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Ferromagnetic phase in the polarized two-species bosonic Hubbard model
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We recently studied a doped two-dimensional bosonic Hubbard model with two hard-core species, with different
masses, using quantum Monte Carlo simulations [Hettiarachchilage, Phys. Rev. B 88, 161101(R) (2013)]. Upon
doping away from half filling, we find several distinct phases, including a phase-separated ferromagnet with
Mott behavior for the heavy species and both Mott-insulating and superfluid behaviors for the light species.
Introducing polarization, i.e., an imbalance in the population between species, we find a fully phase-separated
ferromagnet. This phase exists for a broad range of temperatures and polarizations. By using finite-size scaling
of the susceptibility, we find a critical exponent which is consistent with the two-dimensional Ising universality
class. Significantly, since the global entropy of this phase is higher than that of the ferromagnetic phase with
single species, its experimental observation in cold atoms may be feasible.
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I. INTRODUCTION

One of the frontiers of condensed-matter physics is the
study of competing quantum phases such as coexistent and
inhomogeneous phases, quantum criticality, and secondary
ordered phases close to quantum critical points [1–6]. These
exotic phenomena in strongly correlated systems occur due
to the competition and cooperation between the spin, charge,
lattice, and orbital degrees of freedom [7]. Unfortunately, it
is often difficult to differentiate the effect of these degrees of
freedom in real materials. However, the advance of optical
lattice experiments provides a tantalizing opportunity to study
competing phases via controlled external parameters [8–10].

The experimental tunability of Hamiltonian parameters
using laser and magnetic fields [11,12] allows the realization
of strongly correlated model Hamiltonians. The realization
of the Bose-Hubbard model using ultracold atoms on optical
lattices [13] has led to the observation [14,15] of the Mott-
insulator to superfluid phase transition. The Mott-insulator
phase is characterized by commensurate occupations, gapped
excitations, and incompressibility in the strong-coupling
regime. The superfluid phase is characterized by Bose-Einstein
condensation, gapless excitations, and finite compressibility in
the weak-coupling regime.

This success has spurred interest in mixtures of atoms which
can give rise to even more interesting and complex phases.
These include mixtures of bosonic and fermionic atoms
[16–19] (a Bose-Fermi mixture) and mixtures of two different
bosonic species (a Bose-Bose mixture) [20–22]. Moreover,
experimental studies of 85Rb-87Rb, 87Rb-41K, 6Li-40K, and dif-
ferent alkaline-earth mixtures in optical lattices [23–25] have
motivated theoretical studies of the two-species Bose-Hubbard
model [26–34]. The zero-temperature phase diagram of the
two-dimensional, two-species, hard-core bosonic Hubbard
model has been studied at half filling using a combination
of mean-field and variational methods [26], and by means
of quantum Monte Carlo simulations [27]. The rich phase
diagram found at half filling in these studies shows ordered
Mott-insulating phases, including antiferromagnetic and su-
percounterfluid phases in the strong-interaction limit. On the
other hand, superfluid and antiferromagnetic/superfluid phases

are found in the weak-interaction limit [26–30]. Recently, we
have included doping dependence as a control parameter to
study this model using quantum Monte Carlo simulations.
We found several distinct phases, including a normal liquid
at higher temperatures, an antiferromagnetically ordered Mott
insulator, and a region of coexistent antiferromagnetic and
superfluid order near half filling [34]. We also reported a small
dome containing a phase-separated ferromagnetic phase away
from half filling at zero polarization.

Though the realization of quantum magnetic phases has
gained significant attention, the prominent experimental
challenge is to reach the low temperatures and entropies
needed to observe these phases. Several different experi-
mental techniques have been proposed to reach such low
entropies [35–37]. Interestingly, a Bose-Fermi mixture may
be used to squeeze the entropy of a Fermi gas into the
surrounding Bose gas [38]. This can leave a low-entropy,
heavy Fermi gas by evaporating the entropy absorbed by
the light Bose gas. The relatively high global entropy of
the phase-separated ferromagnetic phase that we found away
from half filling in the two-species Hubbard model [34]
suggests that this ferromagnet should be easier to access
experimentally.

In the experimental setup of boson-boson mixtures, the
two species are not always perfectly balanced [21,39]. The
evaporative cooling leads to net losses of one of the species,
due to the difference in the effective depth of the traps. This
can be adjusted by loading a different number of atoms for
different species into the trap [39]. This procedure can also be
used to set an imbalance amount of atoms for the two species.
Most of the previous theoretical or numerical studies on the
two-species Bose-Hubbard model do not directly address this
imbalance in the experimental conditions.

In this paper, we explore the extent of the phase-separated
ferromagnetic phase as a function of finite polarization,
i.e., with a different population for each species. When the
polarization is positive (more of the light than heavy particles),
we find a larger region of the ferromagnetic phase-separated
order, with higher transition temperatures and greater extent in
doping. Since this ferromagnetic phase exists for a broad range
of sufficiently high temperatures and polarizations together
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with high global entropies, experimental observation in cold
atoms may be achievable.

This paper is organized as follows. In Sec. II, we describe
our model and method. The density versus polarization phase
diagram at low temperature is studied in Sec. III. In Sec. IV,
we discuss the temperature versus polarization phase diagram
along an optimal superfluid or maximum ferromagnetic phase
line. The momentum distribution of the ferromagnetic and
superfluid phases is presented in Sec. V. In Sec. VI, we
calculate the entropy of the ferromagnetic, antiferromagnetic,
and superfluid phases. Finally, we conclude in Sec. VII.

II. MODEL AND METHOD

The Hamiltonian for the two-species Hubbard model with
hard-core heavy bosons a and light bosons b confined on a
two-dimensional square lattice takes the form

Ĥ = −ta
∑
〈i,j〉

(a†
i aj + H.c.)

− tb
∑
〈i,j〉

(b†i bj + H.c.) + Uab

∑
i

n̂a
i n̂

b
i , (1)

where a
†
i (b†i ) and ai (bi) are the creation and annihilation

operators of hard-core bosons a and (b), respectively, with
number operators n̂a

i = a
†
i ai , n̂b

i = b
†
i bi . The sum

∑
〈i,j〉 runs

over all distinct pairs of first neighboring sites i and j , ta(tb)
is the hopping integral between sites i and j for species a (b),
and Uab is the strength of the on-site interspecies repulsion.

We perform a quantum Monte Carlo study of the model (1)
by using the Stochastic Green Function algorithm [40,41] with
global space-time updates [42] to solve the canonical ensemble
on L × L lattices. We focus on the polarized phase diagram,
with polarization P = Nb−Na

L2 and total density ρ = Nb+Na

L2 ,
with Na and Nb the number of heavy a and light b particles,
respectively. For the other parameters, we use the same values
as in Ref. [34], namely ta = 0.08 t , tb = t , and Uab = 6t ,
where t = 1.

III. PHASE DIAGRAM AT LOW TEMPERATURE

Figure 1 displays the total density ρ versus polarization P

phase diagram at low temperature. In the thermodynamic limit,
a ferromagnetic phase exists in a broad region of densities
(red area), heavy a and light b particle superfluidity exists in
a smaller region of densities (green area), and superfluidity
of light b particles (with heavy a particles in the normal
state) appears in most of the rest of the phase diagram
(white area). Along the zero polarization axis, there is an
antiferromagnetic phase at half filling (ρ = 1 and P = 0), and
an antiferromagnetic to superfluid phase-separated region for
1.0 < ρ < 1.1 and P = 0, as discussed in Ref. [34]. The black
dotted line, Nb + Na

2 = L2, follows the highest ferromagnetic
critical temperatures (optimal superfluid line). Along this line,
the system shows fully phase-separated regions of average
local densities na ∼ 0 together with nb ∼ 1, and na ∼ 1 with
nb ∼ 0.5. Therefore, the number of light particles, Nb, is given
as Nb = (L2 − Na) + Na

2 (or Na

2 + Nb = L2). In our previous
study, we did not distinguish between the phase where only the
light particles are superfluid from the one where both species

FIG. 1. (Color online) The total density, ρ = Nb+Na

L2 , vs polar-

ization, P = Nb−Na

L2 , phase diagram at very low temperature. The
transition temperatures associated with the data points are obtained
from finite-size scaling calculations. The boundaries between the
phases are estimated for βt = 60 and L = 10, with ta = 0.08t, tb =
1.00t , and Uab = 6t . The boundaries may slightly change for the
ground state. The red area shows the phase-separated ferromagnet
(FM). The green area shows the region of superfluidity of both a
and b species (SFab). The white region represents the superfluidity of
light b particles (SFb), except that the system is an antiferromagnet at
half filling (ρ = 1 and P = 0), and there is an antiferromagnetic to
superfluid phase-separated region near half filling (1.0 < ρ < 1.1
and P = 0), as discussed in Ref. [34]. Both particles are in a
Mott-insulating phase whenever their individual densities are integers
(0 or 1). The blue squares indicate the transition temperatures
from the light species superfluid to the ferromagnetic phase. The
red circles correspond to the transition temperatures from the light
species superfluid to the phase where both species are superfluid. The
black dotted line, Nb + Na

2 = L2, follows the highest ferromagnetic
critical temperature. The phase diagram as a function of temperature
along this black dotted line is shown in Fig. 4. The momentum
distributions shown in Fig. 6 are calculated along the purple dotted
line (Na = 0.625L2), which intersects the black dotted line. The
momentum distributions for heavy and light species for three points
along the purple dotted line are shown in the bottom panels of Fig. 6.
The black line is the zero polarization axis.

are superfluid. The ferromagnetic phase boundaries at zero
polarization have also changed slightly.

The blue squares in Fig. 1 indicate the transition temper-
ature from the light species superfluid to the ferromagnetic
phase for the given densities and polarizations. To find
these transition temperatures, we calculate the ferromagnetic
susceptibility for different system sizes and perform a finite-
size scaling. The susceptibility is given as χ (k) = 〈|A(k)|2〉 −
|〈A(k)〉|2 with

A(k) = 1

β

∫ β

0

∑
j

eik·rj
[
na

j (τ ) − nb
j (τ )

]
dτ. (2)

Following Ref. [43], we calculate the ferromagnetic suscepti-
bility ratio R, defined as

R = χ (0,ε) + χ (0,−ε) + χ (ε,0) + χ (−ε,0)

χ (ε,ε) + χ (−ε,ε) + χ (ε,−ε) + χ (−ε,−ε)
, (3)
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FIG. 2. (Color online) Scaling behavior of the ferromagnetic sus-
ceptibility for the continuous transition from light species superfluid
to ferromagnet at ρ = 1.4 and P = 0. The susceptibility ratios R
[Eq. (3)] vs temperature T/t for different system sizes cross at the
critical temperature, Tc = 0.145t . Inset: The scaling near the critical
temperature. The curves collapse onto a single curve with the critical
exponent of correlation length ν = 1. The data points are based on
simulation results; the lines are guides to the eye.

where ε = 2π
L

. We impose all the point-group symmetries in
k space near k ∼ 0 to both the numerator and denominator
to reduce the statistical noise associated with quantum Monte
Carlo sampling.

The scaling behavior of the ferromagnetic transition tem-
perature is shown in Fig. 2, where the susceptibility ratio R is
plotted for different system sizes as a function of temperature
T/t at ρ = 1.4 and P = 0. In Fisher scaling [44–46], the
susceptibility at small wave number should scale as χ ∼
L

γ

ν g[L
1
ν (T − Tc)], where γ and ν are the critical exponents

for the ferromagnetic susceptibility and correlation length,
respectively. By looking at the ratio of the susceptibilities
R, the L

γ

ν factor is canceled. At the transition, the scaling
function g(0) is independent of L. Thus, the susceptibility
ratio R versus temperature T for different system sizes should
cross at the critical temperature (T = Tc = 0.145t), as shown
in Fig. 2. By choosing the critical exponent of the correlation
length as ν = 1, i.e., the value for a two-dimensional Ising
transition, we find that the curves collapse onto one curve
near the critical temperature (cf. the inset of Fig. 2). If the
transition is second order by considering symmetry arguments,
it should belong to the Ising universality class. However, if we
understand the polarized model as a Ising system within an
external magnetic field, it is possible that the ferromagnetic
transition is first order. Since it is very difficult to distinguish
between first- and second-order phase transitions with our
finite-size calculations, we cannot clarify this issue.

The red circles in Fig. 1 indicate the superfluid transition
temperature for the heavy species. The scaling behavior of
the superfluid to normal-liquid transition should follow that of
the Kosterlitz-Thouless continuous transition. We note that the
Hamiltonian (1) satisfies the condition (28) of Ref. [47], which
allows one to relate the superfluid density to the fluctuations
of the winding number [48]. In Fig. 3, we show the winding
number of the a particles, 〈W 2〉, as a function of temperature

FIG. 3. (Color online) Winding number of heavy a particles as
a function of temperature for different system sizes at ρ = 1.14 and
P = 0. The black dotted line corresponds to 4T

π
and is used to find the

crossing temperature for different system sizes. Inset: The finite-size
scaling of the crossing temperatures to find the superfluid critical
temperature, Tc = 0.03t , in the thermodynamic limit. The data points
are based on simulation results; the lines are guides to the eye.

T/t for different system sizes. The order parameter, i.e., the
superfluid density, has a universal jump of 〈W 2〉 = 4

π
at the

critical point [49]. The black dotted line shows 4
π
T as a

function of temperature. We read the crossing temperature
TL for different system sizes. Then we use the relation
between the crossing temperature TL and the cluster size L,
TL − Tc(∞) ∝ 1

ln2(L) [50], to find the critical temperature Tc

in the thermodynamic limit. The inset of Fig. 3 displays this
scaling. We find Tc = 0.03t at ρ = 1.14 and P = 0.

IV. PHASE DIAGRAM ON THE OPTIMAL
SUPERFLUID LINE

To better understand the phases of the polarized model, we
investigate snapshots of the average local densities. From the
snapshots, we propose that superfluid and ferromagnetic states
are optimal along the black dotted line shown in Fig. 1, where
Na

2 + Nb = L2, with L2 the lattice size, and Na and Nb the
number of heavy and light atoms, respectively. Along this line,
the system shows fully phase-separated regions with average
local densities na ∼ 0 and nb ∼ 1 in the Mott region, and
na ∼ 1 and nb ∼ 0.5 in the Mott/superfluid region. The inset
of Fig. 4 displays snapshots of these average local densities for
heavy (left panel) and light (right panel) particles. Physically,
this optimal line is driven by the fact that a superfluid with
nb ∼ 0.5 gains the most energy per particle. As an example,
for Na = 50, Nb = 75, L = 10 (ρ = 1.25 and P = 0.25), half
of the lattice is filled with a particles and the other half with b
particles. The 25 remaining b particles will occupy the region
filled by a particles and nb = 25

50 = 0.5 in that region. This
reasoning is valid along this optimal superfluid line. However,
when the system deviates far from Na = 50% of the number
of lattice sites, it is difficult to stabilize small and large phase-
separated regions. In this case, the pattern may break. This
also explains why the ferromagnetic phase-separated phase is
more stable for positive polarizations around ρ = 1.25 and
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FIG. 4. (Color online) The temperature T/t vs polarization, P =
Nb−Na

L2 , phase diagram when Nb + Na

2 = L2. The abscissa extends
from ρ = 1,P = 1 (Na = 0, Nb = L2) to ρ = 1.5,P = −0.5 (Na =
L2, Nb = L2/2). The orange area corresponds to the phase-separated
ferromagnet (FM). The green area is the region where the light b
species displays superfluidity (SF). The white area is the normal
liquid (NL). The blue squares and red circles indicating the boundaries
between the phases are calculated by finite-size scaling; see Sec. III.
The curves are guides to the eye. Since it is difficult to perform
finite-size scaling at very low temperatures, the edges of the phase
diagram are estimations of the transition temperatures based on results
of small clusters. Inset: A snapshot of the average local densities vs
lattice coordinates for L = 10, ρ = 1.25, P = 0.25, and βt = 80.
Left panel: For a particles, the red regions have 〈na

i 〉 ∼ 0, while
the occupation of the blue region is 〈na

i 〉 ∼ 1. Right panel: For b
particles, the blue regions have 〈nb

i 〉 ∼ 1, while the occupation of
the green region is 〈nb

i 〉 ∼ 0.5. The ferromagnetic phase separation
occurs when the heavy species is in a Mott-insulating state, while the
light one displays regions with either Mott-insulating or superfluid
behaviors.

P = 0.25. At half filling of the heavy particles, this pattern is
more stable since there are two large phase-separated regions
reducing surface effects.

Figure 4 shows the temperature T/t versus polarization,
P = Nb−Na

L2 , phase diagram on the optimal superfluid line,
Na

2 + Nb = L2. The blue squares are the ferromagnetic tran-
sition temperatures found by scaling, as discussed in Sec. III.
The red circles indicate the transition temperatures for light
species superfluid. Again, the scaling behavior of this light
particle superfluid to normal-liquid transition follows that of
the Kosterlitz-Thouless transition, as discuss earlier for the
heavy particles. In Fig. 5, we show the winding of the b
particles, 〈W 2〉, as a function of temperature T/t for different
system sizes. We find Tc = 0.245t at ρ = 1.25 and P = 0.25,
as shown in Fig. 5.

V. MOMENTUM DISTRIBUTION

A related experimentally accessible quantity that can distin-
guish different phases of bosons is the momentum distribution.

FIG. 5. (Color online) Winding number of light b particles as a
function of temperature for different system sizes at ρ = 1.25 and
P = 0.25. The black dotted line shows 4T

π
and it is used to find the

crossing temperatures for different system sizes. The lowering of
the superfluid density at low temperatures occurs when the system
enters the ferromagnetic phase where the light species displays both
superfluid and Mott behaviors. Inset: The finite-size scaling of the
crossing temperatures to find the superfluid critical temperature, Tc =
0.245t , in the thermodynamic limit for the continuous transition. The
data points are based on simulation results; the lines are guides to the
eye.

It is defined as

N (k) = 1

L2

∑
k,l

eik·(rk−rl )〈a†
kal 〉, (4)

with the momentum kx,y = 2π
L

m, m = 0,1, . . . ,L − 1. The
superfluid ground state is characterized by a peak at zero
momentum, k = (0,0), while the Mott-insulator phase has a
uniform momentum distribution [13,23]. Figure 6 displays the
momentum distribution of heavy and light particles for the
ferromagnetic and superfluid phases along the purple dotted
line in Fig. 1. The momentum distribution at zero wave vector,
k = (0,0), and βt = 50 as a function of polarization for heavy
and light species is shown in the top panel. The momentum
distribution of the heavy particles at zero momentum is small
in the ferromagnetic region but large in the superfluid phase.
The light particles show significantly less variation with polar-
ization and have a value which is consistently large compared
to the ferromagnetic state of the heavy particles, indicative
of a superfluid state. The momentum distributions for heavy
and light species for three points along the purple dotted line
are shown in the bottom panels. The left panels show that
for ρ = 1.19 and P = −0.06, heavy and light distributions
display peaks at k = (0,0), indicating superfluidity of both
species. The same happens at the right panels for ρ = 1.48
and P = 0.23. The middle panel at ρ = 1.33 and P = 0.08
displays a k = (0,0) peak in the momentum distribution of
the light species, while the momentum distribution of heavy
particles is uniform. This behavior is consistent with the
phase-separated ferromagnetic phase, with the heavy species
a becoming Mott while the light one b displays regions with
Mott-insulating and superfluid behaviors.
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FIG. 6. (Color online) The k-space momentum distribution for
βt = 50 and L = 8. Top panel: The momentum distribution at zero
momentum k = (0,0) as a function of polarization for heavy (red
circles) and light (blue squares) species along the purple dotted line
shown in Fig. 1. The data points are based on simulation results;
the lines are guides to the eye. Bottom panels: The momentum
distributions for heavy and light species for three points along the
purple dotted line shown in Fig. 1. Left panel: The momentum
distribution at ρ = 1.19 and P = −0.06 (open black square in
Fig. 1). For both b (bottom) and a (top) particles, the distributions
have a peak at k = (0,0) which corresponds to superfluid behavior.
Middle panel: The momentum distribution for the ferromagnetic
phase at ρ = 1.33 and P = 0.08 (open black circle in Fig. 1). For
the b particles (bottom), the distribution has a peak at k = (0,0)
which corresponds to superfluid behavior. For a particles (top), the
distribution is uniform, corresponding to Mott behavior. Right panel:
The momentum distribution at ρ = 1.48 and P = 0.23 (open black
triangle in Fig. 1). For both b (bottom) and a (top) particles, the
distributions have a peak at k = (0,0) corresponding to superfluid
behavior.

VI. ENTROPY

Reaching the low entropies and temperatures required to
observe magnetically ordered or Mott-insulating phases is
still experimentally challenging. In the ferromagnetic phase-
separated region, the superfluid ordering of light b particles
can carry most of the entropy, leaving the entropy of the heavy
species in this phase essentially zero. Thus the ferromagnetic
phase-separated phase can have large entropy. Figure 7
shows the entropy for an L = 10 system calculated following
Ref. [51] for three different densities and polarizations,
ρ = 1 and P = 0 (antiferromagnet), ρ = 1.16 and P = 0
(superfluid), and ρ = 1.25 and P = 0.25 (ferromagnet). The
entropy of the ferromagnetic phase is greater than that of the
antiferromagnetic phase and similar to that of the superfluid

FIG. 7. (Color online) Entropy S(T ) for L = 10, ta = 0.08, tb =
t = 1, and Uab = 6, as a function of temperature T/t for three
different combinations of total densities ρ and polarizations P . The
red circles show the entropy of the phase-separated ferromagnetic
phase at ρ = 1.25 and P = 0.25. The blue squares display the entropy
of the antiferromagnetic phase at ρ = 1 and P = 0. The purple
triangles show the entropy of the superfluid phase at ρ = 1.16 for
the nonpolarized system. The data points are based on simulation
results; the lines are guides to the eye.

state, especially for low temperatures, indicating that it may
be more accessible experimentally. The entropy S(T ) is
calculated by integrating the internal energy per site E(T )
as

S(β,n) = S(0,n) + βE(β,n) −
∫ β

0
E(β ′,n)dβ ′, (5)

where S(0,n) depends on the possible per site occupation of a
and b particles.

VII. CONCLUSION

By introducing a population imbalance between the two
species, we find an extended region of phase-separated
ferromagnetism in the two-dimensional two-species hard-core
bosonic Hubbard model. The average local densities show
that the heavy species has Mott-insulating behavior, while
the light species is phase separated into both Mott-insulating
and superfluid regions. This phase exists for a broad range
of temperatures and polarizations. In this polarized model,
we find the optimal superfluid line, Na

2 + Nb = L2, where
the system shows high transition temperatures and fully
phase-separated regions at low temperatures with average local
densities na ∼ 0 and nb ∼ 1 on one of the regions, and na ∼ 1,
nb ∼ 0.5 on the other. This line exists because the superfluidity
of light species with nb ∼ 0.5 gains the most energy per
particle. Further, the ferromagnetic phase-separated phase is
more stable for positive polarizations around ρ = 1.25 and
P = 0.25. When the system deviates far from half filling of
the heavy a particles, the ferromagnetic phase vanishes since it
is difficult to stabilize small and large phase-separated regions.
By using finite-size scaling of ferromagnetic susceptibility
ratios, we find the correlation-length exponent ν ≈ 1 which is
consistent with a two-dimensional Ising ferromagnet. Despite
its ferromagnetic order, this phase has relatively high global
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entropy, which suggests that its experimental observation in
cold atoms should be more accessible.
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