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A scheme is proposed to construct integer and fractional topological quantum states of fermions in two spatial
dimensions. We devise models for such states by coupling wires of nonchiral Luttinger liquids of electrons
that are arranged in a periodic array. Which interwire couplings are allowed is dictated by symmetry and the
compatibility criterion that they can simultaneously acquire a finite expectation value, opening a spectral gap
between the ground state(s) and all excited states in the bulk. First, with these criteria at hand, we reproduce the
tenfold classification table of integer topological insulators, where their stability against interactions becomes
immediately transparent in the Luttinger liquid description. Second, we construct an example of a strongly
interacting fermionic topological phase of matter with short-range entanglement that lies outside of the tenfold
classification. Third, we expand the table to long-range entangled topological phases with intrinsic topological
order and fractional excitations.
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I. INTRODUCTION

The study of topological phases of matter is one of
the most vibrant directions of research in contemporary
condensed matter physics. One core accomplishment has
been the theoretical modeling and experimental discovery
of two-dimensional topological insulators [1–4]. The integer
quantum Hall effect (IQHE) was an early example of how
states could be classified into distinct topological classes using
an integer, the Chern number, to express the quantized Hall
conductivity [5–7]. In the IQHE, the number of delocalized
edge channels is directly tied to the quantized Hall conductivity
through the Chern number. More recently, it has been found
that the symmetry under reversal of time acts as a protective
symmetry for edge modes in (bulk) insulators with strong
spin-orbit interactions in two and three dimensions [1,8],
and that these systems are characterized by a Z2 topological
invariant.

The discovery of Z2 topological insulators has triggered a
search for a classification of phases of fermionic matter that
are distinct by some topological attribute. For noninteracting
electrons, a complete classification, the tenfold way, has been
accomplished in arbitrary dimensions [9–11]. In this scheme,
three discrete symmetries that act locally in position space—
time-reversal symmetry (TRS), particle-hole symmetry (PHS),
and chiral or sublattice symmetry (SLS)—play a central
role when defining the quantum numbers that identify the
topological insulating fermionic phases of matter within
one of the ten symmetry classes (see columns 1–3 from
Table I).

The tenfold way is believed to be robust to a perturbative
treatment of short-ranged electron-electron interactions for the
following reasons. First, the unperturbed ground state in the
clean limit and in a closed geometry is nondegenerate and is
given by the filled bands of a band insulator. The band gap
provides a small expansion parameter, namely the ratio of the
characteristic interacting energy scale to the band gap. Second,
the quantized topological invariant that characterizes the

filled bands, provided its definition and topological character
survives the presence of electron-electron interactions as is
the case for the symmetry class A in two spatial dimensions,
cannot change in a perturbative treatment of short-range
electron-electron interactions [12].

On the other hand, the fate of the tenfold way when electron-
electron interactions are strong is rather subtle [12–15]. For
example, short-range interactions can drive the system through
a topological phase transition at which the energy gap closes
[16,17], or they may spontaneously break a defining symmetry
of the topological phase. Even when short-range interactions
neither spontaneously break the symmetries nor close the gap,
it may be that two phases from the noninteracting tenfold way
cease to be distinguishable in the presence of interactions.
In fact, it was shown for the symmetry class BDI in one
dimension by Fidkowski and Kitaev that the noninteracting
Z classification was too fine in that it must be replaced by
a Z8 classification when generic short-range interactions are
allowed. How to construct a counterpart to the tenfold way for
interacting fermion (and boson) systems has thus attracted a
lot of interest [18–28].

The fractional quantum Hall effect (FQHE) is the paradigm
for a situation by which interactions select topologically
ordered ground states of a very different kind than the
nondegenerate ground states from the tenfold way. On a
closed two-dimensional manifold of genus g, interactions
can stabilize incompressible many-body ground states with
a g-dependent degeneracy. Excited states in the bulk must
then carry fractional quantum numbers (see Ref. [29] and
references therein). Such phases of matter, that follow the
FQHE paradigm, appear in the literature under different
names: fractional topological insulators, long-range entangled
phases, topologically ordered phases, or symmetry enriched
topological phases. In this paper, we use the terminology long-
range entangled (LRE) phase for all phases with nontrivial
g-dependent ground state degeneracy. All other phases, i.e.,
those that follow the IQHE paradigm, are called short-
range entangled (SRE) phases. (In doing so, we follow the
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TABLE I. (Color online) Realization of a two-dimensional array of quantum wires in each symmetry class of the tenfold way. For each of
the symmetry classes A, AII, D, DIII, and C, the ground state supports propagating gapless edge modes localized on the first and last wires that
are immune to local and symmetry-preserving perturbations. The first column labels the symmetry classes according to the Cartan classification
of symmetric spaces. The second column dictates if the operations for reversal of time (�̂ with the single-particle representation �), exchange
of particles and holes (�̂ with the single-particle representation �), and reversal of chirality (Ĉ with the single-particle representation C) are
the generators of symmetries with their single-particle representations squaring to +1, −1, or are not present, in which case the entry 0 is used.
(See the footnote [45] for a definition of Ĉ.) The third column is the set to which the topological index from the tenfold way, defined as it is
in the noninteracting limit, belongs to. The fourth column is a pictorial representation of the interactions (a set of tunnelings vectors T ) for the
two-dimensional array of quantum wires that delivers short-range entangled (SRE) gapless edge states. A wire is represented by a colored box
with the minimum number of channels compatible with the symmetry class. Each channel in a wire is either a right mover (⊗) or a left mover
(�) that may or may not carry a spin quantum number (↑,↓) or a particle (yellow color) or hole (black color) attribute. The lines describe
tunneling processes within a wire or between consecutive wires in the array that are of one-body type when they do not carry an arrow or of
strictly many-body type when they carry an arrow. Arrows point toward the sites on which creation operators act and away from the sites on
which annihilation operators act. For example, in the symmetry class A, the single line connecting two consecutive wires in the SRE column
represents a one-body backward scattering by which left and right movers belonging to consecutive wires are coupled. The lines have been
omitted for the fifth (LRE) column, only the tunneling vectors are specified.

Θ2 Π2 C2 Short-range entangled (SRE) topological phase Long-range entangled (LRE) topological phase

A 0 0 0 Z ...
T=(  + +| +  –  | + + |        )

...
T=(  + +|  2 -1 |  1 -2 |        )

AIII 0 0 + NONE

AII − 0 0 Z2
...

T=( + + + +  | + + +  –  | –  + + +  )

T=(  + + + + | + –  – +  |  + + + +  )

...
T=( + + + +  | -1     2     | -2     1      )

T=(  + + + + | +  1     -2 |     2 + -1 )

DIII − + + Z2

T=( + + + + + + + + | + + + + – + + + | + – + + + + + + )
T=( + + + + + + + + | + + + – + + + + | + + + + + + – + )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )

...
T=( + + + + + + + + | -1    2     -2    1     | -2    1      -1    2    )
T=( + + + + + + + + |    -2    1     -1    2  |     -1    2     -2    1 )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )( )

...

D 0 + 0 Z
...

T=( + + + +  | + +  – + | – + + +  )

T=(  + + + + | + –  – + | + + + +  )
...

T=(  + + + + | + –  – + | + + + +  )

T=( + + + +  | -1 2  -2 1 | -2 1 -1 2  )

BDI + + + NONE

AI + 0 0 NONE

CI + − + NONE

C 0 − 0 Z

T=( + + + + + + + + | + + + + – + + + | + – + + + + + + )
T=( + + + + + + + + | + + + – + + + + | + + + + + + – + )

)

...

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )

T=( + + + + + + + + |    -1 2     -2       1  |    -2 1      -1       2 )
T=( + + + + + + + + | 1       -2      2 -1    | 2       -1      1 -2    )

T=( + + + + + + + + | + + – + – + + + | + + + + + + + + )
T=( + + + + + + + + | + + + – + – + + | + + + + + + + + )( )

...

CII − − + NONE

terminology of Ref. [26], that differs slightly from the one used
in Ref. [21]. The latter counts all chiral phases irrespective of
their ground-state degeneracy as LRE.)

While there are nontrivial SRE and LRE phases in the
absence of any symmetry constraint, many SRE and LRE
phases are defined by some protecting symmetry they obey. If
this protecting symmetry is broken, the topological attribute of

the phase is not well defined anymore. However, there is a sense
in which LRE phases are more robust than SRE phases against
a weak breaking of the defining symmetry. The topological
attributes of LRE phases are not confined to the boundary in
space between two distinct topological realizations of these
phases, as they are for SRE phases. They also characterize
intrinsic bulk properties such as the existence of gapped
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deconfined fractionalized excitations. Hence, whereas gapless
edge states are gapped by any breaking of the defining symme-
try, topological bulk properties are robust to a weak breaking of
the defining symmetry as long as the characteristic energy scale
for this symmetry breaking is small compared to the bulk gap in
the LRE phase, for a small breaking of the protecting symmetry
does not wipe out the gapped deconfined fractionalized bulk
excitations.

The purpose of this paper is to implement a classification
scheme for interacting electronic systems in two spatial
dimensions that treats SRE and LRE phases on equal footing.
To this end, we use a coupled wire construction for each of
the symmetry classes from the tenfold way. This approach has
been pioneered in Refs. [30] and [31] for the IQHE and in
Refs. [32] and [33] for the FQHE (see also related work in
Refs. [34–40]).

To begin with, nonchiral Luttinger liquids are placed in a
periodic array of coupled wires. In doing so, forward-scattering
two-body interactions are naturally accounted for within each
wire. We then assume that the backscattering (i.e., tunneling)
within a given wire or between neighboring wires defines
the dominant energy scale. Imposing symmetries constrains
the allowed tunnelings. Whether a given arrangement of
tunnelings truly gaps out all bulk modes, except for some
ungapped edge states on the first and last wires, is verified
with the help of a condition that applies to the limit of strong
tunneling. We name this condition the Haldane criterion, as
it was introduced by Haldane in his study of the stability of
nonmaximally chiral edge states in the quantum Hall effect
[41]. We show that, for a proper choice of the tunnelings,
all bulk modes are gapped. Moreover, in five out of the ten
symmetry classes of the tenfold way, there remain gapless edge
states in agreement with the tenfold way. It is the character of
the tunnelings that determines if this wire construction selects
an SRE or an LRE phase. Hence, this construction, predicated
as it is on the strong tunneling limit, generalizes the tenfold way
for SRE phases to LRE phases. It thereby delivers LRE phases
that have not yet appeared in the literature before. Evidently,
this edge-centered classification scheme does not distinguish
between LRE phases of matter that do not carry protected
gapless edge modes at their interfaces. For example, some
fractional, time-reversal-symmetric, incompressible, and topo-
logical phases of matter can have fractionalized excitations in
the bulk while not supporting protected gapless modes at their
boundaries [42–44].

Stated in a slightly more constructive way, we can think of
our approach as (1) fixing, in a first step, a given desired edge
theory at the boundary, and (2) continue, in a second step, by
asking whether such an edge can be consistently defined with
a set of symmetry-allowed periodic tunneling terms between
wires, which manage to gap out all other modes. Alluding
to a related strategy in philosophy, this is what we call wire
deconstructionism of topological phases.

The paper is organized as follows. We define the array
of Luttinger liquids in Sec. II. The Haldane criterion, which
plays an essential role for the stability analysis of the edge
theory, is reviewed in Sec. III C. All five SRE entries of
Table I are derived in Sec. IV, while all five LRE entries
of Table I are derived in Sec. V. We conclude with Sec.
VI, where we allude to the generalization of our approach

j = N

j = N
T (0)

(a) (b)

j = 1

j = 1

FIG. 1. (Color online) The boundary conditions determine
whether a topological phase has protected gapless modes or not.
(a) With open boundary conditions, gapless modes exist near the wires
j = 1 and N , the scattering between them is forbidden by imposing
locality in the limit N → ∞. (b) Periodic boundary conditions allow
the scattering vector T (0) that gaps modes, which were protected by
locality before.

to additional symmetries, bosonic systems, and higher spatial
dimensions.

II. DEFINITIONS

We consider an array of N parallel wires that stretch
along the x direction of the two-dimensional embedding
Euclidean space (see Fig. 1). We label a wire by the latin
letter i = 1, . . . ,N . Each wire supports fermions that carry
an even integer number M of internal degrees of freedom
that discriminate between left and right movers, the projec-
tion along the spin-1/2 quantization axis, and particle-hole
quantum numbers, among others (e.g., flavors). We label these
internal degrees of freedom by the greek letter γ = 1, . . . ,M .
We combine those two indices in a collective index a ≡ (i,γ ).
Correspondingly, we introduce the M × N pairs of creation
ψ̂

†
a(x) and annihilation ψ̂a(x) field operators obeying the

fermionic equal-time algebra

{ψ̂a(x),ψ̂†
a′ (x ′)} = δa,a′ δ(x − x ′) (2.1a)

with all other anticommutators vanishing and the collective
labels a,a′ = 1, . . . ,M × N . The notation

�̂†(x) ≡ (ψ̂†
1(x) · · · ψ̂

†
MN (x)), �̂(x) ≡

⎛⎜⎝ ψ̂1(x)
...

ψ̂MN (x)

⎞⎟⎠,

(2.1b)

is used for the operator-valued row (�̂†) and column (�̂) vector
fields. We assume that the many-body quantum dynamics of
the fermions supported by this array of wires is governed by
the Hamiltonian Ĥ , whereby interactions within each wire
are dominant over interactions between wires so that we may
represent Ĥ as N coupled Luttinger liquids, each one of which
being composed of M interacting fermionic channels.

By assumption, we may thus bosonize the M × N

fermionic channels making up the array. To this end, we
follow Ref. [46]. Within Abelian bosonization, this is done
by postulating first the MN × MN matrix

K ≡ (Kaa′) (2.2a)

to be symmetric with integer-valued entries. Because we are
after an array of identical wires, each of which having its
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quantum dynamics governed by that of a Luttinger liquid, it is
natural to assume that K is reducible,

Kaa′ = δii ′ Kγγ ′ , i,i ′ = 1, . . . ,N, γ,γ ′ = 1, . . . ,M.

(2.2b)

A second MN × MN matrix is then defined by

L ≡ (Laa′), (2.3a)

where

Laa′ := sgn(a − a′) (Kaa′ + 1) . (2.3b)

Third, one verifies that, for any pair a,a′ = 1, . . . ,MN , the
Hermitian fields φ̂a and φ̂a′ , defined by the Mandelstam
formula

ψ̂a(x) ≡ : exp ( + iKaa′ φ̂a′(x)) : (2.4a)

as they are, obey the bosonic equal-time algebra

[φ̂a(x),φ̂a′(x ′)] = −iπ
(
K−1

aa′ sgn(x − x ′) + K−1
ab Lbc K−1

ca′
)
.

(2.4b)

Here, the notation : (· · · ) : stands for normal ordering of the
argument (· · · ) and the summation convention over repeated
indices is implied. In line with Eq. (2.1b), we use the
notation


̂T(x) ≡ (φ̂1(x) · · · φ̂MN (x)), 
̂(x) ≡

⎛⎜⎝ φ̂1(x)
...

φ̂MN (x)

⎞⎟⎠,

(2.4c)

for the operator-valued row (
̂T) and column (
̂) vector fields.
Periodic boundary conditions along the x direction parallel to
the wires are imposed by demanding that

K 
̂(x + L) = K 
̂(x) + 2π N , N ∈ ZMN. (2.4d)

Equipped with Eqs. (2.2)–(2.4), we decompose additively
the many-body Hamiltonian Ĥ for the MN interacting
fermions propagating on the array of wires into

Ĥ = ĤV + Ĥ{T }. (2.5a)

The Hamiltonian

ĤV :=
∫

dx (∂x
̂
T)(x) V (∂x
̂)(x), (2.5b)

even though quadratic in the bosonic field, encodes both local
one-body terms as well as contact many-body interactions
between the M fermionic channels in any given wire from the
array through the block-diagonal, real-valued, and symmetric

MN × MN matrix

V := (Vaa′) ≡ (V(i,γ )(i ′,γ ′)) = 1N ⊗ (Vγγ ′). (2.5c)

The Hamiltonian

Ĥ{T } :=
∫

dx
∑
T

hT (x)

2

(
e+iαT (x)

MN∏
a=1

ψ̂Ta
a (x) + H.c.

)

=
∫

dx
∑
T

hT (x) cos (T T K 
̂(x) + αT (x)) (2.5d)

is not quadratic in the bosonic fields. With the understanding
that the operator-multiplication of identical fermion fields
at the same point x along the wire requires point splitting,
and with the short-hand notation ψ̂−1

a (x) ≡ ψ̂
†
a(x), we inter-

pret Ĥ{T } as (possibly many-body) tunnelings between the
fermionic channels. Here, we introduced the set {T } comprised
of all integer-valued tunneling vectors

T ≡ (Ta) (2.5e)

obeying the condition

MN∑
a=1

Ta =
{

0 mod 2, for D, DIII, C, and CI,
0, otherwise, (2.5f)

and we assigned to each T from the set {T } the real-valued
functions

hT (x) = h∗
T (x) � 0 (2.5g)

and

αT (x) = α∗
T (x). (2.5h)

The condition (2.5f) ensures that these tunneling events
preserve the parity of the total fermion number for the
superconducting symmetry classes (symmetry classes D,
DIII, C, and CI in Table I), while they preserve the total
fermion number for the nonsuperconducting symmetry classes
(symmetry classes A, AIII, AI, AII, BDI, and CII in Table I).
We emphasize that the integer

q :=
MN∑
a=1

|Ta|
2

(2.6)

dictates that T encodes a q-body interaction in the fermion
representation.

III. STRATEGY FOR CONSTRUCTING
TOPOLOGICAL PHASES

Our strategy consists of choosing the many-body Hamilto-
nian Ĥ = ĤV + Ĥ{T } defined in Eq. (2.5) so that (i) it belongs
to any one of the ten symmetry classes from the tenfold way
(with the action of symmetries defined in Sec. III A) and
(ii) all excitations in the bulk are gapped by a specific choice
of the tunneling vectors {T } entering Ĥ{T } (with the condition
for a spectral gap given in Sec. III C). The energy scales in
Ĥ{T } are assumed sufficiently large compared to those in ĤV
so that it is ĤV that may be thought of as a perturbation of
Ĥ{T } and not the converse.

We anticipate that for five of the ten symmetry classes
there can be protected gapless edge states because of locality
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and symmetry. Step (ii) for each of the five symmetry classes
supporting gapless edge states is represented pictorially as is
shown in the fourth and fifth columns of Table I. In each
symmetry class, topologically trivial states that do not support
protected gapless edge states in the tenfold classification can
be constructed by gapping all states in each individual wire
from the array.

A. Representation of symmetries

The classification is based on the presence or the absence of
the TRS and the PHS, which are represented by the antiunitary
many-body operator �̂ and the unitary many-body operator �̂,
respectively. Each of �̂ and �̂ can exist in two varieties such
that their single-particle representations � and � square to the
identity operator up to the multiplicative factor ±1,

�2 = ±1, �2 = ±1, (3.1)

respectively. By assumption, the set of all degrees of freedom in
each given wire is invariant under the actions of �̂ and �̂. If so,
we can represent the actions of �̂ and �̂ on the fermionic fields
in two steps. First, we introduce two M × M-dimensional
matrix representations P� and P� of the permutation group
of M elements, which we combine into the block-diagonal
MN × MN real-valued and orthogonal matrices

P� := 1N ⊗ P�, P� := 1N ⊗ P�, (3.2a)

where 1N is the N × N unit matrix, and we make sure that P�

and P� represent products of transpositions so that

P� = P −1
� = P T

�, P� = P −1
� = P T

�. (3.2b)

Second, we introduce two column vectors I� ∈ ZM and I� ∈
ZM , which we combine into the two column vectors

I� :=

⎛⎜⎝I�

...
I�

⎞⎟⎠, I� :=

⎛⎜⎝I�

...
I�

⎞⎟⎠, (3.2c)

and the MN × MN diagonal matrices

D� := diag (I�), D� := diag (I�), (3.2d)

with the components of the vectors I� and I� as diagonal
matrix elements. The vectors I� and I� are not chosen
arbitrarily. We demand that the vectors (1 + P�) I� and
(1 + P�) I� are made of even [for the +1 in Eq. (3.1)] and
odd [for the −1 in Eq. (3.1)] integer entries only, while

e+iπ D� P� = ±P� e+iπ D� (3.2e)

and

e+iπ D� P� = ±P� e+iπ D�, (3.2f)

in order to meet �2 = ±1 and �2 = ±1, respectively. The
operations of reversal of time and interchanges of particles
and holes are then represented by

�̂ �̂ �̂−1 = e+i π D� P� �̂, (3.2g)

�̂ �̂ �̂−1 = e+iπ D� P� �̂, (3.2h)

for the fermions and

�̂ 
̂ �̂−1 = P� 
̂ + π K−1 I�, (3.2i)

�̂ 
̂ �̂−1 = P� 
̂ + π K−1 I�, (3.2j)

for the bosons. One verifies that Eq. (3.1) is fulfilled.
The Hamiltonian (2.5) is TRS if

�̂ Ĥ �̂−1 = +Ĥ . (3.3a)

This condition is met if

P� V P −1
� = +V, (3.3b)

P� K P −1
� = −K, (3.3c)

hT (x) = h−P�T (x), (3.3d)

αT (x) = α−P�T (x) − π T T P� I�. (3.3e)

The Hamiltonian (2.5) is PHS if

�̂ Ĥ �̂−1 = +Ĥ . (3.4a)

This condition is met if (see Appendix A)

P� V P −1
� = +V, (3.4b)

P� K P −1
� = +K, (3.4c)

hT (x) = h+P�T (x), (3.4d)

αT (x) = αP�T (x) + π T T P� I�. (3.4e)

B. Particle-hole symmetry in interacting superconductors

The total number of fermions is a good quantum number in
any metallic or insulating phase of fermionic matter. This is not
true anymore in the mean-field treatment of superconductivity.
In a superconductor, within a mean-field approximation,
charge is conserved modulo two as Cooper pairs can be created
and annihilated. The existence of superconductors and the
phenomenological success of the mean-field approximation
suggest that the conservation of the total fermion number oper-
ator should be relaxed down to its parity in a superconducting
phase of matter. If we only demand that the parity of the
total fermion number is conserved, we may then decompose
any fermionic creation operator in the position basis into its
real and imaginary parts, thereby obtaining two Hermitian
operators called Majorana operators. Any Hamiltonian that is
built out of even powers of Majorana operators necessarily
preserves the parity of the total fermion number operator, but
it might break the conservation of the total fermion number.
By definition, any such Hamiltonian belongs to the symmetry
class D.

The tool of Abelian bosonization allows to represent a
fermion operator as a single exponential of a Bose field. In
Abelian bosonization, a Majorana operator is the sum of two
exponentials, and this fact makes it cumbersome to apply
Abelian bosonization for Majorana operators. It is possible
to circumvent this difficulty by representing any Hamiltonian
from the symmetry class D in terms of the components of
Nambu-Gorkov spinors obeying a reality condition. Indeed,
we may double the dimensionality of the single-particle
Hilbert space by introducing Nambu-Gorkov spinors with the
understanding that (i) a reality condition on the Nambu-Gorkov
spinors must hold within the physical subspace of the enlarged
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single-particle Hilbert space and (ii) the dynamics dictated by
the many-body Hamiltonian must be compatible with this real-
ity condition. The reality condition keeps track of the fact that
there are many ways to express an even polynomial of Majo-
rana operators in terms of the components of a Nambu-Gorkov
spinor. The complication brought about by this redundancy is
compensated by the fact that it is straightforward to implement
Abelian bosonization in the Nambu-Gorkov representation.

We implement this particle-hole doubling by assigning to
every pair of fermionic operators ψ̂ and ψ̂† (whose indices
have been omitted for simplicity) related to each other by the
reality condition

�̂ ψ̂ �̂† = ψ̂†, (3.5a)

the pair of bosonic field operators φ̂ and φ̂′ related by the
reality condition

�̂ φ̂ �̂† = −φ̂′. (3.5b)

Invariance under this transformation has to be imposed on
the (interacting) Hamiltonian in the doubled (Nambu-Gorkov)
representation. In addition to the PHS, we also demand, when
describing the superconducting symmetry classes, that the
parity of the total fermion number is conserved. This discrete
global symmetry, the symmetry of the Hamiltonian under the
reversal of sign of all fermion operators, becomes a continuous
U(1) global symmetry that is responsible for the conservation
of the electric charge in all nonsuperconducting symmetry
classes. In this way, all nine symmetry classes from the
tenfold way descend from the symmetry class D by imposing a
composition of TRS, U(1) charge conservation, and the chiral
(sublattice) symmetry.

We close this discussion of the particle-hole symmetry by
documenting its past use in connection to this work. Altland
and Zirnbauer introduced four random matrix ensembles
(denoted by the Cartan labels for the symmetric spaces D, DIII,
C, and CI) to describe the level statistics and transport prop-
erties of noninteracting disordered superconducting quantum
dots [47]. They also extended the threefold way for random
matrices introduced by Dyson in Ref. [48] to the tenfold
way. The extension of the tenfold way for random matrices
to the theory of Anderson localization in d-dimensional
space (d > 0) delivered the periodic table for the topological
insulators in the hands of Schnyder, Ryu, Furusaki, and Ludwig
in 2008 and 2010 [9,11]. In the approach by Schnyder et al.,
the particle-hole symmetry plays a crucial role when deriving
the nonlinear sigma models that describe the disordered
Bogoliubov-deGennes superconductors. It dictates for which
symmetry class and for which dimension these nonlinear sigma
models can be augmented by a topological or a Wess-Zumino-
Witten term that allows for topologically protected boundary
states. The combined effects of disorder and interactions in su-
perconductors were studied in Refs. [49–52] starting from the
Nambu-Gorkov formalism to derive a nonlinear sigma models
for the Goldstone modes relevant to the interplay between the
physics of Anderson localization and that of interactions. The
stability of Majorana zero modes to interactions preserving the
particle-hole symmetry was studied in Ref. [53].

C. Conditions for a spectral gap

The Hamiltonian ĤV in the decomposition (2.5) has MN

gapless modes. However, ĤV does not commute with Ĥ{T } and
the competition between ĤV and Ĥ{T } can gap some, if not all,
the gapless modes of ĤV . For example, a tunneling amplitude
that scatters the right mover into the left mover of each flavor
in each wire will gap out the spectrum of ĤV .

A term in Ĥ{T } has the potential to gap out a gapless mode of
ĤV if the condition (in the Heisenberg representation) [46,54]

∂x[T T K 
̂(t,x) + αT (x)] = CT (x) (3.6)

holds for some time-independent real-valued functions CT (x)
on the canonical momentum (4π )−1 K (∂x
̂)(t,x) that is
conjugate to 
̂(t,x), when applied to the ground state. The
locking condition (3.6) removes a pair of chiral bosonic
modes with opposite chiralities from the gapless degrees of
freedom of the theory. However, not all scattering vectors T
can simultaneously lead to such a locking due to quantum
fluctuations. The set of linear combinations {T T K 
̂(t,x)}
that can satisfy the locking condition (3.6) simultaneously is
labeled by the subset {T }locking of all tunneling matrices {T }
defined by Eqs. (2.5e) and (2.5f) obeying the Haldane criterion
(3.7) [46,54]

T T KT = 0 (3.7a)

for any T ∈ {T }locking and

T T KT ′ = 0 (3.7b)

pairwise for any T �= T ′ ∈ {T }locking.

IV. REPRODUCING THE TENFOLD WAY

Our first goal is to apply the wire construction in order
to reproduce the classification of noninteracting topological
insulators (symmetry classes A, AIII, AI, AII, BDI, and CII in
Table I) and superconductors (symmetry classes D, DIII, C,and
CI in Table I) in (2 + 1) dimensions (see Table I) [9–11]. In
this section, we will carry out the classification scheme within
the bosonized description of quantum wires. The topological
stability of edge modes will be an immediate consequence of
the observation that no symmetry-respecting local terms can
be added to the models that we are going to construct.

A. Symmetry class A

1. SRE phases in the tenfold way

Topological insulators in symmetry class A can be realized
without any symmetry aside from the U(1) charge conser-
vation. The wire construction starts from wires supporting
spinless fermions, so that the minimal choice M = 2 only
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counts left- and right-moving degrees of freedom. The K

matrix reads

K := diag (+1,−1). (4.1a)

The entry +1 of the K matrix corresponds to a right mover. It is
depicted by the symbol ⊗ in the first line of Table I. The entry
−1 of the K matrix corresponds to a left mover. It is depicted
by the symbol � in the first line of Table I. The operation for
reversal of time in any one of the N wires is represented by
[one verifies that Eq. (3.2e) holds]

P� :=
(

0 1
1 0

)
, I� :=

(
0
0

)
. (4.1b)

We define Ĥ{T } by choosing (N − 1) scattering vectors,
whereby, for any j = 1, . . . ,(N − 1),

T (j )
(i,γ ) := δi,j δγ,2 − δi−1,j δγ,1 (4.2a)

with i = 1, . . . ,N and γ = 1,2. In other words,

T (j ) := (0,0| · · · |0,+1| − 1,0| · · · |0,0)T (4.2b)

for j = 1, . . . ,N − 1. With the intent on helping with the
interpretation of the tunneling vectors, we use the |’s in
Eq. (4.2b) to compartmentalize the elements within a given
wire. Henceforth, there are M = 2 vector components within
each pair of |’s that encode the M = 2 degrees of freedom
within a given wire. The j th scattering vector (4.2b) labels
a one-body interaction in the fermion representation that
fulfills Eq. (2.5f) and breaks TRS, since the scattering vector
(0,+1)T is mapped into the scattering vector (+1,0)T by
the permutation P� that represents reversal of time in a
wire by exchanging right with left movers. For any j =
1, . . . ,(N − 1), we also introduce the amplitude

hT (j ) (x) � 0 (4.2c)

and the phase

αT (j ) (x) ∈ R (4.2d)

according to Eqs. (3.3d) and (3.3e), respectively. The choices
for the amplitude (4.2c) and the phase (4.2d) are arbitrary. In
particular, the amplitude (4.2c) can be chosen to be sufficiently
large so that it is ĤV that may be thought of as a perturbation
of Ĥ{T } and not the converse.

One verifies that all (N − 1) scattering vectors (4.2a) satisfy
the Haldane criterion (3.7), i.e.,

T (i)T KT (j ) = 0, i,j = 1, . . . ,N − 1. (4.3)

Correspondingly, the term Ĥ{T } gaps out 2(N − 1) of the
2N gapless modes of ĤV . Two modes of opposite chirality
that propagate along the first and last wires, respectively,
remain in the low-energy sector of the theory. These edge
states are localized on wire i = 1 and i = N , respectively,
for their overlaps with the gapped states from the bulk decay
exponentially fast as a function of the distance away from the
first and end wires. The energy splitting between the edge
state localized on wire i = 1 and the one localized on wire
i = N , which is brought about by the bulk states, vanishes

exponentially fast with increasing N . Two gapless edge states
with opposite chiralities emerge in the two-dimensional limit
N → ∞.

At energies much lower than the bulk gap, the effective K
matrix for the edge modes is

Keff := diag(+1,0|0,0| · · · |0,0|0,−1). (4.4)

Here,Keff follows from replacing the entries in the 2N × 2N K
matrix for all gapped modes by 0. The pictorial representation
of the topological phase in the symmetry class A with one
chiral edge state per end wire through the wire construction
is shown on the first row and fourth column of Table I. The
generalization to an arbitrary number n of gapless edge states
sharing a given chirality on the first wire that is opposite to
that of the last wire is the following. We enlarge M = 2 to
2n by making n identical copies of the model depicted in the
first row and fourth column of Table I. The stability of the n

chiral gapless edge states in wire 1 and wire N is guaranteed
because backscattering among these gapless edges state is not
allowed kinematically within wire 1 or within wire N , while
backscattering across the bulk is exponentially suppressed for
large N by locality and the gap in the bulk. The number of
robust gapless edge states of a given chirality is thus integer.
This is the reason why Z is found in the third column on the
first line of Table I.

2. SRE phases beyond the tenfold way

It is imperative to ask whether the phases that we
constructed so far exhaust all possible SRE phases in the
symmetry class A. By demanding that one-body interactions
are dominant over many-body interactions, we have con-
structed all phases from the (exhaustive) classification for
noninteracting fermions in class A and only those. In these
phases, the same topological invariant controls the Hall and
the thermal conductivities. However, it was observed that
interacting fermion systems can host additional SRE phases in
the symmetry class A where this connection is lost [26]. These
phases are characterized by an edge that includes charge-
neutral chiral modes. While such modes contribute to the
quantized energy transport (i.e., the thermal Hall conductivity),
they do not contribute to the quantized charge transport (i.e.,
the charge Hall conductivity). By considering the thermal
and charge Hall conductivity as two independent quantized
topological responses, this enlarges the classification of SPT
phases in the symmetry class A to Z × Z.

Starting from identical fermions of charge e, we now
construct an explicit wire model that stabilizes an SRE phase
of matter in the symmetry class A carrying a nonvanishing
Hall conductivity but a vanishing thermal Hall conductivity. In
order to build a wire-construction of such a strongly interacting
SRE phase in the symmetry class A, we group three spinless
electronic wires into one unit cell, i.e.,

K := diag(+1,−1,+1,−1,+1,−1). (4.5a)

It will be useful to arrange the charges Qγ = 1 measured
in units of the electron charge e for each of the modes φ̂γ ,
γ = 1, . . . ,M , into a vector

Q = (1,1,1,1,1,1)T. (4.5b)
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The physical meaning of the tunneling vectors (interactions)
that we define below is most transparent if we employ
the following linear transformation on the bosonic field
variables


̂(x) =: W 
̃(x), (4.6a)

T =: W T̃ , (4.6b)

K =: W K̃ WT, (4.6c)

where W is a MN × MN block-diagonal matrix with the
block W having integer entries and unit determinant. The
transformation W that we employ is given by

W :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 −1 0 0 0

+1 −1 +1 0 0 0

−1 0 −1 0 0 0

0 0 0 −1 0 −1

0 0 0 +1 −1 +1

0 0 0 −1 +1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.7)

It brings K to the form

K̃ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 0 0 0 0

+1 0 0 0 0 0

0 0 +1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.8)

As we can read off from Eq. (2.4b), the parity of Kγγ

determines the self-statistics of particles of type γ = 1, . . . ,N .
As Eq. (2.4b) is form invariant under the transformation (4.6),
we conclude that, with the choice (4.7), the transformed
modes γ = 1,2 as well as the modes γ = 5,6 are pairs of
bosonic degrees of freedom, while the third and fourth modes
remain fermionic. Furthermore, the charges transported by the
transformed modes φ̃γ are given by

Q̃ = W−1Q = (+2,−2,−3,−3,−2,+2)T. (4.9)

We may then define the charge-conserving tunneling
vectors

T̃ (j )
1 := (0,0,0,0,0,0| · · · |0,0,+1,−1,0,0| · · · |0,0,0,0,0,0)T, j = 1, . . . ,N,

T̃ (j )
2 := (0,0,0,0,0,0| · · · |0,0,0,0,+1,0|0,−1,0,0,0,0| · · · |0,0,0,0,0,0)T, j = 1, . . . ,N − 1, (4.10)

T̃ (j )
3 := (0,0,0,0,0,0| · · · |0,0,0,0,0,+1|−1,0,0,0,0,0| · · · |0,0,0,0,0,0)T, j = 1, . . . ,N − 1.

Using Eq. (4.6b), these tunneling vectors can readily be
rewritten in the original electronic degrees of freedom.

These tunneling vectors gap all modes in the bulk and the
remaining gapless edge modes on the left edge are

K̃eff,left =
(

0 1
1 0

)
, Q̃eff,left =

(+2
−2

)
. (4.11)

The only charge-conserving tunneling vector that could gap
out this effective edge theory, T̃ = (1,1)T, is not compatible
with Haldane’s criterion (3.7). We conclude that the edge
theory (4.11) is stable against charge conserving perturbations.
The Hall conductivity supported by this edge theory is given
by

Q̃T
eff,left K̃

−1
eff,left Q̃eff,left = −8 (4.12)

in units of e2/h. This is the minimal Hall conductivity of a
SRE phase of bosons, if each boson is interpreted as a pair of
electrons carrying the electronic charge 2e [26]. On the other
hand, the edge theory (4.11) supports two modes with opposite
chiralities, for the symmetric matrix K̃eff,left has the pair of
eigenvalues ±1. Thus the net energy transported along the left
edge, and with it the thermal Hall conductivity, vanishes.

B. Symmetry class AII

Topological insulators in symmetry class AII can be
realized by demanding that U(1) charge conservation holds
and that TRS with �2 = −1 holds. The wire construction starts
from wires supporting spin-1/2 fermions because �2 = −1,

so that the minimal choice M = 4 counts two pairs of Kramers
degenerate left- and right-moving degrees of freedom carrying
opposite spin projections on the spin quantization axis, i.e.,
two pairs of Kramers degenerate helical modes. The K matrix
reads

K := diag (+1,−1,−1,+1). (4.13a)

The entries in the K matrix represent, from left to right, a right-
moving particle with spin up, a left-moving particle with spin
down, a left-moving particle with spin up, and a right-moving
particle with spin down. The operation for reversal of time in
any one of the N wires is represented by [one verifies that Eq.
(3.2e) holds]

P� :=

⎛⎜⎝0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎠, I� :=

⎛⎜⎝0
1
0
1

⎞⎟⎠. (4.13b)

We define ĤV by choosing any symmetric 4 × 4 matrix V that
obeys

V = P� V P −1
� . (4.13c)

We define Ĥ{TSO} by choosing 2(N − 1) scattering vectors as
follows. For any j = 1, . . . ,(N − 1), we introduce the pair of
scattering vectors

T (j )
SO := (0,0,0,0| · · · |0,0,+1,0|−1,0,0,0| · · · |0,0,0,0)T

(4.14a)
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and

T (j )
SO := −P� T (j )

SO . (4.14b)

The scattering vector (4.14a) labels a one-body interaction in
the fermion representation that fulfills Eq. (2.5f). It scatters a
left mover with spin up from wire j into a right mover with
spin up in wire j + 1. For any j = 1, . . . ,(N − 1), we also
introduce the pair of amplitudes

hT (j )
SO

(x) = hT (j )
SO

(x) � 0 (4.14c)

and the pair of phases

αT (j )
SO

(x) = αT (j )
SO

(x) ∈ R (4.14d)

according to Eqs. (3.3d) and (3.3e), respectively. The choices
for the amplitude (4.14c) and the phase (4.14d) are arbitrary.
The subscript SO refers to the intrinsic spin-orbit coupling.
The rational for using it shall be shortly explained.

One verifies that all 2(N − 1) scattering vectors (4.13c) and
(4.14a) satisfy the Haldane criterion (3.7), i.e.,

T (i)T
SO KT (j )

SO = T (i)T
SO KT (j )

SO = T (i)T
SO KT (j )

SO = 0, (4.15)

for i,j = 1, . . . ,N − 1. Correspondingly, the term Ĥ{TSO} gaps
out 4(N − 1) of the 4N gapless modes of ĤV . Two pairs of
Kramers degenerate helical edge states that propagate along
the first and last wires, respectively, remain in the low-energy
sector of the theory. These edge states are localized on wire
i = 1 and i = N , respectively, for their overlaps with the
gapped states from the bulk decay exponentially fast as a
function of the distance away from the first and last wire.
The energy splitting between the edge state localized on
wire i = 1 and wire i = N brought about by the bulk states
vanishes exponentially fast with increasing N . Two pairs of
gapless Kramers degenerate helical edge states emerge in the
two-dimensional limit N → ∞.

At energies much lower than the bulk gap, the effective K
matrix for the two pairs of helical edge modes is

Keff := diag(+1,−1,0,0|0,0,0,0| · · · |0,0,0,0|0,0,−1,+1).

(4.16)

Here, Keff follows from replacing the entries in the 4N × 4N

K matrix for all gapped modes by 0. We are going to show

that the effective scattering vector

Teff := (+1,−1,0,0|0,0,0,0| · · · )T, (4.17)

with the potential to gap out the pair of Kramers degenerate
helical edge modes on wire i = 1 since it fulfills the Haldane
criterion (3.7), is not allowed by TRS [55]. On the one hand,
Teff maps to itself under reversal of time,

Teff = −P� Teff . (4.18)

On the other hand,

T T
eff P� I� = −1. (4.19)

Therefore the condition (3.3e) for Teff to be a TRS perturbation
is not met, for the phase αTeff (x) associated to Teff then obeys

αTeff (x) = αTeff (x) − π, (4.20)

a condition that cannot be satisfied.
Had we imposed a TRS with � = +1 instead of � = −1

as is suited for the symmetry class AI that describes spinless
fermions with TRS, we would only need to replace I� in
Eq. (4.13b) by the null vector. If so, the scattering vector
(4.17) is compatible with TRS since the condition (3.3e) for
TRS then becomes

αTeff (x) = αTeff (x) (4.21)

instead of Eq. (4.20). This is the reason why the symmetry
class AI is always topologically trivial in two-dimensional
space from the point of view of the wire construction.

Note also that if we would not insist on the condition of
charge neutrality (2.5f), the tunneling vector

T ′
eff := (+1,+1,0,0|0,0,0,0| · · · )T, (4.22)

that satisfies the Haldane criterion and is compatible with TRS
could gap out the Kramers degenerate pair of helical edge
states.

To address the question of what happens if we change M =
4 to 4n with n any strictly positive integer in each wire from
the array, we consider, without loss of generality as we shall
see, the case of n = 2. To this end, it suffices to repeat all the
steps that lead to Eq. (4.17), except for the change

Keff := diag (+1,−1,0,0; +1,−1,0,0|0,0,0,0; 0,0,0,0| · · · |0,0,0,0; 0,0,0,0|0,0,−1,+1; 0,0,−1,+1). (4.23)

One verifies that the scattering vectors

T ′
eff := (+1,0,0,0; 0,−1,0,0|0,0,0,0; 0,0,0,0| · · · )T (4.24)

and

T ′′
eff := (0,−1,0,0; +1,0,0,0|0,0,0,0; 0,0,0,0| · · · )T (4.25)

are compatible with the condition that TRS holds in that the
pair is a closed set under reversal of time,

T ′
eff = −P� T ′′

eff . (4.26)

One verifies that these scattering vectors fulfill the Haldane
criterion (3.7). Consequently, inclusion in Ĥ{TSO} of the two
cosine potentials with T ′

eff and T ′′
eff entering in their arguments,

respectively, gaps out the pair of Kramers degenerate helical
modes on wire i = 1. The same treatment of the wire i = N

leads to the conclusion that TRS does not protect the gapless
pairs of Kramers degenerate edge states from perturbations
when n = 2. The generalization to M = 4n channels is that
it is only when n is odd that a pair of Kramers degenerate
helical edge modes is robust to the most generic Ĥ{TSO} of the
form depicted in the fourth column on line 3 of Table I. Since
it is the parity of n in the number M = 4n of channels per
wire that matters for the stability of the Kramers degenerate
helical edge states, we use the group of two integers Z2

under addition modulo 2 in the third column on line 3 of
Table I.
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If we were to impose conservation of the projection of the
spin-1/2 quantum number on the quantization axis, we must
then preclude from all scattering vectors processes by which
a spin is flipped. In particular, the scattering vectors (4.24)
and (4.25) are not admissible anymore. By imposing the U(1)
residual symmetry of the full SU(2) symmetry group for a
spin-1/2 degree of freedom, we recover the group of integers
Z under the addition that encodes the topological stability in
the quantum spin Hall effect (QSHE).

We close the discussion of the symmetry class AII by
justifying the interpretation of the index SO as an abbreviation
for the intrinsic spin-orbit coupling. To this end, we introduce
a set of (N − 1) pairs of scattering vectors:

T (j )
R := (0,0,0,0| · · · |0,+1,0,0|−1,0,0,0| · · · |0,0,0,0)T

(4.27a)

and

T (j )
R := −P� T (j )

R (4.27b)

for j = 1, . . . ,N − 1. The scattering vector (4.27a) labels a
one-body interaction in the fermion representation that fulfills
Eq. (2.5f). The index R is an acronym for Rashba as it describes
a backward scattering process by which a left mover with spin
down from wire j is scattered into a right mover with spin up
on wire j + 1 and conversely. For any j = 1, . . . ,(N − 1), we
also introduce the pair of amplitudes

hT (j )
R

(x) = hT (j )
R

(x) � 0 (4.27c)

and the pair of phases

αT (j )
R

(x) = αT (j )
R

(x) + π ∈ R (4.27d)

according to Eqs. (3.3d) and (3.3e), respectively. In contrast to
the intrinsic spin-orbit scattering vectors, the Rashba scattering
vectors (4.27a) fail to meet the Haldane criterion (3.7) as

T (j )T
R KT (j+1)

R = −1, j = 1, . . . ,N − 1. (4.28)

Hence the Rashba scattering processes fail to open a gap in the
bulk, as is expected of a Rashba coupling in a two-dimensional
electron gas. On the other hand, the intrinsic spin-orbit
coupling can lead to a phase with a gap in the bulk that supports
the spin quantum Hall effect in a two-dimensional electron gas.

C. Symmetry class D

The simplest example among the topological superconduc-
tors can be found in the symmetry class D that is defined by
the presence of a PHS with �2 = +1 and the absence of TRS.
With the understanding of PHS as discussed in Sec. III B,
we construct a representative phase in class D from identical
wires supporting right- and left-moving spinless fermions each
of which carry a particle or a hole label, i.e., M = 4. The K

matrix reads

K := diag(+1,−1,−1,+1). (4.29a)

The entries in the K matrix represent, from left to right, a
right-moving particle, a left-moving particle, a left-moving
hole, and a right-moving hole. The operation for the exchange
of particles and holes in any one of the N wires is represented

by [one verifies that Eq. (3.2f) holds]

P� :=

⎛⎜⎝0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎠, I� :=

⎛⎜⎝0
0
0
0

⎞⎟⎠. (4.29b)

We define ĤV by choosing any symmetric 4 × 4 matrix V that
obeys

V = +P� V P −1
� . (4.29c)

We define Ĥ{T } by choosing 2N − 1 scattering vectors as fol-
lows. For any wire j = 1, . . . ,N , we introduce the scattering
vector

T (j ) := (0,0,0,0| · · · | + 1,−1,−1,+1| · · · |0,0,0,0)T.

(4.30a)

Between any pair of neighboring wires, we introduce the
scattering vector

T (j )
:= (0,0,0,0| · · · |0,+1,−1,0|−1,0,0,+1| · · · |0,0,0,0)T,

(4.30b)

for j = 1, . . . ,(N − 1). We observe that both T (j ) and T (j )

are eigenvectors of the particle-hole transformation in that

P� T (j ) = +T (j ), P� T (j ) = −T (j )
. (4.30c)

Thus, to comply with PHS, we have to demand that the phases

αT (j ) (x) = 0, (4.30d)

while αT (j ) (x) are unrestricted. Similarly, the amplitudes
hT (j ) (x) and hT (j ) (x) can take arbitrary real values.

One verifies that the set of scattering vectors defined
by Eqs. (4.30a) and (4.30b) satisfies the Haldane criterion.
Correspondingly, the term Ĥ{T } gaps out (4N − 2) of the 4N

gapless modes of ĤV . Furthermore, one identifies with

T (0) = (−1,0,0,+1|0,0,0,0| · · · |0,0,0,0|0,+1,−1,0)T

(4.31)

a unique (up to an integer multiplicative factor) scattering
vector that satisfies the Haldane criterion with all existing
scattering vectors Eqs. (4.30a) and (4.30b) and could thus
potentially gap out the remaining pair of modes. However, the

tunneling T (0)
is nonlocal for it connects the two edges of

the system when open boundary conditions are chosen. We
thus conclude that the two remaining modes are exponentially
localized near wire i = 1 and wire i = N , respectively, and
propagate with opposite chirality.

To give a physical interpretation of the resulting topological
(edge) theory in this wire construction, one has to keep in
mind that the degrees of freedom were artificially doubled. We
found, in this doubled theory, a single chiral boson (with chiral
central charge c = 1). To interpret it as the edge of a chiral
(px + ipy) superconductor, we impose the reality condition
to obtain a single chiral Majorana mode with chiral central
charge c = 1/2.

The pictorial representation of the topological phase in the
symmetry class D through the wire construction is shown on
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the fifth row of Table I. The generalization to an arbitrary
number n of gapless chiral edge modes is analogous to the
case discussed in symmetry class A. The number of robust
gapless chiral edge states of a given chirality is thus integer.
This is the reason why the group of integers Z is found in the
third column on the fifth line of Table I.

D. Symmetry classes DIII and C

The remaining two topological nontrivial superconducting
classes DIII (TRS with �2 = −1 and PHS with �2 = +1) and
C (PHS with �2 = −1) involve spin-1/2 fermions. Each wire
thus features no less than M = 8 internal degrees of freedom
corresponding to the spin-1/2, chirality, and particle/hole
indices. The construction is very similar to the cases we already
presented. We relegate details to Appendices B and C. The
scattering vectors that are needed to gap out the bulk for each
class of class DIII and C are represented pictorially in the
fourth column on lines 4 and 9 of Table I.

E. Summary

We have provided an explicit construction by way of
an array of wires supporting fermions that realizes all five
topologically nontrivial symmetry classes with a nondegen-
erate ground state in two-dimensional space according to the
tenfold classification of band insulators and superconductors.
The topological protection of edge modes in the bosonic
formulation follows from imposing the Haldane criterion
(3.7) along with the appropriate symmetry constraints. In the
next section, we shall extend the wire construction to allow
many-body tunneling processes that deliver fractionalized
phases with degenerate ground states.

V. FRACTIONALIZED PHASES

The power of the wire construction goes much beyond
what we have used in Sec. IV to reproduce the classification
of the SRE phases. In this section we describe how to
construct models for interacting phases of matter with intrinsic
topological order and fractionalized excitations by relaxing the
condition on the tunnelings between wires to be of one-body
type. While these phases are more complex, the principles
for constructing the models and proving the stability of edge
modes remain the same: all allowed tunneling vectors have to
obey the Haldane criterion (3.7) and the respective symmetries.

A. Symmetry class A: Fractional quantum Hall states

First, we review the models of quantum wires that are
topologically equivalent to the Laughlin state in the FQHE
[56], following the construction in Ref. [32] for Abelian frac-
tional quantum Hall states. Here, we want to emphasize that
the choice of scattering vectors is determined by the Haldane
criterion (3.7) and at the same time prepare the grounds for
the construction of fractional topological insulators with TRS
in Sec. V B.

We want to construct the fermionic Laughlin series of states
indexed by the positive odd integer m [56]. (By the same
method, other fractional quantum Hall phases from the Abelian
hierarchy could be constructed [32].) The elementary degrees

of freedom in each wire are spinless right- and left-moving
fermions with the K matrix

K = diag (+1,−1), (5.1a)

as is done in Eq. (4.1a). Reversal of time is defined through P�

and I� given in Eq (4.1b). Instead of Eq (4.2), the scattering
vectors that describe the interactions between the wires are
now defined by

T (j ) := (0,0 |· · · |m+,−m− |m−,−m+ | · · · | 0,0)T , (5.1b)

for any j = 1, . . . ,N − 1, where m± = (m ± 1)/2 [see Table
I for an illustration of the scattering process].

For any j = 1, . . . ,N − 1, the scattering (tunneling) vec-
tors (5.1b) preserve the conservation of the total fermion
number in that they obey Eq. (2.5f), and they encode a
tunneling interaction of order q = m, with q defined in
Eq. (2.6). As a set, all tunneling interactions satisfy the Haldane
criterion (3.7), for

T (i)T KT (j ) = 0, i,j = 1, . . . ,N − 1. (5.2)

We note that the choice of tunneling vectors in Eq. (5.1b) is
unique (up to an integer multiplicative factor) if one insists on
charge conservation, compliance with the Haldane criterion
(3.7), and only includes scattering between neighboring wires.

The bare counting of tunneling vectors shows that the wire
model gaps out all but two modes. However, we still have to
convince ourselves that the remaining two modes (i) live on
the edge, (ii) cannot be gapped out by other (local) scattering
vectors, and (iii) are made out of fractionalized quasiparticles.

To address (i) and (ii), we note that the remaining two modes
can be gapped out by a unique (up to an integer multiplicative
factor) charge-conserving scattering vector that satisfies the
Haldane criterion (3.7) with all existing scatterings, namely,

T (0) := ( m−,−m+| 0,0| · · · |0,0 |m+,−m− )T . (5.3)

Connecting the opposite ends of the array of wires through the
tunneling T (0) is not an admissible perturbation, for it violates
locality in the two-dimensional thermodynamic limit N → ∞.
Had we chosen periodic boundary conditions corresponding
to a cylinder geometry (i.e., a tube as in Fig. 1) by which
the first and last wire are nearest neighbors, T (0) would be
admissible. Hence the gapless nature of the remaining modes
when open boundary conditions are chosen depends on the
boundary conditions. These gapless modes have support near
the boundary only and are topologically protected.

Applying the transformation (4.6) with

W :=
(−m− m+

m+ −m−

)
, (5.4)

where

det W = −m, (5.5)

transforms the K matrix into

K̃ =
(−m 0

0 +m

)
. (5.6)

As its determinant is not unity, the linear transformation (5.4)
changes the compactification radius of the new field 
̃(x)
relative to the compactification radius of the old field 
̂(x)
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accordingly. Finally, the transformed tunneling vectors are
given by

T̃ (j ) = (0,0| · · · |0,0|0,+1|−1,0|0,0| · · · |0,0)T, (5.7)

where W := 1N ⊗ W and j = 1, . . . ,N − 1.
In view of Eqs. (4.6c) and (5.7), the remaining effective

edge theory is described by

K̃eff = diag (−m,0|0,0| · · · |0,0|0,+m). (5.8)

This is a chiral theory at each edge that cannot be gapped by
local perturbations. Equation (5.8) is precisely the edge theory
for anyons with statistical angle 1/m and charge e/m [29],
where e is the charge of the original fermions.

B. Symmetry class AII: Fractional topological insulators

Having understood how fractionalized quasiparticles
emerge out of a wire construction, it is imperative to ask what

other phases can be obtained when symmetries are imposed
on the topologically ordered phase. Such symmetry enriched
topological phases have been classified by methods of group
cohomology [27]. Here, we shall exemplify for the case of
TRS with �2 = −1 how the wire construction can be used to
build up an intuition for these phases and to study the stability
of their edge theory.

The elementary degrees of freedom in each wire are
spin-1/2 right- and left-moving fermions with the K

matrix

K := diag (+1,−1,−1,+1), (5.9a)

as is done in Eq. (4.13a). Reversal of time is defined through
P� and I� given in Eq (4.13b). Instead of Eq (4.14a), the
scattering vectors that describe the interactions between the
wires are now defined by

T (j ) := (0,0,0,0 |· · · |−m−,0,+m+,0 |−m+, 0,+m−,0| · · · | 0,0,0,0)T (5.9b)

and

T (j )
:= −P� T (j ), (5.9c)

for any j = 1, . . . ,N − 1, m a positive odd integer, and m± =
(m ± 1)/2.

For any j = 1, . . . ,N − 1, the scattering (tunneling) vec-
tors (5.9b) preserve conservation of the total fermion number
in that they obey Eq. (2.5f), and they encode a tunneling
interaction of order q = m with q defined in Eq. (2.6). They
also satisfy the Haldane criterion (3.7) as a set [see Table I for
an illustration of the scattering process].

Applying the transformation (4.6) with

W :=

⎛⎜⎝−m− 0 m+ 0
0 −m− 0 m+

m+ 0 −m− 0
0 m+ 0 −m−

⎞⎟⎠, (5.10)

to the bosonic fields, leaves the representation of time-reversal
invariant

W−1 P� W = P�, (5.11)

while casting the theory in a new form with the transformed
K̃ matrix given by

K̃ = diag (−m,+m,+m,−m), (5.12)

and, for any j = 1, . . . ,N − 1, with the transformed pair of

scattering vectors (T̃ j ,T̃
j

) given by

T̃ (j ) = (0,0,0,0| · · · |+1,0,0,0|0,0,−1,0| · · · |0,0,0,0)T

(5.13)

and

T̃
(j ) = (0,0,0,0| · · · |0,−1,0,0|0,0,0,+1| · · · |0,0,0,0)T.

(5.14)

When these scattering vectors have gapped out all modes in
the bulk, the effective edge theory is described by

K̃eff

= diag (0,0,+m,−m|0,0,0,0| · · · |0,0,0,0|−m,+m,0,0).

(5.15)

This effective K matrix describes a single Kramers degenerate
pair of 1/m anyons propagating along the first wire and another
single Kramers degenerate pair of 1/m anyons propagating
along the last wire. Their robustness to local perturbations is
guaranteed by TRS.

Unlike in the tenfold way, the correspondence between the
bulk topological phase and the edge theories of LRE phases
is not one-to-one. For example, while a bulk topological LRE
phase supports fractionalized topological excitations in the
bulk, its edge modes may be gapped out by symmetry-allowed
perturbations. For the phases discussed in this section, namely,
the Abelian and TRS fractional topological insulators, it was
shown in Refs. [46] and [57] that the edge, consisting of
Kramers degenerate pairs of edge modes, supports at most one
stable Kramers degenerate pair of delocalized quasiparticles
that are stable against disorder. (Note that this does not
preclude the richer edge physics of non-Abelian TRS fractional
topological insulators [58].)

We will now argue that the wire constructions with edge
modes given by Eq. (5.15) exhaust all stable edge theories of
Abelian topological phases, which are protected by TRS with
�2 = −1 alone. Let the single protected Kramers degenerate
pair be characterized by the linear combination of bosonic
fields

ϕ̂(x) := T T K′ 
̂(x) (5.16)

and its time-reversed partner

ˆ̄ϕ(x) := T T K′ 
̂(x), (5.17)
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where the tunneling vector T was constructed from the
microscopic information from the theory in Ref. [46] and K′
is the K matrix of a TRS bulk Chern-Simons theory from the
theory in Ref. [46]. [In other words, the theory encoded by
K′ has nothing to do a priori with the array of quantum wires
defined by Eq. (5.9).] The Kramers degenerate pair of modes
(ϕ̂, ˆ̄ϕ) is stable against TRS perturbations supported on a single
edge if and only if

1
2 |T T Q| (5.18)

is an odd number. Here, Q is the charge vector with integer
entries that determines the coupling of the different modes to
the electromagnetic field. Provided (ϕ̂, ˆ̄ϕ) is stable, its equal-
time commutation relations follow from Eq. (2.4b) as

[ϕ̂(x),ϕ̂(x ′)] = −iπ (T T K′ T sgn(x − x ′) + T T LT ),

(5.19a)

[ ˆ̄ϕ(x), ˆ̄ϕ(x ′)] = −iπ ( − T T K′ T sgn(x − x ′) + T T LT ),

(5.19b)

where we used that K′ anticommutes with P� according to
Eq. (3.3c). By the same token, we can show that the fields ϕ̂

and ˆ̄ϕ commute, for

T T K′ T = T T P� K′ T = −T T K′ T = 0. (5.20)

We conclude that the effective edge theory for any Abelian
TRS fractional topological insulator built from fermions has
the effective form of Kramers degenerate pairs,

Keff =
(
T TK′T 0

0 −T TK′T

)
, (5.21)

and is thus entirely defined by the single integer

m := T TK′T . (5.22)

With the scattering vectors (5.9c) we have given an explicit
wire construction for each of these cases, thus exhausting all
possible stable edge theories for Abelian fractional topological

insulators. For each positive odd integer m, we can thus say
that the fractionalized mode has a Z2 character: it can have
either one or none stable Kramers degenerate pairs of m

quasiparticles.

C. Symmetry class D: Fractional superconductors

In Sec. V B, we have imposed TRS on the wire construction
of fractional quantum Hall states and obtained the fractional
topological insulator in symmetry class AII. In complete
analogy, we can impose PHS with �2 = +1 on the wire
construction of a fractional quantum Hall state, thereby
promoting it to symmetry class D. Physically, there follows
a model for a superconductor with “fractionalized” Majorana
fermions or Bogoliubov quasiparticles.

Lately, interest in this direction has been revived by
the investigation of exotic quantum dimensions of twist
defects embedded in an Abelian fractional quantum Hall
liquid [59–61], along with heterostructures of superconductors
combined with fractional quantum Hall effect [62–64], or
fractional topological insulators [65]. Furthermore, the Kitaev
quantum wire has been generalized to Zn clock models
hosting parafermionic edge modes [66,67], along with efforts
to transcend the Read-Rezayi quantum Hall state [68] to spin
liquids [69,70] and superconductors [37], all of which exhibit
parafermionic quasiparticles.

As in the classification of noninteracting insulators, we
treat the Bogoliubov quasiparticles under bosonization as if
they were Dirac fermions. The fractional phase is driven by
interactions among the Bogoliubov quasiparticles.

The elementary degrees of freedom in each wire are
spinless right- and left-moving fermions and holes as was
defined for symmetry class D in Eqs. (4.29a)–(4.29c). We
construct the fractional topological insulator using the set of
PHS scattering vectors T (j ), for j = 1, . . . ,N with T (j ) as
defined in Eq. (4.30a) in each wire and the PHS as defined
in Eq. (4.29b). We complement them with the set of PHS

scattering vectors T (j )
, for j = 1, . . . ,N − 1 defined by

T (j ) = (0,0,0,0 |· · · |−m−,m+,−m+,m−| −m+,m−,−m−,m+| · · · | 0,0,0,0)T , m± = (m ± 1)/2, (5.23)

with m an odd positive integer. Notice that T (j )
:= −P� T (j )

, so that we have to demand that αT (j ) = 0 has to comply with PHS.

Thus together the T (j ) and T (j )
gap out (4N − 2) of the 4N chiral modes in the wire. We can identify a unique (up to an integer

multiplicative factor) scattering vector

T (0) = (−m+, m−,−m−,m+| 0,0,0,0| · · · |0,0,0,0 |−m−,m+,−m+,m− )T , m± = (m ± 1)/2, (5.24)

with m being the same as in Eq. (5.23), that satisfies the

Haldane criterion with all T (j ) and T (j )
. It thus can potentially

gap out the two remaining modes. However, it is physically
forbidden for it represents a nonlocal scattering from one
edge to the other. We conclude that each boundary supports
a single remaining chiral mode that is an eigenstate of
PHS.

To understand the nature of the single remaining chiral
mode on each boundary, we use the local linear transformation

W of the bosonic fields:

W =

⎛⎜⎝−m− +m+ 0 0
+m+ −m− 0 0

0 0 −m− +m+
0 0 +m+ −m−

⎞⎟⎠, m± = m ± 1

2
,

(5.25)
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with determinant det W = m4. When applied to the nonlocal

scattering vector T (0)
that connects the two remaining chiral

edge modes,

T̃
(0) = W−1 T (0)

= (0,−1,+1,0|0,0,0,0| · · · |0,0,0,0|+1,0,0,−1),

(5.26)

while the K matrix changes under this transformation to

K̃ = diag (−m,m,m,−m). (5.27)

Noting that the representation of PHS is unchanged,

W−1 P� W = P�, (5.28)

we can interpret the remaining chiral edge mode as a PHS
superposition of a Laughlin quasiparticle and a Laughlin
quasihole. It thus describes a fractional chiral edge mode on
either side of the two-dimensional array of quantum wires.
The definite chirality is an important difference to the case of
the fractional Z2 topological insulator discussed in Sec. V B. It
guarantees that any integer number n ∈ Z layers of this theory
are stable, for no tunneling vector that acts locally on one edge
can satisfy the Haldane criterion (3.7). For each m, we can
thus say that the delocalized edge mode has a Z character, as
does the SRE phase in symmetry class D.

D. Symmetry classes DIII and C:
More fractional superconductors

We refer the reader to Appendices B and C for the wire
construction of LRE phases in symmetry classes DIII and C.
For class DIII, the edge excitations (and bulk quasiparticles)
of the phase are TRS fractionalized Bogoliubov quasiparticles
that have also been discussed in one-dimensional realizations.
(In the latter context, these TRS fractionalized Bogoliubov
quasiparticles are rather susceptible to perturbations [71,72].)

VI. DISCUSSION

In this work, we have developed a wire construction to build
models of short-range entangled and long-range entangled
topological phases in two spatial dimensions, so as to yield
immediate information about the topological stability of their
edge modes. As such, we have promoted the periodic table
of integer topological phases to its fractional counterpart. The
following paradigms were applied. (1) Each Luttinger liquid
wire describes (spinfull or spinless) electrons. We rely on
a bosonized description. (2) Backscattering and short-range
interactions within and between wires are added. Modes are
gapped out if these terms acquire a finite expectation value.
(3) A mutual compatibility condition, the Haldane criterion,
is imposed among the terms that acquire an expectation
value. It is an incarnation of the statement that the operators
have to commute if they are to be replaced simultaneously
by their expectation values. (4) A set of discrete and local
symmetries are imposed on all terms in the Hamiltonian. When
modes become massive, they may not break these symmetries.
(5) We do not study the renormalization group flow of the

interaction and backscattering terms, but analyze the model in
a strong-coupling limit.

It has become fashionable to write papers in condensed
matter physics that take Majorana fermions as the building
blocks of lattice models. Elegant mathematical results have
been obtained in this way, some of which have the added
merit of bringing conceptual clarity. However, the elementary
building blocks of condensed matter are ions and electrons
whose interactions are governed by quantum electrodynamics.
Majorana fermions in condensed matter physics can only
emerge in a nonperturbative way through (i) the interactions
between the electrons from the valence bands of a material, or
(ii) as the low-energy excitations of exotic quantum magnets.
For Majorana fermions to be observable in condensed matter
physics, a deconfining transition must take place, a notoriously
nonperturbative phenomenon. One of the challenges that we
have undertaken in this paper is to find interacting models
for itinerant electrons with local interactions that support
Majorana fermions at low energies and long wavelengths. We
achieved this goal, starting from noninteracting itinerant elec-
trons, by constructing local many-body interactions that con-
serve the electron charge and that stabilize two-dimensional
bulk superconductors supporting gapless Majorana fermions
along their two-dimensional boundaries. This is why many-
body interactions are needed in the symmetry classes D, DIII,
and C to realize SRE topological phases in the fourth column
of Table I.

Using this strategy, the following directions present them-
selves for future work. First, for symmetry class A, we have
shown that sufficiently strong interactions among identical
electrons can turn any topological phase with the same
topological number controlling both the Hall and thermal
conductivities into an SRE topological phase with independent
quantized values of the Hall and thermal conductivities. [We
only need to make the interaction encoded by Eq. (4.10)
dominant.] Hence, it is natural to seek a putative breakdown of
the topological counterpart to the Wiedemann-Franz law for
metals in the symmetry class AII and for the LRE phases in the
symmetry classes A and AII. Second, we can impose on our
wire construction additional, albeit less generic, symmetries
such as a nonlocal inversion symmetry or such as a residual
U(1) spin symmetry. Third, our construction can be extended
to topological phases of systems that have bosons as their
elementary degrees of freedom. For bosons, no analog of
the tenfold way exists to provide guidance. However, several
works are dedicated to the classification of SRE and LRE
phases of bosons, which might provide a helpful starting point
[26]. Fourth, extensions to higher dimensions could be consid-
ered [73,74]. This would, however, entail leaving the comfort
zone of one-dimensional bosonization, with a necessary
generalization of the Haldane criterion in a layer construction.
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APPENDIX A: CONDITIONS FOR PARTICLE-HOLE AND
TIME-REVERSAL SYMMETRY

The conditions (3.3) and (3.4) for TRS and PHS can be
derived by adapting the derivations

�̂ Ĥ{T } �̂−1

=
∫

dx
∑
T

hT cos (T T K(P� 
̂ + π K−1 I�) + αT )

=
∫

dx
∑
T

h−P� T cos(T T K 
̂ − π T T P� I� + α−P� T )

!=
∫

dx
∑
T

hT cos(T T K 
̂ + αT )

(A1a)

and

�̂ Ĥ{T } �̂−1

=
∫

dx
∑
T

hT cos (T T K(P� 
̂ + π K−1 I�) + αT )

=
∫

dx
∑
T

hP� T cos(T T K 
̂ + π T T P� I� + αP� T )

!=
∫

dx
∑
T

hT cos(T T K 
̂ + αT ) (A1b)

of Eqs. (3.3d) and (3.3e), respectively.

APPENDIX B: SYMMETRY CLASS C

Class C is defined in line 9 of Table I by the operator �̂

for the PHS obeying �2 = −1 with neither TRS nor chiral
symmetry present (as is implied by the entries 0 for �2

and C2 in Table I). In physical terms, class C describes a
generic superconductor for which full spin SU(2) symmetry
is retained but TRS is broken. The only difference to the case
of class D considered in the main text is that the number
of degrees of freedom is doubled. We postulate that under
PHS, the following transformation rules hold for the creation
operators of Bogoliubov-deGennes quasiparticles that are right
(R) movers at the Fermi energy and carry the spin quantum
numbers ↑,↓:

b
†
↑,R

�̂→ −b↓,R, b
†
↓,R

�̂→ +b↑,R. (B1)

We apply the same transformation law to the creation op-
erators of Bogoliubov-deGennes quasiparticles that are left
(L) movers at the Fermi energy and carry the spin quantum
numbers ↑,↓.

We consider identical wires with quasiparticles of type 1
and 2, “particles” and “holes,” as well as left- and right-moving
degrees of freedom. For any given wire with the basis (b†↑,L,

b
†
↓,L, b

†
↑,R, b

†
↓,R, b↑,R, b↓,R, b↑,L, b↓,L ), the K matrix reads

K := diag (+1,+1,−1,−1,−1,−1,+1,+1), (B2a)

where PHS has the representation

P� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, I� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B2b)

1. SRE phase

To complete the definition of an array of quantum wires
realizing an SRE phase in the symmetry class C, we specify
the (4N − 2) scattering vectors

T (j )
1,SRE := (0,0,0,0,0,0,0,0| · · · |+1,0,−1,0,−1,0,+1,0| · · · |0,0,0,0,0,0,0,0), (B3a)

T (j )
2,SRE := (0,0,0,0,0,0,0,0| · · · |0,+1,0,−1,0,−1,0,+1| · · · |0,0,0,0,0,0,0,0), (B3b)

T (l)
3,SRE := (0,0,0,0,0,0,0,0| · · · |0,0,+1,0,−1,0,0,0|0,−1,0,0,0,0,0,+1| · · · |0,0,0,0,0,0,0,0), (B3c)

T (l)
4,SRE := (0,0,0,0,0,0,0,0| · · · |0,0,0,−1,0,+1,0,0| + 1,0,0,0,0,0,−1,0| · · · |0,0,0,0,0,0,0,0), (B3d)

for j = 1, . . . ,N and l = 1, . . . ,N − 1. These scattering
vectors gap out all modes in the bulk and comply both with
PHS and with the Haldane criterion (3.7). Of the remaining
four modes, two are localized at either edge of the system. The
remaining two modes on either edge share the same chirality,
for they could be gapped out by the nonlocal scattering vectors

T (0)
3,SRE :=(0,−1,0,0,0,0,0,+1| · · · |0,0,+1,0,−1,0,0,0),

(B4a)

T (0)
4,SRE :=(+1,0,0,0,0,0,−1,0| · · · |0,0,0,−1,0,+1,0,0),

(B4b)

which act on modes with + chirality on the left and of −
chirality on the right edge only. We conclude that the pair of
chiral modes on either edge is protected from backscattering.
Extending this construction to any integer number of layers
yields the Z classification of class C.

2. LRE phase

To complete the definition of an array of quantum wires
realizing an LRE phase in the symmetry class C, we use the
2N scattering vectors T (j )

1,SRE and T (j )
2,SRE, j = 1, . . . ,N defined

in Eq. (B3) and supplement them with the 2(N − 1) scattering
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vectors

T (j )
3,LRE := (0,0,0,0,0,0,0,0| · · · |0,−m−,m+,0,−m+,0,0,m−|0,−m+,m−,0,−m−,0,0,m+| · · · |0,0,0,0,0,0,0,0), (B5a)

T (j )
4,LRE := (0,0,0,0,0,0,0,0| · · · |m−,0,0,−m+,0,m+,−m−,0|m+,0,0,−m−,0,m−,−m+,0| · · · |0,0,0,0,0,0,0,0), (B5b)

for j = 1, . . . ,N − 1 and m± = (m ± 1)/2 as well as m an odd positive integer. These tunneling vectors gap out all modes in
the bulk and comply both with PHS and with the Haldane criterion (3.7). One verifies that there exists a linear transformation
with integer entries W and |det W | = m8 such that

T (j )
l,SRE = W−1 T (j )

l,LRE, j = 1, . . . ,N − 1, l = 3,4. (B6)

The K matrix transforms according to Eq. (4.6c), leaving the effective edge theory with two chiral modes of PHS symmetric
superpositions of Laughlin quasiparticles with Laughlin quasiholes on either edge of the system. As with the SRE phase
of symmetry class C, this is a completely chiral theory and no backscattering mechanism can gap out modes by the Haldane
criterion (3.7). Extending this construction to any integer number of layers yields a Z classification of the LRE phase in symmetry
class C for every positive odd integer m.

APPENDIX C: SYMMETRY CLASS DIII

Class DIII is defined in line 4 of Table I by the operator �̂ for the PHS obeying �2 = +1 and with the TRS �2 = −1. In
physical terms, class DIII describes a generic superconductor for which full spin SU(2) symmetry is broken but TRS is retained.
We use the same basis and K matrix as specified for class C in Eq. (B2a), namely,

K := diag (+1,+1,−1,−1,−1,−1,+1,+1). (C1a)

The PHS now has the representation

P� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, I� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C1b)

while TRS is defined by

P� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, I� :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C1c)

1. SRE phase

To complete the definition of an array of quantum wires realizing a SRE phase in the symmetry class DIII, we specify the
(4N − 2) tunneling vectors

T (j )
1,SRE := (0,0,0,0,0,0,0,0| · · · |+1,0,−1,0,−1,0,+1,0| · · · |0,0,0,0,0,0,0,0), (C2a)

T (j )
2,SRE := (0,0,0,0,0,0,0,0| · · · |0,+1,0,−1,0,−1,0,+1| · · · |0,0,0,0,0,0,0,0), (C2b)

T (l)
3,SRE := (0,0,0,0,0,0,0,0| · · · |0,0,+1,0,−1,0,0,0|−1,0,0,0,0,0,+1,0| · · · |0,0,0,0,0,0,0,0), (C2c)

T (l)
4,SRE := (0,0,0,0,0,0,0,0| · · · |0,−1,0,0,0,0,0,+1|0,0,0,+1,0,−1,0,0| · · · |0,0,0,0,0,0,0,0), (C2d)
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for j = 1, . . . ,N and l = 1, . . . ,N − 1. These tunnelings gap
out all the bulk modes. Here, T (j )

1,SRE and T (j )
2,SRE as well as

T (j )
3,SRE and T (j )

4,SRE are pairwise related by TRS, while each
of the tunneling vectors is in itself PHS. The phases of the
corresponding cosine terms in Hamiltonian (2.5d) comply with
both TRS and PHS as if

αT (j )
1,SRE

= αT (j )
2,SRE

, αT (j )
3,SRE

= αT (j )
4,SRE

= 0. (C3)

On both wire j = 1 and wire j = N , there remains a
single Kramers degenerate pair of propagating modes. Now,
the tunneling vector

T L = (−1,0,0,+1,0,−1,+1,0| · · · |0,0,0,0,0,0,0,0) (C4)

acts locally on the left edge, satisfies the Haldane criterion
with all existing scattering vectors, and is unique up to an
integer multiplicative factor. It might thus be concluded that
the left pair of Kramers degenerate edge states can be gapped
by the tunneling T L. This, however, is not the case. Indeed,
while T L itself is both compliant with PHS and TRS, its
contribution to Ĥ{T } induces another expectation value that
breaks TRS spontaneously. To see this, we note that, by the
particle-hole redundancy, the bosonic fields φ̂1(x) and −φ̂7(x)
as well as φ̂4(x) and −φ̂6(x) have to be identified. Thus
it is cos (T L T K 
̂(x)) ∼ cos (2φ̂1(x) − 2φ̂4(x)) that acquires

an expectation value. Now, the term cos (φ̂1(x) − φ̂4(x)) is
more relevant from the point of view of the renormalization
group than cos (2φ̂1(x) − 2φ̂4(x)). If cos (2φ̂1(x) − 2φ̂4(x))
acquires an expectation value, so does cos (φ̂1(x) − φ̂4(x)).
However, cos (φ̂1(x) − φ̂4(x)) corresponds to

T̄ L = (−1,0,0,+1,0,0,0,0| · · · |0,0,0,0,0,0,0,0) (C5)

(and scattering vectors related by PHS), which must then
break TRS spontaneously, for the resulting condition αT̄ L =
α−P�T̄ L + π = αT̄ L + π on the phase of its cosine term cannot
be met. If we rule out the spontaneous breaking of TRS on the
left edge, we must rule out the tunnelings n T L for any integer
n. Under this assumption, there remains a single gapless left
pair of Kramers degenerate edge states.

We conclude that there is no possibility to localize the
remaining edge modes with perturbations that comply with
both TRS and PHS. Had we considered two layers of this wire
model, edge modes in both layers can be gapped out pairwise,
similar to the case of class AII that we discussed in the main
text. We conclude that the SRE phase of symmetry class DIII
features a Z2 topological classification.

2. LRE phase

To complete the definition of an array of quantum wires
realizing an LRE phase in the symmetry class D III, we use the
2N scattering vectors T (j )

1,SRE and T (j )
2,SRE, j = 1, . . . ,N defined

in Eq. (C2) and supplement them with the 2(N − 1) scattering
vectors

T (j )
3,LRE := (0,0,0,0,0,0,0,0| · · · |−m−,0,m+,0,−m+,0,m−,0|−m+,0,m−,0,−m−,0,m+,0| · · · |0,0,0,0,0,0,0,0), (C6a)

T (j )
4,LRE := (0,0,0,0,0,0,0,0| · · · |0,−m+,0,m−,0,m−,0,m+|0,−m−,0,m+,0,−m+,0,m−| · · · |0,0,0,0,0,0,0,0), (C6b)

for j = 1, . . . ,N − 1 and m± = (m ± 1)/2 as well as m an
odd positive integer. These tunneling vectors gap out all
modes in the bulk and comply both with PHS and with the
Haldane criterion (3.7). One verifies that there exists a linear
transformation with integer entires W and |det W | = m8 such
that

T (j )
l,SRE = W−1 T (j )

l,LRE, j = 1, . . . ,N − 1, l = 3,4. (C7)

The K matrix transforms according to Eq. (4.6c), leaving the
effective effective edge theory with one Kramers degenerate
pair of PHS symmetric superpositions of Laughlin quasiparti-
cles with Laughlin quasiholes on either edge of the system. As
with the SRE phase of symmetry class DIII, this edge theory is
protected by PHS and TRS. Two copies of it, however, can be
fully gapped out while preserving PHS and TRS. This yields
a Z2 classification of the LRE phase in symmetry class DIII
for every positive odd integer m.
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Ĉ that is antiunitary and commutes with the Hamiltonian. The
single-particle representation C of Ĉ is a unitary operator that
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