arising out of the interacting bosonic spin model.
The emergent fermions are as real as physical electrons, but
carry no usual electric charge; and moreover are Majorana
(self-adjoint), related to the particle-hole-symmetric excita-
tions of superconductors. As in the 2D honeycomb model,
in which the fermion dispersion possesses graphene’s Dirac
nodes, the fermionic dispersion in the 3D lattices is gapless for
the isotropic model. The sublattice symmetry present in all the
3D harmonic-honeycomb lattices ensures that time reversal
remains a symmetry in the QSL phase, and the Majorana
fermion spectrum is particle-hole symmetric. Similarly to the
graphenelike Dirac cones appearing in the Majorana spectrum
of the 2D Kitaev honeycomb model, where the 0D pointlike
nodes carry codimension of 2, the 3D Kitaev models can
host gapless excitations along 1D nodal lines within the 3D
Brillouin zone.

The spectrum of Majorana fermions is computed in Ap-
pendix B, and turns out to be identical on both 3D lattices. It
is formed by momenta k satisfying the two equations �k · �c = 0
and cos(�k · �a/2) + cos(�k · �b/2) = 1/2. This set of momenta
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FIG. 7. (Color online) Nodal contour of Majorana fermions in
the 3D QSL. In the gapless 3D Kitaev spin liquid phase, the emergent
Majorana fermions are gapless at momentum points which form
this 1D contour within the 3D momentum space. The contour is
identical for the QSLs on the stripyhoneycomb lattice and on the
hyperhoneycomb lattice; it is set by �k · �c = 0 and cos(�k · �a/2) +
cos(�k · �b/2) = 1/2. with a,b,c the parent orthorhombic axes (shown).
Introducing coupling-strength bond anisotropy shrinks this contour
until it collapses to a point and then gaps out, yielding the gapped
spin liquid phase.

form a closed 1D ringlike contour of gapless excitations, lying
within the BZ interior, which is plotted in Fig. 7. Indeed, this
is the dispersion of a nodal 3D superconductor: the Majorana
fermions are gapless along a 1D ring of points in the 3D
momentum space, forming a superconductor line node, which
here happens to close into a ring within the interior of the first
Brillouin zone.

Within each sector with its associated flux loop configura-
tion, we may study how the Majorana fermions propagate. The
fermions are charged under the gauge field, and hence interact
with the magnetic loop excitations through an Aharonov-
Bohm effect, analogous to that occurring between electrically
charged electrons and conventional E&M magnetic flux lines.
The interaction is as follows: when a fermion winds through
the interior of a magnetic flux loop, it encircles one flux line
and receives a minus one (−1) phase to its single-particle wave
function.

D. Spin-spin correlators

The spin-spin correlators at equal time may be computed
straightforwardly within the fermion mapping; as in 2D, they
are [12] only nonzero between spins on nearest-neighbor sites
and then only between spin components matching that bond’s
Kitaev label. Hence the nonzero spin correlators G are also

equivalently the energy E carried by the bond (divided by the
coupling), specifically G = E/K . For notational simplicity we
quote correlators G for K < 0, in which case the correlators
are positive; for K > 0, correlators simply gain a minus
sign. Here we report results at the isotropic point of the
Hamiltonian, though of course lattice symmetry still comes
into play. We find that the average bond correlator (again,
proportional to the energy per bond) is G

3D;0
0 = −0.1284 for

the 3D hyperhoneycomb and G
3D;1
0 = −0.1290 for the 3D

stripyhoneycomb, only 2% higher than the 2D honeycomb
result [12] G2D

0 = −0.1312.
For the hyperhoneycomb lattice, the z bonds and x,y bonds

correlators are

Gz = 0.1314, Gx,y = 0.1268. (7)

The stripyhoneycomb lattice has two symmetry-distinct types
of z bonds: those within hexagons (“z[h]”) and those within
length-14 loops (“z[f ]”). The correlators are

Gz[h] = 0.1337, Gz[f ] = 0.1269, Gx,y = 0.1283. (8)

The large correlations on hexagon-z bonds could be explained
as strong resonances within a hexagon, combined with a lattice
symmetry effect that, for both the hyperhoneycomb and the
stripyhoneycomb lattices, give stronger correlations on the
special-axis z bonds. Surprisingly, this global symmetry effect
is almost as powerful as the hexagon resonances: it produces
x,y-bond correlators, which are only slightly stronger than
those on the cross-hexagon-stripe z[f ] bonds.

E. Nodal contour under bond-strength anisotropies
and broken symmetries

Increasing the coupling strength K on one bond type
is an anisotropy, which preserves exact solvability of the
model, in 3D as well as 2D. Increasing K on bonds of
one Kitaev-type shrinks down the nodal contour, until it
vanishes and gaps out the fermions when the Kitaev exchange
for any one bond type becomes larger than the sum of
the other two. However, consider that the hyperhoneycomb
and stripyhoneycomb lattice symmetries already distinguish
z bonds and their axis ĉ as a special direction; increasing
the strength of z bonds is an anisotropy, which is generically
expected to arise given the crystal symmetries.

Increasing the strength of Kitaev exchange on z bonds
shrinks the nodal contour towards its center at the Gamma
point �k = 0. With sufficient anisotropy, the contour collapses
at �k = 0 and then disappears, producing a gapped Majorana
fermion spectrum (Fig. 8). But anisotropies for x or y type
bonds do break a symmetry of the isotropic model. When
increasing bond strength on x or y bonds, the nodal contour
goes through a van Hove singularity as it expands to touch
the BZ surface, and then becomes centered around a BZ
corner, towards which it gradually shrinks. This transition
through a van Hove singularity is an aspect associated with
breaking crystalline symmetries. However, while these aspects
of the nodal contour are different between symmetry-breaking
(x,y) and non-symmetry-breaking (z) anisotropy, the resulting
phase diagram of the spin liquid phase is the symmetric
diagram shown in Fig. 8, identical to that of the symmetric
2D honeycomb lattice.
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FIG. 8. (Color online) Kitaev spin liquid with bond anisotropy.
The phase diagram of the 3D Kitaev spin liquids as a function
of bond anisotropy, designating whether the emergent Majorana
fermions are gapped or gapless, is identical on the 3D lattices
and the 2D honeycomb model, and is independent of whether the
anisotropy breaks or preserves lattice symmetry. Here the magnitudes
of Kitaev coupling |Kx |, |Ky |,and|Kz| are given by the distance to the
respective edges of the triangle. The vertical line corresponds to the
symmetry-allowed bond-anisotropy, modifying |Kz| by the parameter
a [Eq. (11)] with particular values shown.

Each of the 3D lattices supports two different types of limits
of large anisotropy, z and x/y types, which are associated
with different three-dimensional toric code models living on
different z = 4 lattices. Each of these 3D toric Code models is a
pureZ2 gauge theory, with commuting plaquette terms formed
by sites on a particular z = 4 lattice set by the type (z or x,y)
of anisotropy. The toric code lattices are easily constructed
by collapsing the strong-coupled bond into a site. The toric
code Z2 flux operators act on plaquettes of reduced size:
the hyperhoneycomb decagons turn into toric code hexagon
plaquettes, while stripyhoneycomb hexagons (as in 2D) turn
into toric code square plaquettes.

F. Gap via breaking of time reversal

Breaking time-reversal symmetry with an external magnetic
field induces oriented imaginary second neighbor hopping
of the Majorana fermions. The sign (orientation) of this
imaginary hopping, necessary for Majorana fermions, is set
(as in 2D [12]) by the sign of the permutation of the two Kitaev
bond labels traversed. We find that breaking time reversal fully
gaps out the entire Majorana nodal contour.

Interestingly, though, special behavior emerges at ultralow
fields. To lowest order, the external field introduces a mass
gap, which changes sign across the nodal contour, leaving two
gapless band-touching points. At the next order of the external
field, these points are gapped out as well; but they may control
the physics at low-fields and low-energy scales.

G. Fractionalization in 3D: extended loops and
finite-temperature confinement transition

Enlarging spatial dimensionality from two to three di-
mensions changes the nature of the spin liquid phase; the
two most interesting differences involve fermions and finite

temperature. In the two-dimensional spin liquid away from the
exactly solvable point [12], the flux excitations gain dynamics
and interact with the Majorana fermions; the low-energy
excitations could then be bound fermion-flux pairs, composite
particles with simple bosonic statistics. In contrast, consider
the three-dimensional spin liquid; here fluxes are not pointlike
particles but rather closed magnetic loops, so the emergent
fermions cannot merely bind a (pointlike) flux to transmute
into bosons, and thus their 3D fermionic statistics are more
robust. While fermions can, e.g., bind into Cooper pairs
to disappear from the lowest energy theory, a fundamental
excitation in the model still necessarily preserves fermionic
statistics. The fermions remain until a phase transition either
confines them or transmutes them into bosons via a more
complicated mechanism such as that recently explored in tran-
sitions between symmetry protected topological phases [75].

Three-dimensional spin liquid phases generally admit a key
characteristic distinguishing them from 2D spin liquids: the 3D
spin liquid phases survive to finite temperatures. Such is true
for the Kitaev 3D spin liquid phase, which undergoes a distinct
entropy-driven phase transition to a classical paramagnet. In
2D, QSLs a finite density of fluxes exists at any nonzero
temperature; the fermions gain a phase of (−1) when encircling
each of the fluxes and the resulting destructive interference
results in a T = 0 confinement transition to the paramagnet
phase. But in the 3D QSL, magnetic fields appear in extended
loop excitations, whose energy is proportional to their length
via an effective loop tension. The loop energy diverges with
its length. At finite temperature, there is a finite density
only of short loops, whose small cross-sectional area renders
them invisible to the fermions. A finite probability for flux-
encircling paths occurs only with macroscopically large loops,
which cost diverging energy and hence appear at vanishing
density. Entropy, however, favors longer loops, and so the free
energy at finite temperature T for a loop of length L appears
as (for long L)

F (L; T ) = (τ + δτ (T ) − s̃T )L, (9)

where s̃ is the entropy contribution to the loop tension,
roughly the natural logarithm of the coordination number of
the dual lattice (where magnetic loops live), s̃ ≈ ln(zdual); τ

is the zero-temperature flux loop tension; and δτ (T ) is the
contribution to the effective loop tension at finite temperature
due to interactions mediated by the gapless fermions.

Because the entropy is likely the dominant contribution
and appears with a negative sign, the effective magnetic loop
tension renormalizes to lower values at finite temperature. At a
temperature Tc, the tension becomes negative and proliferates
arbitrarily large magnetic loops in a transition analogous
to Kosterlitz-Thoughless flux unbinding, which then confine
the fermions. We estimate the critical temperature Tc by
computing the zero-temperature value of the magnetic loop
tension τ in the isotropic Hamiltonian, finding the result

τ = 0.011|K| (10)

for both stripyhoneycomb and hyperhoneycomb in different
geometries and for different loops roughly independent of the
loop shape, underlying bond/plaquette type, and for large loop
lengths of up to 30 cross-sites (on the hyperhoneycomb lattice,
e.g., Fig. 2), implying the estimate Tc ∼ |K|/100.

205126-9



KIMCHI, ANALYTIS, AND VISHWANATH PHYSICAL REVIEW B 90, 205126 (2014)

V. QUANTUM PHASE DIAGRAM IN AN INFINITE-D
APPROXIMATION

The Kitaev-Heisenberg model suffers from the “sign prob-
lem” of frustrated quantum Hamiltonians: unbiased algorithms
for computing its phase diagram require computational costs
scaling exponentially with system size, a problem greatly
exacerbated in a three-dimensional lattice. Unbiased reliable
computations of the phase diagram on the three-dimensional
lattices are not possible at present time.

A. Duality results for the magnetic phases

Even on the 3D lattices, definitive conclusions for the
magnetically ordered phases can still be made due to a general
feature, the Klein duality, exhibited by Kitaev-Heisenberg
models [24,39,54]. The following discussion applies to any
bipartitie lattice, including the tree lattice in infinite dimension,
as well as all 3D harmonic-honeycomb lattices. Since these
lattices are bipartite, simple Neel antiferromagnetic order is
the expected ground state for the Heisenberg antiferromagnet
Hamiltonian. The Neel AF and FM orders map under the
Klein duality to three-dimensional generalizations of stripy
and zigzag orders. Assuming that the unfrustrated Neel order
is indeed the ground state for AF Heisenberg exchange [as may
be verified by quantum Monte Carlo at the sign-problem-free
SU(2) point], we conclude that all four of these magnetic
phases must be present in the phase diagram.

B. Loop length as a control parameter

To capture the full quantum phase diagram including the
quantum spin liquid phases, we employ a limit inspired by
the geometry in the hyperhoneycomb lattice. Its shortest
loops are the decagons. Treating this loop length � = 10
as a large parameter and formally taking it to infinity, we
find the loopless � = ∞ Cayley tree or Bethe lattice with
z = 3 connectivity in infinite dimensions. The tree lattice
approximation � → ∞ enables a solution using entanglement-
based methods originally developed for 1D systems, which
rely on efficient representations of matrix or tensor product
states (also known as projected entangled pair states PEPS).
The key for such efficient representations is that entanglement
is carried by bonds: cutting a single bond serves as an
entanglement bipartition, and a singular value decomposition
fully determines the entanglement spectrum, which can be
associated with this bond.

This tree lattice is infinite-dimensional in the sense that
for finite trees with Ns sites, a finite fraction of sites fs ≈
(z − 2)/(z − 1) is on the boundary. However, note that this
is an opposite limit of infinite dimensionality from the one
commonly taken in mean-field theories, which assume infinite
connectivity z → ∞: here, we crucially fix z = 3. Entangle-
ment based algorithms within our infinite-D approximation
can work with the low coordination number z = 3 and low spin
S = 1/2, capturing the associated strong quantum fluctuations.
As discussed below, we employ an algorithm that studies
the tree lattice directly in its thermodynamic limit, with no
boundary sites, directly as an infinite system.
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FIG. 9. (Color online) Infinite-D z = 3 tree with eight-site
iTEBD cell. Taking the �→∞ limit of the hyperhoneycomb lattice
� = 10 results in the z = 3 tree, a lattice in infinite dimensions.
Cutting any bond gives an entanglement bipartition (red dashed line),
enabling entanglement-controlled computations with tensor network
states. Bonds are labeled by Kitaev coupling; site labels show the
unit cell used for the iTEBD computation. This eight-site unit cell
(sites and bond Kitaev labels shown) used in the thermodynamic-limit
iTEBD computation admits the Klein duality [24,39,54], and is thus
expected to capture all the symmetry-breaking patterns in the phase
diagram.

C. Tensor networks on the tree lattice

The large loop � → ∞ limit of the hyperhoneycomb
(or higher harmonic-honeycomb) lattice, which yields the
infinite-D Bethe tree lattice, admits a numerical solution of the
gapped phases in the phase diagram. The key is that cutting
a single bond gives an entanglement bipartition (as shown in
Fig. 9) with an entanglement spectrum which is associated
with that bond. Hence gapped states can be represented
efficiently as tensor product states (TPS, in other contexts
also known as projected entangled pair states, i.e., PEPS),
and the full machinery of entanglement based algorithms can
be used. We choose to use a variant of the infinite system
size time-evolving block decimation algorithm (iTEBD) [66].
The iTEBD algorithm has been previously used to study
various Hamiltonians via tree tensor networks, with phase
diagrams containing magnetic phases [67–69], nonmagnetic
phases [71], and even a symmetry protected topological
phase related to the AKLT Hamiltonian [70]. The iTEBD
algorithm is especially useful here since it works directly in
the thermodynamic limit (using iPEPS), avoiding the issues
which plague finite trees.

Specifically, each update step in the algorithm, such as an
imaginary time evolution step in iTEBD, must be followed by
an operation that restores the state into a correctly normalized
tensor product state. This requires cutting the TPS into two
parts and computing the entanglement spectrum across the
cut, via a singular value (i.e., Schmidt) decomposition. These
singular values are associated with the bond and placed
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between the adjacent site tensors when one contracts the TPS
in order to measure observables. The tree lattice offers all
these properties and hence entanglement based algorithms
developed for 1D systems may be adapted to the tree [67].

The iTEBD algorithm performs imaginary time evolution
(i.e., soft projection to the ground state) within a restricted
set of tensor product states, allowing it to find a good ap-
proximation to gapped periodic ground states with sufficiently
local entanglement. Since it works on an infinite system, it
always chooses one minimally entangled ground state, i.e., it
can exhibit spontaneous symmetry breaking. To enable such
symmetry breaking consistent with the expected magnetic
ordering, we choose a unit cell with eight-site tensors and
12-bond (Schmidt) vectors as shown in Fig. 9, employing
24 update cycles in each imaginary time evolution step.
On a technical note, we performed 2 × 107 singular value
decompositions (SVDs) for each parameter point; to preserve
normalized tensors during the imaginary time evolution,
we intersperse evolution steps with zero imaginary time (i.e.,
pure SVD steps), as well as work with short time steps which
are gradually reduced to 10−6 in inverse energy. The algorithm
enables us to capture any periodic state consistent with our
eight-site unit cell whose entanglement is sufficiently local, as
is the case for the magnetically ordered phases we expect to
find as well as for the gapped quantum spin liquids.

The key parameter for TPS algorithms is the bond di-
mension χ , serving as a cutoff on the number of entangled
states. The computational costs scale polynomially in χ , but
for computations on the tree the exponent is fairly high, with
scaling of χ6. The Kitaev-Heisenberg model harbors addi-
tional computational complexity due to its lack of spin rotation
symmetry, the large unit cell necessary to describe its magnetic
phases and the emergent small energy scales in its quantum
spin liquid phases. Our results are roughly independent of χ

for χ � 6; we report data for computations using χ = 12, after
verifying convergence through χ = 6,8,10. As we discuss
below, the finite χ entanglement cutoff successfully collapses
the degenerate ground-state manifold expected on the Bethe
lattice into a single minimally entangled ground state, which
is independent of these various values for χ . Hence we expect
that finite (and perhaps not too large) χ is necessary for
this mechanism which circumvents some of the issues which
usually plague the Bethe lattice, but any χ within a large finite
window will work well at enforcing a minimally entangled
ground state.

D. Definition of Hamiltonian parametrization

The bond-anisotropic Kitaev-Heisenberg Hamiltonian,
Eq. (1), involves one overall scale and and three free param-
eters. In computing the quantum phase diagram via tensor
product states, we will focus on two of these parameters. The
Kitaev exchange, generated by spin-orbit coupling, may be
especially sensitive to the bond anisotropy; we therefore focus
on the effects of bond anisotropy on the Kitaev term, leaving
the study of the large-� quantum phase diagram with Heisen-
berg term bond anisotropy for future work. Note, however, that
we have performed calculations on the full Hamiltonian (1) in
the neighborhood of the experimentally extracted parameter

values shown in Fig. 3, finding the magnetic stripy-X/Y phase
and a nearby phase boundary to the magnetic stripy-Z phase.

We shall now record the resulting two-parameter Hamilto-
nian, together with a few different useful parametrizations
of its couplings, which we use to present various figures.
In particular, we define polar coordinates with r = 1 − a

and two different angle parameters, φ or the alternative θ ,
corresponding to two differing conventions. The Hamiltonian
parametrization is

H =
∑
〈ij〉

(
Kγij

S
γij

i S
γij

j + J �Si · �Sj

)
,

Kγij
= K ∗

{
(1 − a) on γij = x,y bonds
(1 + 2a) on γij = z bonds , (11)

K = 2 sin(φ), J = cos(φ); θ ≡ π/2 − φ.

The Kitaev-Heisenberg spin Hamiltonian, with the angular
φ parametrization [25] relating the strengths of Kitaev and
Heisenberg coupling, is extended with this symmetry-allowed
anisotropy, parametrized by −1/2 � a � 1.

Let us here also note the extension of the Klein duality
discussed in section V A above, to the case of nonzero
anisotropy. Recall [25] that the Klein duality relates param-
eters by tanφ′ = −(1 + tanφ) for the isotropic case a = 0.
The transformation exposes a hidden ferromagnet even with
anisotropy, at φhiddenFM = −arctan[1/(1 − a)]. Observe that
the anisotropy reduces the symmetry at the hidden-FM point
from SU(2) to U(1): the dual Hamiltonian is no longer
Heisenberg but rather is an easy-axis ferromagnet. The key
observation, that its ground state is an exact product state,
remains unchanged.

For the pure Kitaev Hamiltonians, a = 1/4 is the transition
point between the gapless (−1/2 � a � 1/4) and gapped
(1/4 < a � 1) Z2 spin liquid phases. In addition to the
isotropic case a = 0 we focus on a particular anisotropy value
within the gapped QSL regime, a = 1/2. We sample other
values of the anisotropy as well in order to generate the global
phase diagram shown in Fig. 4.

E. Magnetically ordered phases

Let us begin our analysis of the tensor product state
computation by discussing the magnetic phases captured by
the iTEBD algorithm on the tree lattice. We use a variety
of measures to identify phases and the phase diagram.
Magnetically ordered phases can be captured directly by their
magnetic order parameter, since the iTEBD always produces a
single symmetry broken ground state. This analysis is shown in
Fig. 10 for the isotropic model, and later in Fig. 15, for a = 1/2
anisotropy. The four magnetic phases expected from the
discussion in Sec. V A above are observed. Phase transitions
are also identifiable, as always, through the first and second
derivatives of the energy. As a simple benchmark we have
verified that the energy is always bounded from above by the
energy of the expected classical product state and from below
by the optimal energy for any given site in its surrounding
cluster [76], as may be seen in Fig. 15. Phase transitions are
also signaled by peaks in the entanglement carried by the
various bonds in the tensor product state, and finally of course
the phases can be identified using the spin-spin correlation
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FIG. 10. (Color online) Kitaev-Heisenberg isotropic phase dia-
gram via iTEBD. The magnetic order parameters of the four phases
are directly observed by iTEBD, working in the thermodynamic limit.
The stripy and FM phases surround an exact solution with saturated
magnetic order parameter m = �/2; Neel and zigzag phases exhibit
a moment reduced by quantum fluctuations. The energy per bond
(purple) also provides the phase transitions, as well as benchmarking
(see Fig. 15). The QSL phases exist around the Kitaev points at
θ/π = 0,1 but here are gapless and cannot be numerically captured
with finite entanglement.

functions; these two measures are shown in Fig. 17. We also
verify that the entanglement correctly vanishes at the exact
(hidden-)ferromagnet points.

The particular parameters of the direct first order phase
transitions between the magnetic phases should be insensitive
to dimensionality and loop length � for sufficiently large �,
since the quantum fluctuations on top of these classical phases
need to propagate a distance of � sites to distinguish one
lattice from another. The smallest value for � we encounter is
� = 6, so quantum fluctuations in these magnetic orders must
traverse at least six nearest-neighbor bonds to distinguish the
honeycomb from the stripyhoneycomb or hyperhoneycomb
lattices. Hence we expect that the 2D honeycomb, 3D
harmonic-honeycomb and infinite-D tree lattices will exhibit
similar magnetic transitions. Indeed the parameters we find for
the tree lattice within iTEBD are essentially indistinguishable
from those of the 2D honeycomb model [25]. As a function
of anisotropy, the location of magnetic transitions can also
be compared to a classical mean-field theory. We find similar
behavior, with larger differences closer to the isotropic point;
see Appendix G for details.

F. The quantum spin liquid in a tree tensor network

Turning to the phase diagram of the QSL phases and their
immediate surrounding, we first must restrict ourselves to the
regime with sufficiently strong anisotropy so that the emergent
Majorana fermions are gapped, at a > 1/4. The gapped spin
liquids can be well approximated by the tensor product states
we use. In Fig. 11, we show the spin liquid phase for K < 0 and
the nearby stripy and ferromagnetic orders. The identity of the
spin liquid is already suggested by its lack of magnetic order
parameter; phase transitions to this un-ordered phase are again
seen in energy derivatives and as peaks in the entanglement
entropies. The extent of the phase in this computation is small,

S/log 2  

QSL

m/ћ Stripy m/ћ FM

θ/π 

Entanglement Entropies on bonds

strong

 bond

 weak 

bonds

FIG. 11. (Color online) Gapped spin liquid at K < 0 and sur-
rounding magnetic phases, via χ = 12 iTEBD. Sufficient bond
anisotropy, here a = 1/2, gaps the QSL fermion spectrum and enables
a tensor product state representation. The QSL phase, here for K < 0,
is identified by the vanishing magnetic order parameters (here the
stripy and ferromagnet) as well as by its entanglement entropies on
the various bonds. The entanglement on the two weak bonds peaks
at the transition (with slight spurious symmetry breaking), and that
on the strong bond rises sharply in the QSL, matching the exact
solution’s entropy of Fig. 12.

covering about a tenth of a percent of the phase diagram, but
nonzero; more importantly, the extent of the spin liquid is
the same throughout the full range of bond dimensions we
study, implying that its stability is a consequence of any finite
entanglement cutoff.

Though its lack of conventional spin order is suggestive,
the QSL phase completely lacks any order parameter and thus
avoids a direct identification of the type in Fig. 10. The exact
solution of the Kitaev model on the infinite-D tree allows us
to uncover the unique fingerprints of the exact QSL, and use
them to unequivocally identify the QSL phase within iTEBD.
Each such set of fingerprints can be computed as a function of
anisotropy for the pure Kitaev model across the entire gapped
phase 1/4 < a < 1.

One obvious measure is the energy as a function of a within
the Majorana solution, for which we find good agreement
as shown in Fig. 18; but energies are notoriously lousy
fingerprints for spin liquid phases. We also compute the
spin-spin correlators within the iTEBD and find that they
match the correlators we compute within the exact solution,
as shown again in Fig. 18. Correlation functions are a more
robust measure, but are still grossly insufficient for fully
characterizing the long-ranged entangled QSL.

Instead, the most valuable set of fingerprints is furnished
by the entanglement entropy carried by each bond. The
entanglement spectrum is an inherent part of the tensor product
state description and is easily accessible from the iTEBD.
Spurious “accidental” symmetry breaking exhibited by the
iTEBD ground state, caused by the large unit cell and the
merely finite imaginary time evolution duration, complicates
the bond entanglement entropies but still permits comparison
with the entanglements computed in the exact solution. This
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FIG. 12. (Color online) Entanglement entropies as QSL finger-
prints in iTEBD and exact majorana solutions. Entanglement en-
tropies from the exact solution with Majorana fermions and Z2 gauge
fields (dotted lines) and from iTEBD computations (solid lines). The
Kitaev bond strength anisotropy parameter a is varied across the
gapped phase a > 1/4 for which the iTEBD algorithm can capture
the quantum spin liquid. The minimally entangled states of the QSL
on the tree carry Z2 gauge sector entanglement only on strong bonds.

comparison is shown in Fig. 12, confirming that the iTEBD
algorithm is indeed capturing the emergent Majorana fermions
of the quantum spin liquid fractionalized phase in infinite
dimensions.

Figure 12 exhibits an important subtlety: the entanglement
entropies from the exact solution match those from the iTEBD
computation only if we assume that the gauge-field sector
contributes entanglement only on bonds set as strong by the
anisotropy parameter. To understand this key subtlety, we now
turn to the study of the exact Kitaev Z2 quantum spin liquid
on the loopless tree lattice, focusing first on the fermion sector
followed by the more subtle Z2 gauge-field sector.

G. Majorana fermion entanglement

The spectrum of Majorana fermions hopping on the
infinite tree can be computed exactly [77] using recursion on
propagators (Appendix D). However, we are mainly interested
in the entanglement entropies associated with a bipartition,
which we choose to compute on finite open trees. The spectrum
of a finite tree adjacency matrix has an extensive number of
zero modes, which may be counted for any finite tree by
noting that the number of bonds is Nb = Ns − 1, reduced
from the expected Nsz/2 by a fraction fb ≈ (z − 2)/z; i.e.,
about Ns/3 of the eigenvalues are finite size boundary effects.
For a site-centered tree they may be counted exactly using
Lieb’s sublattice imbalance theorem [78] by observing the un-
balanced occupation in the bipartite tree’s A and B sublattices,
|NB − NA|/Ns = (z − 2)/z + 1/Ns . On a bond-centered tree,
in addition to the identically zero boundary eigenvalues there
is an isolated low-lying eigenvalue whose gap vanishes with
increasing system size, which is also associated with the
boundary. We may thus take the bulk tree thermodynamic
limit by discounting these boundary eigenvalues of finite tree
adjacency matrices.

This finite tree thermodynamic limit, though convergent,
may yield answers which are different from recursive compu-
tations directly on the infinite Bethe lattice for some physical

quantities [77].1 For example, the phase transition between the
gapped and gapless phases computed by recursion equations
for Green’s functions (see Appendix D for detail) find a phase
boundary, as a function of hopping anisotropy, which is identi-
cal on the finite-dimensional lattices but different on the Bethe
lattice. However, we expect (and indeed show below) that total
energy and the entanglement entropy in the thermodynamic
limit of finite trees, with appropriate subtraction of the thermal
entropy of the boundary described below, provide the correct
thermodynamic limit for comparison with the iTEBD tensor
network.

Using the bulk fermion correlation function and the reduced
correlator for a bipartition associated with cutting the central
bond in a bond centered-tree, we first compute the entangle-
ment spectrum and entropy of the bipartition, which resides
on this central bond. A second approach for computing the
entanglement entropy entails subtracting the T = 0 thermal
entropy of the finite open tree from the naively computed
entanglement entropy of the bipartition, which again yields
the entanglement entropy of the single bond cut without the
T = 0 thermal entropy of the boundary zero modes. See details
in Appendix C. The approaches agree, and thus are expected
to yield the entanglement entropy contributed by the fermion
sector of the exact quantum spin liquid.

H. Z2 gauge theory on the loopless tree

Entanglement is also contributed by the Z2 gauge sector of
the tree Kitaev model; in order to describe this contribution,
we shall now discuss the unusual subtleties which arise in a
Z2 gauge theory on a loopless lattice. We begin by noting
that the gauge theory is necessarily well defined even on the
loopless tree lattice, since it arises from a well defined spin
model. For Ns sites, there are Ns/2 gauge-invariant sectors
after projecting the gauge fields, which combine with the
Ns/2 majorana fermion degree of freedom to give the Ns

doublet degrees of freedom for the lattice of S = 1/2. In 2D,
the Ns/2 sectors are labeled by fluxes; in 3D, by magnetic field
loops; and in infinite dimensions, they may be associated with
Ns/2 particular infinite magnetic field lines extending across
the (infinite) lattice. These field lines stretching across the
system are intimately related to a more familiar set of infinite
products of operators: in 2D topologically ordered phases, field
lines can wind around the periodic boundary conditions. The
resulting flux piercing the torus costs an energy which vanishes
in the thermodynamic limit, and these operators generate the
topological ground state degeneracy on the torus. On the
tree lattice, there is an extensive number of such operators,
contributing an extensive ground state degeneracy 2Ns/2.

This degeneracy may also be seen by counting conserved
quantities associated with infinite products of local operators
within the original quantum spin Hamiltonian. Working either
within the original spin model or within the gauge theory,
we must count the number of such independent paths on
the tree lattice. A moment’s thought shows that independent
paths may be counted as paths from a given boundary site
to any other boundary site on a finite open tree. For the

1We thank Frank Pollmann for pointing out this subtlety.
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purposes of this counting, the open tree may be compactified by
identifying all boundary sites, in which case the strings again
form conventional closed loops carrying a flux. The counting
gives exactly Nboundarysites − 1 = Ns/2 operators, in agreement
with the gauge-field mechanism for 2Ns/2 degeneracy. Thus on
the tree lattice within a full thermodynamic limit, the gauge
theory collapses to an extensive degeneracy of 2Ns/2 states.

I. Minimally entangled states of the Z2 gauge theory
on the loopless tree

A Z2 gauge theory contributes ln2 of entanglement for
every two bonds in the entanglement cut, or ln(2)/2 entan-
glement per bond [79]. Intuitively, the gauge field carries half
of the information content of a physical gauge-invariant Z2

link variable. An additional global term of the topological
entanglement entropy is generally expected to arise in the
gauge theory, but does not appear on the tree lattice single-
bond entanglement bipartitions: the only entanglement is
that associated with the bond. Thus on the tree lattice we
expect the single bond entanglement cut to carry ln(2)/2
entanglement from the gauge sector, in addition to any
fermionic entanglement.

However, when comparing to the iTEBD result, we find
that the iTEBD choice of ground state within the gauge
theory’s degenerate manifold effectively quenches the Z2

gauge sector entanglement on weak bonds, giving gauge
sector entanglement only on strong bonds, which retain the
gauge-field entanglement ln(2)/2. This is reasonable since
there are two S = ln(2)/2-carrying weak bonds per two sites,
giving exactly the ln2 value of entanglement associated with
the twofold degeneracy also found per two sites. Thus for
the iTEBD ground state on the tree, unlike for the unique
ground state on the planar honeycomb, the entanglement
entropy on various bonds is continuous in the toric code limit
a → 1, with weak bonds carrying vanishing entanglement
like for the disjointed singlets Hamiltonian a = 1. The strong
bonds carry entanglement of ln(2)/2 from the fermion sector
plus ln(2)/2 from the gauge-field sector, but for the weak
bonds, the fermionic entanglement vanishes and the gauge-
field entanglement is quenched by the minimally entangled
superposition across flux sectors.

The finite bond dimension χ entanglement cutoff of the
iTEBD algorithm is likely playing the key role here, collapsing
the extensive degeneracy of the gauge theory on the tree
into a particular minimally entangled state, which is then
chosen by iTEBD as the ground state. It will be interesting
to explore whether this mechanism, of a ground state selected
from an extensive degenerate manifold through a minimal-
entanglement constraint, changes its role if the bond dimension
is vastly increased.

Armed with the understanding of these subtleties, we thus
find that aside from some spurious spontaneous symmetry
breaking due to the infinite system size explored by the iTEBD
algorithm, the entanglement entropy of the resulting iTEBD
QSL ground state, as well as its energy and correlators, exhibit
close agreement with these predictions of the exact QSL
solution on a finite tree, as shown in Figs. 12 and 18. The TPS
computation with the finite entanglement cutoff produces a
minimally entangled state within the QSL manifold, elegantly

bypassing artifacts due to the Bethe lattice lack of loops to
successfully capture emergent Majorana fermions within the
spin model at infinite dimensions.

VI. CONCLUSION

In this work, we have analyzed experimental data to moti-
vate a magnetic Hamiltonian with large Kitaev exchanges, on
the hyperhoneycomb and stripyhoneycomb lattices formed by
Ir in β- and γ -Li2IrO3. Anisotropy in the strength of couplings
between z bonds and the x,y bonds is expected from the crystal
symmetries, and enables a fit to the experimental susceptibility
measurements, requiring strong Kitaev exchange.

We first focus on the pure-Kitaev models and discuss
the exactly solvable 3D spin liquid, some of whose most
interesting features are unique to three dimensionality. These
features include the extended magnetic flux loop excitations as
well as the existence of a finite-temperature deconfined phase,
neither of which can occur in the 2D honeycomb model.

Describing the Li2IrO3 materials also requires some
Heisenberg exchange, so we compute the quantum phase dia-
gram as a function both of the additional Heisenberg exchange
and of the coupling-strength bond anisotropy parameter. Our
approximation of choice is to study this system on the Bethe
lattice, the tree with no closed loops. This is expected to
capture the basic physics on the 3D harmonic-honeycomb
lattices, due to the long length of their shortest closed loop
(� = 10 for the hyperhoneycomb lattice or � = 6,14 for the
stripyhoneycomb lattice). This large-� approximation admits
no analytical solution, but rather is numerically tractable via
a class of entanglement-based algorithms. We use a TPS
representation of the ground state, which is then determined
using the iTEBD algorithm directly in the thermodynamic
limit. Both the magnetically ordered phases as well as the
gapped quantum spin liquid phases are obtained and positively
identified using this technique.

The exact 3D quantum spin liquid together with this large-�
approximation provide a controlled study of 3D fractional-
ization. Although experimentally both of the 3D harmonic-
honeycomb Li2IrO3 polymorphs appear to be magnetically
ordered [11,60], the significant Kitaev couplings indicated by
experiments are promising, and suggest future directions to
realize 3D QSLs in these bulk solid state systems by tuning
magnetic interactions via pressure or chemical composition.
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APPENDIX A: COORDINATES FOR THE LATTICES

In this section, we define the 3D honeycomblike lattices
discussed in the paper. For simplicity, throughout this paper we
work with idealized symmetric versions of the true Ir lattices
in the crystals.

We use the same parent orthorhombic coordinate system to
describe both lattices. This is the coordinate system defined
by the following conventional orthorhombic crystallographic
vectors:

a = (2,2,0), b = (0,0,4), c = (6, − 6,0). (A1)

In the equation above we have written the a,b,c vectors in
terms of a Cartesian (cubic orthonormal) x,y,z coordinate
system. The x̂,ŷ,ẑ lattice vectors in this coordinate system are
defined as the vectors from an iridium atom to its neighboring
oxygen atoms in the idealized cubic limit, with distance
measured in units of the Ir-O distance. Nearest neighbors in
the resulting Ir lattice are at distance

√
2.

For each lattice, we express its Bravais lattice vectors,
as well as each of its sites of its unit cell, in terms of the
a,b,c axes. A given vector or site, written as (na,nb,nc),
can be converted to the Cartesian coordinate system by the
usual matrix transformation (nx,ny,nz) = na �a + nb

�b + nc�c.
For both of the lattices, the conventional crystallographic unit
cell, containing 16 sites, is found by combining the primitive
unit cell with the Bravais lattice vectors.

1. Hyperhoneycomb lattice (n = 0 harmonic honeycomb),
space group Fddd (No. 70)

There are four sites in the primitive unit cell, which can be
taken to be

(0,0,0);
(
0,0, 1

6

)
;

(
1
4 ,−1

4 , 1
4

)
;

(
1
4 ,−1

4 , 5
12

)
. (A2)

This unit cell is formed by a single 16g Wyckoff orbit of
Fddd, position (1/8,1/8,z) with possible equivalent values
of z including z = 5/24 [which shifts the unit cell above by
(1/8,1/8,1/24) ] and z = 17/24 [with the same shift plus an
additional (1/2,0,0) ].

The Bravais lattice vectors (face centered orthorhombic)
are (

1
2 , 1

2 ,0
)
;

(
1
2 ,− 1

2 ,0
)
;

(
1
2 ,0, 1

2

)
. (A3)

2. Stripyhoneycomb lattice (n = 1 harmonic honeycomb),
space group Cccm (No. 66)

There are eight sites in the primitive unit cell, which can be
taken to be

(0,0,0);
(
0,0, 1

6

)
;

(
1
4 ,−1

4 , 1
4

)
;

(
1
4 ,−1

4 , 5
12

)
;

(A4)(
0,0, 1

2

)
;

(
0,0, 2

3

)
;

(
1
4 , 1

4 , 3
4

)
;

(
1
4 , 1

4 , 11
12

)
.

The sites (0,0,1/6) and (1/4,1/4,1/12) together represent the
unit cell (shifted by (0,0,1/6) from (0,0,0)) as the union of two
distinct Wyckoff orbits, 8i with z = 1/6 and 8k with z = 1/12
(Cccm origin choice 1).

The Bravais lattice vectors (base centered orthorhombic)
are (

1
2 , 1

2 ,0
)
;

(
1
2 ,− 1

2 ,0
)
; (0,0,1). (A5)

APPENDIX B: LATTICE TIGHT-BINDING MODEL
AND MAJORANA SPECTRUM

In the Kitaev spin liquid at its exactly solvable parameter
point, the emergent Majorana Fermion hops within the nearest-
neighbor tight-binding model on the lattice. Its band structure
(fixed to half-filling) is given by the eigenvalues of the nearest-
neighbor tight-binding matrix of the lattice.

We now give these matrices for both lattices. For the
hyperhoneycomb lattice, this matrix is⎛⎜⎜⎝

0 u2 0 ūc+
ū2 0 uc− 0
0 ūc− 0 u2

uc+ 0 ū2 0

⎞⎟⎟⎠ . (B1)

We have used the following symbols to represent functions of
wave vector q,

u = 1

ū
= exp

(
i �q· �c

12

)
, c± = 2 cos

(
�q· (�a ± �b)

4

)
.

To convert them to the Ir-O Cartesian axes, recall that �c
12 = x̂−ŷ

2

and (�a±�b)
4 = x̂+ŷ

2 ± ẑ. For the stripyhoneycomb lattice, the unit
cell has eight sites and so we shall write an 8 × 8 matrix. By
choosing an enlarged eight-site unit cell for the hyperhon-
eycomb lattice, we can represent the tight-binding matrices
for both lattices in similar notation. In the following matrix,
the upper sign choice for the functions c±,c∓ corresponds
to the stripyhoneycomb lattice, while the lower sign choice
corresponds to the hyperhoneycomb lattice with the enlarged
unit cell. These tight-binding matrices are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 u2 0 0 0 0 0 ūc+
ū2 0 uc− 0 0 0 0 0

0 ūc− 0 u2 0 0 0 0

0 0 ū2 0 uc∓ 0 0 0

0 0 0 ūc∓ 0 u2 0 0

0 0 0 0 ū2 0 uc± 0

0 0 0 0 0 ūc± 0 u2

uc+ 0 0 0 0 0 ū2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B2)

The determinant of these matrices is the same for both
lattices, simplifying to det = (1 − 2 cos(q · c)Sab + S2

ab) with
Sab = 4[cos(q · a/2)+ cos(q · b/2)]2. In this notation, it is
evident that the zeros of the spectrum, found by setting the
determinant to zero, are identical for both lattices and appear
at the contour of momenta characterised by the two equations
�q · �c = 0 and cos(�q · �a/2) + cos(�q · �b/2) = 1/2. Note that the
BZ for the eight-site unit cells is bounded by �q · �c = π ,
�q · �a ± �q · �b = 2π .

APPENDIX C: ENTANGLEMENT ENTROPY FROM THE
MAJORANA FERMIONS OF THE QUANTUM SPIN LIQUID

At the exact QSL point we wish to compute the en-
tanglement entropy (and the energy) for the ground state
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on the tree, in order to compare this exact result to the
iTEBD computation. Within the gapped phase of the pure
Kitaev (anisotropic) Hamiltonian, the system can be exactly
mapped to a free Majorana fermion problem with a gapped
spectrum. We can thus compute quantities on finite trees
independently of the iTEBD algorithm, within the Majorana
fermion mapping. Computing energies is straightforward and
we find convergence to the thermodynamic limit using the
boundary-eliminating procedure described above on trees with
up to nine layers. To describe the entanglement entropy results,
let us first recall the computation of entanglement spectrum
and entropy for free fermion systems [79,81–83]. Operating
on a bond-centered finite tree, we compute the correlation
function by occupying half of the Majorana spectrum. The
reduced correlation function associated with a cut through
the central bond is found by restricting the site indices of
the correlator to lie within one of the two partitions. Each
eigenvalue ci of the reduced particle correlator also has an
associated hole eigenvalue 1 − ci . The entanglement entropy
of the bipartition can be computed from the particle and
hole correlators, with a factor of 1/2 for majoranas, by
SE = −(1/2)

∑
i[ci lnci + (1 − ci)ln(1 − ci)].

To eliminate tree finite size effects for computing the
entanglement entropy in the fermion sector of the spin liquid,
we use two approaches. In the first approach, we carefully
determine which of eigenvalues of the open tree adjacency ma-
trix are associated with the bulk, using the counting procedure
described above, and keep only the eigenstates associated with
these eigenvalues when computing the correlation function
for the entanglement bipartition. In the second approach,
we subtract the T = 0 thermal entropy of finite L-layered
trees (with open boundary conditions) from the reduced
density matrix entanglement entropy of each such tree under
a bipartition through the center bond. This difference gives
purely the entanglement entropy associated with the single
bond cut, without the thermal entropy of the numerous zero
modes of the boundary. We find agreement between the two
approaches as the system size is increased (and the isolated
boundary eigenvalue of the bond-centered tree vanishes).

APPENDIX D: ANISOTROPIC HOPPING ON THE
INFINITE BETHE LATTICE

We compute the density of states on a Bethe lattice directly
in the thermodynamic limit [84], where all sites are identical
but each site has different hopping strengths ti (i = 1, . . . ,z)
on the z bonds connecting it to other sites. Expressing the
diagonal (onsite) Green’s function in terms of a self-energy,

G(ω) = 1

ω(1 − S(ω))
, S =

z∑
i=1

σi,

where we suppress notational dependence on ω; and where σi

is the self energy contributed from forward hopping starting
from a ti hop. It obeys the following recursive system of
questions:

σi = t2
i

ω2

1

1 − ∑
j �=i σj

.

These may be rewritten as a set of quadratic equations, with
implicit dependence only on S,

σ 2
i + (1 − S)σi − t2

i ω2 = 0.

Solving this quadratic equation (the positive root is taken) and
summing over i, we find a single equation for the self energy
S. We may then rewrite it directly as an implicit equation for
the inverse Green’s function G−1,

(z − 2)G−1 + 2ω =
z∑

i=1

√
(G−1)2 + 4t2

i .

The density of states ρ is proportional to the imaginary part of
G (in this notation ρ = −ImG/π ). The system is gapless here
if there is a solution with nonzero DoS at zero energy. Writing
r = 2πρ(0), the equation to be solved is

(z − 2) =
z∑

i=1

√
1 − t2

i r2.

Let us analyze where a solution to this equation first appears.
At r = 0, the right-hand side (RHS) is equal to z and is
greater than the left-hand side (LHS). The RHS decreases
monotonically with r . However, r takes values between 0 and
rmax = 1/maxi[ti]. The RHS takes its minimum value at rmax.
The phase boundary between the gapped and gapless phases
occurs when this minimum value of the RHS is just barely
equal to the LHS, i.e.,

(z − 2) =
z∑

i=1

√
1 −

(
ti

tmax

)2

, tmax = maxi[ti].

Let us consider this solution for the case when all hoppings
ti = t are equal except one, tm, which is larger than the rest.
The phase boundary then occurs at

t = √
2z − 3

tm

(z − 1)
; z = 3 → a = 2 − √

3

2 + 2
√

3
≈ 0.05.

In the loopless infinite D = ∞ Bethe lattice, the extent of the
gapless phase is shrunk compared to its extent on the D = 2,3
finite-dimensional lattices. Indeed, the iTEBD computations,
which are expected to break down for a gapless phase, are
able to capture the gapped spin liquid characteristics down to
a ≈ 0.15, until they break down in a first-order transition to
full symmetry breaking.

APPENDIX E: HARMONIC-HONEYCOMB SERIES

In the notation for the n-harmonic-honeycomb lattice, the
integer n counts the number of hexagons forming the width
of each fixed-orientation planar strip. Or equivalently, going
along the direction of the special c axis, the integer n + 1
specifies the number of z bonds between switches of the
x,y bonds orientation. Odd-n lattices posses a mirror plane
perpendicular to the special axis, slicing through the midpoint
of the (odd number of) hexagons; even-n lattices possess
no mirror reflections, only glide planes. In this manuscript,
we focus on two lattices: the n = 1 stripyhoneycomb lattice,
space group Cccm, recently synthesized [11] as a polytype of
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Li2IrO3, with � = 6 hexagon as well as � = 14 sized minimal
loops; and the n = 0 hyperhoneycomb or hyperhoneycomb
lattice, space group Fddd, with � = 10 decagon minimal loops.
The two lattices are shown in Figs. 1 and 2 respectively.

The “hyperhoneycomb” terminology for the hyperhon-
eycomb lattice may be understood through the following
connection to the hyperkagome lattice (also related to the
hyperoctagon lattice [64]). Consider the 2D kagome and hon-
eycomb lattices.2 The kagome is the medial lattice—formed by
connecting bond midpoints—of the honeycomb lattice. This
relation naturally suggests the existence of 3D honeycomblike
lattices, which can be similarly associated with the 3D hyper-
kagome [15] lattice, the three-dimensional lattice of corner-
sharing triangles formed by iridium ions in Na4Ir3O8. Indeed,
the medial lattice of the hyperhoneycomb lattice has a graph
(or, an adjacency matrix), which is, locally, identical to that of
the hyperkagome: both feature corner-sharing triangles, which
combine to form � = 10 decagon loops. These decagons arise
from the � = 10 minimal loops of the hyperhoneycomb lattice.

APPENDIX F: MEAN FIELD FOR STRIPY-X/Y ORDER

We briefly recall the self consistency equation for the

mean-field S = 1/2 moment, 2| �mi | = tanh[| �̃Bi |/(2T )] and
m̂i = ˆ̃Bi , where B̃i is the mean-field coupling to spin Si .
The spins develop a moment at a transition temperature
TN = 2Esite, where Esite is the classical energy per site in
the ordered state [e.g., −(1/4)(z/2)J ]. Above the transi-
tion temperature, the mean field produces the Curie-Weiss
law, χrr = (gr )2μ2

B/(4T + ∑
j J rr

i0j
), where

∑
j J rr

i0j
= zJ for

nearest neighbor J . Experimentally, relevant units may be
restored by noting that μB = 0.672 K/T, where K denotes
Kelvin and T denotes Tesla. In the stripy-X/Y order, the

classical mean-field �̃Bi takes the form

�̃Bi = gμB
�B − (

Kdm
x
i x̂ + Kdm

y

n[i]ŷ + Kcm
z
n[i]ẑ

+ Jc �mn[i] + Jd �mn[i] + Jd �mi

)
(F1)

and every site carries one of two magnetizations, �mi

or �mn[i].
Note that for the model Hamiltonians we consider, the

principal axes of the susceptibility tensor are be x,y,z rather
than the crystallographic axes a,b,c. Terms arising from
the global symmetries of the crystal will likely change the
principal axes to match the crystallographic ones. To compare
with experiment without adding any such additional terms, we
measure the susceptibility tensor along the crystallographic
axes as shown in Fig. 3. The weakly anisotropic g factors,
experimentally determined at high temperature for each of
the crystallographic axes, are then incorporated into each axis
of χ . We use the g factors gx+y = gz = 1.95, gx−y = 2.35.
Note that the overall scale of the g-factors needed to fit the
susceptibility, which was measured experimentally on a single
crystal, carries an additional uncertainty associated with the
uncertainty of estimating the number of Li2IrO3 formula units
in the crystal.

2This construction was suggested by Christopher Henley [85,86].
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FIG. 13. (Color online) Transitions between magnetic orders.
Comparison between iTEBD (solid blue line) and classical mean-field
theory (dashed red line), of the location in φ as a function of anisotropy
a of the first-order transition between two adjacent magnetic orders.
(Top left) Transition between zigzag and FM phases. (Top right)
Transition between stripy and Neel phases. (Bottom) Transitions
shown on the radial plot corresponding to Fig. 4.

APPENDIX G: COMPARISON OF MAGNETIC
TRANSITIONS IN iTEBD AND MEAN-FIELD THEORY

Magnetic phases can be approximately described within a
classical mean-field theory. Such classical product states over
sites, with no quantum fluctuation or entanglement, correspond
to tensor product states with bond dimension χ = 1. On the
Bethe lattice, we have captured the magnetically ordered
phases using tensor product states with various χ . We find
that increasing χ to a value as low as χ = 4 is sufficient for
capturing most of the quantum fluctuations near a first-order
transition between adjacent magnetic phases. The location in
parameter space of these transitions can be compared to the
classical transition point. Classically, the transition occurs at

FIG. 14. (Color online) Magnetic orders on the hyperhoney-
comb lattice within the Kitaev-Heisenberg phase diagram. Three
magnetic configurations are shown: clockwise from top left these
are Neel, stripy-Z, and zigzag-Z. Blue spheres denote up spins and
red spheres denote down spins in these collinear antiferromagneic
orders. Stripy-Z is dual to a z-oriented ferromagnet, zigzag-Z is dual
to a z-oriented Neel order.
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0.5 1.0 1.5 2.0
t

0.6

0.4

0.2

0.2

0.4

m Neel (z)

Neel (x)

Stripy Ferromagnet Zigzag

Energy

Hidden 

   FM

 FM 

SU(2)
Classical bound

Cluster bound

m/ħ

θ/π

FIG. 15. (Color online) Kitaev-Heisenberg magnetic phases with
a = 1/2 anisotropy. See description for Fig. 10. The energy measured
in iTEBD is always found to be bounded from above by classical
product states and from below by considering a maximally entangled
cluster, providing a check on the algorithm. The QSL phases here are
gapped and shown in Figs. 11 and 16, but their extent is not visible
in this scale due to the strong anisotropy.

φ = nπ − arccot [2 + a], for anisotropy a, with n = 1 for the
zigzag-FM transition and n = 2 fo the stripy-Neel transition.
This comparison is shown in Fig. 13. For concreteness, we also
draw sample magnetic configurations on the hyperhoneycomb
lattice, shown in Fig. 14.

APPENDIX H: ADDITIONAL iTEBD RESULTS

Here we present additional figures with results from the
iTEBD computation, as described in the main text and in the
figure captions. The results are shown in Figs. 15–18.

FIG. 16. (Color online) Gapped spin liquid for K > 0 and
surrounding magnetic phases within iTEBD. See the description in
Fig. 11. Here we show the QSL at a = 1/2,K > 0, which competes
with the zigzag and Neel orders. Different entropy curves occur here
compared to the K < 0 QSL since while both the FM and stripy
orders are effectively ferromagnets with nearly saturated ordered
moments, the Neel and zigzag phases involve substantial quantum
fluctuations.
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FIG. 17. (Color online) Isotropic a = 0 Kitaev-Heisenberg
phase diagram via iTEBD: correlators and entanglement. The four
magnetically ordered phases can be identified by various measures
in addition to their direct order parameters. These include signatures
of the transitions in energy derivatives (not shown here), spin-spin
correlators (top), and entanglement entropies on the various bonds
in the unit cell (bottom). The entanglement entropies vanish at the
exactly solvable points (shown by yellow lines) where the ground
state, a (hidden) ferromagnet, is a simple product state.
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0.2

-0.2

-0.4

13/41/21/4
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Energy: iTEBD, fermions (dotted)

Spin correlators: n.n. Kitaev, Heisenberg

FIG. 18. (Color online) Further benchmarks of iTEBD for the
QSLs. The iTEBD spin correlators match the expected result for the
pure Kitaev model, vanishing except for nearest neighbor Kitaev-
matched spins; all magnetic order parameters vanish (shown), and
the iTEBD ground-state energy per bond (cyan) matches the energy
computed from the majorana fermion spectrum (black), in the gapped
QSL phase.
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