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The Korringa-Kohn-Rostoker (KKR) Green’s function, multiple-scattering theory is an efficient site-centered,
electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a
spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number
Lmax = (l,m)max, while scattering matrices, which determine spectral properties, are truncated at Ltr = (l,m)tr
where phase shifts δl>ltr are negligible. Historically, Lmax is set equal to Ltr , which is correct for large enough
Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site)
contributions for Lmax > Ltr with δl>ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992)].
We present a numerically efficient and accurate augmented-KKR Green’s function formalism that solves the KKR
equations by exact matrix inversion [R3 process with rank N (ltr + 1)2] and includes higher-L contributions via
linear algebra [R2 process with rank N (lmax + 1)2]. The augmented-KKR approach yields properly normalized
wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that
agrees with Lloyd’s formula. We apply our formalism to fcc Cu, bcc Fe, and L10 CoPt and present the numerical
results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus
Lmax for a given Ltr .
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I. INTRODUCTION

Multiple-scattering theory, as formulated by Korringa [1],
Kohn, and Rostoker [2] (KKR), continues to be a powerful
and efficient method to study the electronic structure of
solids [3]. KKR theory is Rayleigh-Ritz variational, like the
related muffin-tin orbital (MTO) and augmented plane-wave
(APW) methods. KKR Green’s function (GF) techniques have
facilitated numerous successful applications to spectral and
energy-related properties, such as surfaces [3], alloys [4–7],
interfaces [8,9], quantum criticality [10], and transport [11].
Due to its inherent multiple-scattering nature, KKR GF
techniques are used extensively to predict and analyze exper-
imental results [12] involving low-energy electron diffraction
(LEED) [13,14], photoemission [15–17], and neutron and
x-ray scattering [18–20].

A key parameter controlling KKR convergence is the
maximum orbital and azimuthal number Lmax = (l,m)max of
the truncated spherical-wave basis on each scattering center.
Historically, at a wave vector k and energy E, Lmax was
also chosen to control truncation of the single-site scattering
tLL′(E) matrices and KKR scattering-path operator τLL′(k; E)
that dictates spectral properties of the system. However,
τLL′(k; E), i.e., the Green’s function (G), could be truncated
at Ltr < Lmax, where phase shifts δl>ltr are negligible (set to
zero), giving smaller matrices to invert if we could directly
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include the contribution of higher L’s (Lmax > Ltr ) via the
single-site and free-electron part of G.

All electronic-structure methods based on density func-
tional theory (DFT) involve numerous approximations from,
e.g., exchange correlation, pseudopotentials, and shape of
potential. For multiple-scattering theory, L truncation yields
an inherent error often ignored because of the rapid rise in
computational cost with Lmax. In addition, the errors arising
from L truncation often are handled in an uncontrollable
fashion. For Ltr equal to Lmax, researchers find apparent
convergence in close-packed systems using lmax ∼ 3. Yet, a key
source of error is due to the normalization of wave functions
(�), affecting the charge density ρ(r) and density of states
(DOS) n(E) calculated from the Green’s functions. As such,
if � is not correctly normalized, the integrated DOS from
the Ltr -truncated basis does not exactly reproduce the total
number of electrons in the system, and the Fermi energy
EF is slightly incorrect—a possible issue in systems with
spectral gaps. Also, L truncation introduces error in the dipole
matrix elements, which couple l and l ± 1 states, needed for
calculations of transport, electron-phonon, and atomic forces.

So, a balance is struck between convergence of KKR GF
properties versus lmax and numerical efficiency for inverting
KKR matrices with rank N (lmax + 1)2. Butler [21] investig-
ated the accuracy and convergence of multiple-scattering
theory versus l for two muffin-tin scatterers in a two-center
expansion, showing a solution can be made arbitrarily accurate
at some numerically costly lmax → 60. Zhang and Butler [22]
established a more proper procedure: Solve the secular
equation to Ltr and retain Lmax > Ltr contributions with δl>ltr

set to zero, yielding continuous and correctly normalized wave
functions and an electron count from the DOS that agreed
with that from Lloyd’s formula. This formalism was derived
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in real space but never implemented for realistic materials. No
equivalent KKR GF in reciprocal space was derived or tested.

We present an augmented-KKR GF formulation that yields
normalized wave functions, numerically fast basis-set conver-
gence, and an electron count that agrees with Lloyd’s formula.
Importantly, the augmented KKR formulation agrees well with
the standard KKR formulation using exact inversion to Lmax.
We tested convergence of total energy, EF (integrated DOS),
and magnetic moments in three systems: fcc Cu, magnetic bcc
Fe, and magnetic L10 CoPt. The efficiency of the augmented
KKR formulation arises because the matrices of rank (R)
N (ltr + 1)2 are solved by direct inversion (R3 process) and
contributions above Ltr are included by a closed-form (δl →
0) linear algebra (R2 process) augmentation of the matrices of
rank N (lmax + 1)2.

II. FORMALISM

In KKR GF theory, the site-diagonal Green’s function at a
specific energy E is given by

G(r,r′; E) =
∑
LL′

[
Zn

L(r,E)τnn
LL′(E)Zn

L′(r′,E)

−Zn
L(r<,E) J n

L′(r>,E)δLL′
]
, (1)

where L = (l,m) for the site-centered, spherical-harmonic
basis set. Here, r< (r>) denotes one of two vectors r
or r′ with the smaller (larger) absolute value. The tensor
τnn′
LL′(E) is the scattering-path operator [23] describing the

propagation pathway of electrons in an array of scattering
centers. Zn

L(r,E) and J n
L(r,E) are, respectively, the regular

and irregular solutions of the Schrödinger equation in the nth
Wigner-Seitz cell. Zn

L(r,E) has the form

Zn
L(r; E) = κ

∑
L′

φn
L′(r,E)

[
Sn

L′L(E)
]−1

, (2)

where κ = √
E − v0. Here, v0 is an arbitrary reference energy

for an exact theory, but, for approximate cases, such as muffin-
tin (MT) or atomic sphere approximations (ASAs), it can be
chosen variationally to match the trace of eigenvalues of the
exact theory [24]. φn

L′(r,E) is the wave-function solution with
potential vn(r), i.e.,

[−∇2 + vn(r)]φn
L(r,E) = Eφn

L(r,E). (3)

The potential vanishes outside the convex cell, so φn
L joins

smoothly to a combination of spherical Bessel jl(κr) and
Neumann nl(κr) functions beyond the circumscribing sphere
(CS) radii around the cell (r > RCS), i.e.,

φn
L(r,E) =

∑
L′

[
nl′ (κr)Sn

L′L(E) − jl′(κr)Cn
L′L(E)

]
YL′ (̂r). (4)

The sine S and cosine C matrices are calculated by matching
the continuity of the logarithmic derivative of φn

L across the
cell boundary. Notably, J n

L(r,E) has the asymptotic limit

J n
L(r,E) → jl(κr)YL(̂r), r > RCS. (5)

A. KKR GF formalism

While constructing τ
ij

LL′(E), the propagation of electrons
from one scattering center i to another j is defined by

the free-electron Green’s function gij

LL′(E) (in a spherical-
harmonic basis) or in a solid the KKR structure constant matrix
gnn′

LL′(k; E) with basis sites on n,n′ sublattices. In a solid, with
periodic boundary conditions invoked, τnn′

LL′(k; E) is given in
finite matrix form as

τ = (1 − tg)−1t = t + tgt + tgτgt, (6)

where t is the single-site scattering matrix, which in a cell n is
generally given by

tn = −κ−1(Cn − iSn)−1Sn. (7)

For a spherically symmetric scatterer [25] (used here), the
single-site t matrices simplify as

tLL′(E) → tl(E)δLL′ = −κ−1sin δl(E) eiδl (E). (8)

For MT or ASA scattering centers, the KKR phase shifts
are determined by matching the free-electron solution on the
sphere boundary.

Generally, the full GF (1) can be rewritten by Eq. (6) in
terms of single-site and multiple-scattering pieces, i.e.,

G(r,r′; E) = (ZtZ − ZJ) + Z(τ − t)Z

= (ZtZ − ZJ) + Zt(g)tZ + Zt(gτg)tZ. (9)

Each quantity above is a supermatrix in a space of angular
momentum [rank (l + 1)2] and of unit cell size N , giving a
total rank of R = N (l + 1)2.

The three major computational expenditures in KKR GF
theory are calculations of (1) structure constants g; (2) wave
functions Z and J; and, most costly, (3) τ from Eq. (6), which
requires an R3 operation for the inversion. Now, with N fixed,
L is usually truncated in numerical calculations to a small but
necessary value (e.g., L = 3), above which the phase shifts δl

are assumed to be zero, but not an L where the higher-order
terms can necessarily be ignored—an error.

B. Augmented-KKR GF

While free-electron contributions remain at all L’s, the
phase shift δl for a spherical scatterer decays rapidly (at
standard temperatures and pressures) with increasing value
of L. Thus, while the first line of Eq. (9) is convenient nu-
merically (e.g., for pole cancellation and contour integration,
and finite-temperature Matsubara sums [26–28]), the second
line provides a simple means to account for KKR multiple-
scattering solutions exactly the same way as in the conventional
KKR GF theory up to Ltr and then augmented with single-site
and free-electron contributions from Ltr < L � Lmax, while
maintaining symmetry and relative accuracy.

So, in augmented-KKR theory, we analytically evaluate
Eq. (9) to include L > Ltr (in the limit δl → 0) terms via
linear algebra, rather than full matrix inversion. First, gLL′ is
calculated for L � Lmax to where augmentation is desired.
Second, for L � Ltr , the terms in Eq. (9) are evaluated as
usual, while, for L > Ltr in the δl → 0 limit, the first two
terms can be analytically simplified using

Zt −−→
δl→0

+j(κr)

(ZtZ − ZJ) −−→
δl→0

−κ j(κr)[i j(κr) − n(κr)]. (10)
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Equation (10) is derived rigorously (see the Appendix) using
expressions for spherical potentials, which vanish outside of
spheres inscribed within each cell. They do not hold for full-
cell potentials, where nondiagonal L,L′ terms can contribute
generally, but can be derived.

Last, the most crucial step is evaluating the last term in
Eq. (9). Positing negligible scattering for large L’s, the last
term is calculated in three steps:

(1) Calculate τL1L2 = [(1 − tg)−1t]L1L2 for Li � Ltr by
exact inversion.

(2) With gLL′ (∀ L,L′ = Lmax > Ltr ), calculate gτg using

(gτg)LL′ =
Ltr∑
L1

Ltr∑
L2

(gLL1 )(τL1L2 )(gL2L′). (11)

(3) Having gτg, multiply (Zt)LL′ from both sides to get
G(r,r′,E) for all L = Lmax.

With this, one needs to perform an inversion (R3 operation)
only for matrices up to Ltr , and the higher-L contributions are
included by matrix multiplication (gτg), which is computa-
tionally much faster (R2 operation).

For nonspherical potentials, one can derive expressions
similar to Eq. (10) having off-diagonal (L,L′) components. So,
our three-step process to get the last term of Eq. (9) remains un-
changed, except that t is nondiagonal. As such, the advantage
of a rank-one update is lost when multiplying diagonal and off-
diagonal matrices, i.e., t with g or Zt with gτg. Yet, the scaling
for the multiple-scattering calculations remains unaltered. The
solution of the nondiagonal components of the matrices, such
as t, are more rapidly calculated using the analytic diagonal
solutions and iterating Dyson’s equation until convergence,
with integrations performed over convex Voronoi polyhedra,
rather than spheres [29]. For full potentials involving arbitrarily
shaped convex polyhedra, we have developed an efficient
three-dimensional (3D) isoparametric method [30] to perform
the integrations for solution of Schrödinger and Poisson’s
equations [31]. This method is more accurate and multiple
orders of magnitude faster than conventional shape-function
methods. Implementing the augmented-KKR formalism for
full potentials is planned. Because the numerical effort of
solving the multiple scattering is the same for both spherical
and nonspherical potentials, the additional effort for the full-
potential case in KKR theory scales linearly with the number
of nonequivalent atoms.

In an all-electron, ab initio calculation for real systems, l

truncation enters at several places and collectively affects, e.g.,
the cell DOS, and charge and magnetization densities. In turn,
the Fermi energy EF and magnetization M, defined from the
sum rules

N(EF) =
∫ EF

Ebot

[n↑(E′) + n↓(E′)]dE′ = Zval,

M =
∫ EF

Ebot

[n↑(E′) − n↓(E′)]dE′, (12)

are affected, as is the total energy. Here, Ebot designates
the bottom of the valence band, n↑(n↓) is the spin majority
(minority) DOS, and Zval is the average number of valence
electrons. As will be shown, l truncation plays a significant
role in correctly evaluating the EF and M.

III. COMPUTATIONAL DETAILS

An all-electron, DFT KKR GF code [32] is used to
perform the calculations, as previously done [4,7,8]. For the
present results, the von Barth–Hedin [33] local spin-density
approximation (LSDA), as parametrized by Moruzzi, Janak,
and Williams [34], was used. The site-dependent Voronoi
polyhedra were represented within an ASA sphere [35], with
multicomponent cases handled by an optimal basis [24], where
ASA spheres are adjust by saddle points in the electronic
density. Complex energy contour integration with 24 energy
points was used to integrate the Green’s function. Monkhorst
and Pack’s [36] special k-point method was used for Brillouin
zone integration.

Following the above theory, distinct from conventional
KKR theory, where L is truncated where δL(E) ≈ 0 (rather
than where free-electron contributions are small, which is E, L,
and temperature dependent), two distinct Ltr and Lmax indices
are used. All the calculations up to Ltr are performed in the
standard way; i.e., for each energy E, we evaluate (Z,J), t, and
g and get τ by inversion. For augmented-KKR theory, beyond
Ltr , we calculate the truncated τ for L,L′ � Ltr and use the
full gLL′ matrix to augment g + gτg Eq. (11) up to Lmax, which
can be chosen manually or to be below a specified tolerance for
GF error. Recall from Eq. (9) that we know the analytic form of
ZtZ − ZJ and Zt for L > Ltr , so the only effort is in evaluating
the matrix elements of g + gτg for Ltr < L � Lmax.

IV. RESULTS AND DISCUSSION

We apply the ab initio augmented-KKR formalism to fcc
Cu, bcc Fe, and L10 CoPt. The first two systems provide a
stringent test of our formalism for a simple nonmagnetic and a
magnetic system, respectively. The third illustrates application
to a multisublattice, magnetic example.

A. Convergence of total energy and Fermi energy

Figure 1 shows the convergence of total energy (bottom)
and Fermi energy (top) versus the augmentation lmax, with
ltr = 2,3,4 for fcc Cu in our KKR ASA code [32]. The left-
hand (right-hand) panel indicates the results for a basis of one
Cu atom (atom + octahedral hole). The right-hand panel shows
improvement in both augmentation and basis set, as the hole
site makes the Voronoi polyhedra for each scattering site (atom
and hole) more spherical, and the atom is better represented
by an ASA sphere (and reduces the ASA overlap error), while
the interstitial volume is greatly reduced.

The energies are not converged with ltr = 2 and large lmax

compared to converged values. By lmax = 5 the total energy
(EF) reaches an asymptotic value, and the ltr = 2 value is
higher by 9 mRy (4 mRy) relative to those calculated with
ltr = 4. Beyond lmax = 5, the error in total energy (EF) is less
than 0.05 mRy (0.01 mRy), i.e., the order of 1 × 10−5 Ry. For
the one-atom Cu basis (left-hand panel), the total energy (EF)
with ltr = 4 converged to within 1 mRy (0.1 mRy) compared
to that with ltr = 3. With an octahedral hole added to the basis
(right-hand panel), the results are exactly the same for ltr = 3
or 4. This is due to the use of a better basis set. As such, a faster
convergence in the l space can be achieved by an improved
basis set, but with a concomitant increase in the R3 process.
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FIG. 1. (Color online) Left: Convergence properties of total en-
ergy E (bottom) and Fermi level EF (top) vs lmax using different ltr
for one atom/cell fcc Cu. Right: Same as left, but for one Cu site plus
one octahedral-hole site per cell. E0 is defined by the ltr = 4,lmax = 8
result. EF is different on the left because of the Madelung potential
inherent on the right.

Moghadam et al. [37] carried out a test of l convergence for
fcc Cu in a real-space KKR, linear-scaling multiple-scattering
(LSMS) method. The difference between the total energy (EF)
for lmax = 3 and lmax = 8 is 7 mRy (6 mRy). For the k-space-
based, augmented-KKR theory, the differences are 6.5 mRy
(8 mRy) for the one-Cu-site basis, and 5 mRy (7 mRy) for a
basis with a Cu plus an octahedral hole. The present method,
however, is computationally faster due to the augmentation
used to evaluate the contribution of higher l’s.

Figure 2 shows the convergence of total energy (bottom),
EF (middle), and magnetic moments (top) for magnetic bcc
Fe (left-hand panel) and L10 CoPt (right-hand panel). As
in the case of fcc Cu, the total energy and EF converge by
lmax = 5 with ltr = 4. The converged moment of bcc Fe is
2.30μB , which compares well with the experimental value [38]
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FIG. 2. (Color online) Convergence of total energy E (bottom),
EF (middle), and magnetic moments (top) vs lmax at different ltr for
a one-atom bcc Fe (left), and for a two-atom L10 CoPt (right). E0 is
an Lmax = 8 reference value.
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FIG. 3. (Color online) Absolute difference in distinct elements of
TLL′ = (g + gτg)LL′ calculated using full τLL′ with L,L′ � Lmax and
the augmented-KKR τLL′ with L,L′ � Ltr = 2 and Lmax = 3 (top)
and Lmax = 4 (bottom) at E = (−0.76,0.003) Ry. Similar accuracy
is found along the entire semicircular contour of integration. For
spherically symmetric scatterers with Lmax = 3 (4), there are four
(five) distinct matrix elements in the L = 3 (4) block of the T matrix.

of 2.2μB . The Co and Pt moment in L10 CoPt converges
relatively slower compared to that of Fe. This is due to a slight
c/a distortion in the L10 structure (c/a = 0.984). Calculated
moments for Co and Pt are 1.91μB and 0.396μB , respectively,
compared to 1.76μB and 0.35μB from experiment at finite
temperature [39].

Last, for comparison of matrix elements from full-KKR
versus augmented-KKR theory, we first calculated τ for
L,L′ � Lmax by direct inversion, and then calculated the
T = g + gτg matrix using both full and truncated τ matrices.
Figure 3 shows the absolute error (�T) in the matrix elements
of the larger (L > Ltr ) block of the augmented T-matrix
calculated using full τ and truncated τ for fcc Cu. With
ltr = 2, the augmentation is compared for lmax = 3 (lmax = 4)
in the top (bottom) panel. For fcc symmetry, there are four
(five) distinct matrix elements in the l = 3 (l = 4) block of
the T matrix, which are labeled along the horizontal axis.
Clearly, augmented-KKR theory well reproduces the higher-l
block of T matrices compared to full-KKR inversion (quite
well below 1 × 10−6), showing that the computationally faster
augmentation has very good accuracy.

B. Comparison to Lloyd’s formula

Lloyd’s formula is the N -site generalization of the Friedel
(single-site) sum rule, or optical theorem, for the electronic
integrated DOS:

N (E) = Nfree(E) + 2

π

∑



(2
 + 1)δ
(E), (13)

where Nfree(E) is the integrated DOS of the free electrons,
known analytically in three dimensions, i.e., E3/2/(6π2). [For
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complex E, Eq. (13) is incorrect but can be generalized via
scattering matrices.] The KKR Lloyd’s formula for an ordered
system can be written in spectral representation at any complex
E as [40–42]

N (E) = Nfree(E) + 1

π
Im ln||α(E)||

− 1

Nk

�k
1

π
Im ln||1 − t(E)g(k,E)|| (14)

for discrete samples in k space, with α(E) defined by the
scattering solutions of v(r) near the scattering centers. The
determinant is performed over both basis-site and angular-
momentum indices, and it is equivalent to an eigenvalue sum,
albeit done by constant-E scan. The formula is also related
to Krein’s theorem [43,44]. Lloyd’s formula is an amazing
result being the closed-form expression for the integrated DOS
at any E (total electrons)! Moreover, a variation of Lloyd’s
formula with respect to potential v(r) yields the density at any
energy ρ(r; E) to second order in changes in the self-consistent
potential (e.g., higher-order L’s) and, hence, in EF [4].

Because the KKR determinant passes through zero at every
Bloch solution, it picks up a phase of π at these locations,
giving the number of electrons up to E. Equation (14) counts
jumps in phases in the KKR determinant (“Im log” operation).
There is a practical implementation issue: At a given E the
phase is known to modulo 2π (or total electrons within a
whole number), but trivially handled with a good EF estimate
from the real-space GF. Thus, Lloyd’s formula gives an exact
(no L truncation) EF and electron count from a few values of
E.

Importantly, here, the augmented-KKR formulation is
expected to yield a value of EF consistent with that obtained
by Lloyd’s formula. Also, for thermodynamics of a system,
an analytic expression for the free-energy functional can
be directly derived from Lloyd’s formula using a Gibbs
relation [4], which we use to calculate the total (free) energy.
At finite temperature it directly yields Mermin’s theorem,
or the Kohn-Sham theorem at 0 K [4]. Hence, the spectral
Lloyd’s formula specifies the thermodynamics and correct
Fermi surface at EF.

To assess the augmented-KKR EF and electron count, we
must compare three results: (1) convergence of the augmented-
KKR spectral GF—Lloyd’s formula; (2) convergence of the
augmented-KKR real-space GF, as given by the trace of
Eq. (9); and (3) convergence of items 1 and 2 with improved
basis. Notably, approach 2 is used in a typical self-consistent-
field (SCF) KKR GF for computational expediency because
G(r,r′; E) is always handy.

To be clear, results 1 and 2 should agree for an exact method.
However, these values will differ if there is any approximation
that is not handled equivalently in k space and real space, as in
the ASA. For result 1 above, G(r,r′; E) is evaluated within an
ASA sphere and then Fourier transformed to obtain G(k; E)
commensurate with the Brillouin zone of the full unit cell;
hence, for ordered systems, it is a calculation of the volume
enclosed by the Fermi surface and corresponds to the count
over a nonspherical charge distribution. In contrast, for result
2, the trace of G(r,r′; E) is evaluated in an ASA sphere, which
does not account for the volume as done in result 1, and it must
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FIG. 4. (Color online) EF by real-space GF (circle) relative to
spectral Lloyd’s formula (square) for Cu (left) and Cu plus hole
(right) for Ltr = Lmax. E0 is a reference energy.

suffer a modest error because only a spherical charge density
is considered. Therefore, result 1 above should be correct, and
a small error may appear from result 2, which will decrease
with, say, improving basis.

For comparison, a wave-function approach using the
ASA solves the secular equation after Fourier transform by
diagonalization to get the eigenvalues, and EF is then obtained
by counting states within the volume enclosed by the Fermi
surface; then the remaining quantities are determined by
referencing only k space. As such, it is equivalent to the value
from the spectral Lloyd’s formula, Eq. (14).

From the SCF KKR approach, Fig. 4 compares EF versus
Lmax (=Ltr ) from a real-space Green’s function (circle) and
from a spectral (k-space) Lloyd’s formula (square) for basis
with one Cu (left) and for one Cu plus an octahedral hole
(right). These results agrees with those from the augmented-
KKR approach with Ltr = 3 but evaluated for each Lmax � 8.
As is apparent, the spectral Lloyd’s results converge rapidly,
whereas those from real space converge slower and suffer
a small error because only a spherical charge density is
considered. As is obvious from Fig. 4, the discrepancy in EF

obtained from the two methods reduces when an octahedral
hole is inserted into the fcc cell (right-hand panel) because the
ASA then better represents the real-space volume; the k-space
result is also improved because the nonspherical charge density
is better represented.

As discussed elsewhere (e.g., for applications to warm-
dense matter), further improvements to the agreement between
real-space and k-space results (not shown) are possible, which
leads to much less than 1 mRy discrepancy. Example changes
include improving the normalization of scattering functions
(Z, J), and including Nfree(E) analytically (infinite L sum),
as in Lloyd’s formula, while simultaneously removing the L-
truncated free-electron Green’s function contributions from
the KKR Green’s function during the SCF cycle.

C. Convergence of structural parameters

Up to now we have investigated the convergence properties
at a fixed lattice parameter. Another important thing to check
is how convergence affects the accuracy of the equilibrium
(ground-state) lattice parameter. Figure 5 shows the energy ver-
sus lattice constant (a) for fcc Cu (top) and bcc Fe (bottom) at
different sets of l truncation. Notably, for both systems, the en-
ergy curve with ltr= 4 and lmax= 6 is almost indistinguishable
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from that with lmax = 8, indicating the convergence by lmax =
6. Already ltr = 3 finds a similar minimum to that from larger
ltr ; however, ltr = 2 is not a reliable choice for converged
results. The calculated 0 K lattice constants for fcc Cu and
bcc Fe are 6.72 and 5.26 a.u., respectively, which compare
well with room-temperature experimental values (6.82 and
5.42 a.u., respectively) and previous LSDA results.

D. Estimate of numerical savings

In the current implementation the augmented-KKR ap-
proach requires [N3(ltr + 1)3 + N2(lmax +1 + 1)(ltr + 1)] op-
erations compared to [N (lmax + 1)]3 operations in the standard
KKR approach. For reliable convergence in the present
examples, we found ltr = 3 and lmax = 8 to be sufficient
for lattice constants and structural energy differences, in
which case we require (64N3 + 36N2) operations as opposed
to 278N3 operations. Hence, about three- to fourfold less
computational time is required for cells with 1–10 atoms—an
estimate that holds the calculations done here.

V. CONCLUSION

Motivated by physics and resulting numerical efficiency, we
have presented and implemented an augment-KKR Green’s
function formalism that accurately handles multiple scattering
(where phase shifts are not zero) by direct inversion of
a smaller Ltr -truncated basis and includes higher L > Ltr

by linear algebra for necessary single-site and free-electron
contributions. We applied the augmented-KKR formalism to
three systems and showed very good convergence properties

and accuracy compared to KKR with direct inversion to Lmax,
although we discovered that a larger L basis is needed over
that generally assumed. To be mathematically consistent, the
L-sum truncations for wave functions and scattering matrices
need to be done in tandem with each other [see Eq. (9)] due
to a normalization factor occurring in both the single-site
wave functions and t matrices. By identifying this common
normalization, one can analytically evaluate the δl → 0 limit
to include higher L’s via simple linear algebra, instead of
the exact inversion as required in the conventional KKR
approach, saving significant computational effort while im-
proving accuracy. For nonspherical potentials, one can derive
the expressions with t’s no longer diagonal, but the approach
and the scaling for the multiple-scattering calculations remains
unchanged. The augmented-KKR approach can be extended
to the coherent potential approximation (CPA) and dynamical
cluster approximation (DCA) to handle disorder, as will be
presented elsewhere.
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APPENDIX: DERIVATION OF EQ. (10)

To derive Eq. (10), consider the matrix representation of
Eqs. (2), (4), (5), and (7). In the limit δl → 0, the sine and
cosine matrices S and C go to, respectively, zero and unitary
matrix, where |C| ∼ |eiφ| = 1. Then, accounting for cancella-
tions of sine matrices in the numerator and denominator, we
find

Zt = −(nS − jC)e+iδl −−→
δl→0

j(κr). (A1)

Similarly,

ZtZ = −κ
(nS − jC)(nS − jC)e+iδl

S
,

ZJ = κ
(nS − jC)j

S
.

As δl → 0, and we apply limit evaluation rules, we find

ZtZ −−→
δl→0

−κ [i j(κr) j(κr) − 2 j(κr) n(κr)],

ZJ −−→
δl→0

+κ j(κr) n(κr).

Therefore,

ZtZ − ZJ −−→
δl→0

−κ j(κr)[i j(κr) − n(κr)]. (A2)
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