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Statistics of energy dissipation in a quantum dot operating in the cotunneling regime
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At Coulomb blockade valleys inelastic cotunneling processes generate particle-hole excitations in quantum
dots (QDs), and lead to energy dissipation. We have analyzed the probability distribution function (PDF) of energy
dissipated in a QD due to such processes during a given time interval. We obtained analytically the cumulant
generating function, and extracted the average, variance, and Fano factor. The latter diverges as T 3/(eV )2 at bias
eV smaller than the temperature T , and reaches the value 3eV/5 in the opposite limit. The PDF is further studied
numerically. As expected, the Crooks fluctuation relation is not fulfilled by the PDF. Our results can be verified
experimentally utilizing transport measurements of charge.
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Thermal properties of nanostructures are of profound im-
portance, inasmuch as they are manifestations of the dynamics
of the particle zoo inside them. The latter includes electrons,
phonons, photons, and other (quasi)particles, depending on
the system and its surrounding environment. At the same
time, understanding thermal characteristics and gaining the
ability to manipulate them will facilitate higher control over
nanocircuits, which is at the heart of technological advances.
Importantly, it may push forward the effort towards finding
sustainable energy resources.

As a consequence, recently there has been a growing
interest in the thermal aspects of nanostructures [1]. For
instance, thermoelectricity in semiconductor nanostructures is
investigated in Ref. [2]. The validity of the Wiedemann-Franz
law in several mesoscopic systems is studied in Ref. [3].
Experimental investigations of photon and phonon emission
from nanostructures is reported in Ref. [4]. The temperature
of nanostructures is analyzed in Ref. [5]. Verification of the
recently discovered nonequilibrium fluctuation relations [6]
in the context of heat is reported in Refs. [7,8]. Energy
relaxation in a quantum dot (QD), which is a pillar in the
study of nanoelectronic systems, is investigated in Ref. [9].
It was found there that half of the Joule heating produced
in transport is due to energy dissipation through the QD.
Importantly, there are physical phenomena which are not fully
accessible by charge related measurements. As an example,
we note the recently observed neutral modes in the fractional
quantum Hall regime [10], whose characterization may require
thermometry [11].

Here we study the statistical properties of energy dissipated
in a QD [12] tuned to be in a Coulomb blockade valley.
In this regime sequential tunneling processes are mostly
suppressed, and cotunneling processes play a leading role
in transport. Cotunneling is a many-body coherent process,
where electrons are transferred from one lead to another via
a virtual (classically forbidden) state in the QD [13]. We are
interested in the “inelastic” contribution, where a “trace” is
left on the QD in the form of an electron-hole excited pair with
energy �E (cf. Fig. 1). Since the QD is practically always
in contact with an environment, this energy is dissipated. We
focus on the regime where the time needed for equilibration of

the QD constitutes the shortest time scale in the problem.
The probability distribution function (PDF) P (E,t) of the
total energy dissipated in the QD, E, within a given time
interval t possesses complete information on the statistics of
energy dissipation in the QD. We note other works where
the absorbing environment has been modeled specifically by
photon or phonon modes [14].

The main goal of our study is to tackle the PDF of energy
dissipation in the context of virtual (classically forbidden)
many-body states. Specifically, we obtain the following: (i) An
analytic result for the cumulant generating function of P (E,t)
[cf. Eq. (8)]. This function fully characterizes the statistics of
energy dissipation in the QD, and can be utilized to obtain
all the cumulants of the distribution. (ii) The PDF P (E,t) in
an integral form, which we study numerically. (iii) The first
two cumulants of the PDF, average and variance [cf. Eq. (9)],
and the Fano factor (cf. Fig. 2). (iv) We have analyzed our
results in the context of nonequilibrium fluctuation relations,
and have found that the PDF violates the Crooks relation. This
is, in fact, expected, since the energy accounted for by the
PDF is not the total work performed by the voltage source:
It accounts only for the energy gain in the QD but not for

FIG. 1. (Color online) Left: An equivalent circuit representing a
quantum dot (QD) (the region bounded by the three capacitors c1,
c2, and cg, marked by a blue rectangle), tunnel coupled to two leads
with potentials VL and VR. The energy levels of the QD can be shifted
by an additional capacitively coupled gate Vg. The two other orange
rectangles denote energy filters. Right: Schematic illustration of a
particlelike inelastic cotunneling process. The numbers denote the
order of hopping. In the corresponding holelike process the order is
interchanged.
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FIG. 2. (Color online) Left: Total rate of energy dissipation in
the QD, ��(�E), at temperature T = 0 [cf. Eq. (5)]. In this limit
only inelastic cotunneling processes from left to right contribute
to the energy dissipation in the QD, which is confined to the
range 0 < �E < eV . Right: Fano factor [cf. Eq. (10c)]. Here the
temperature T = 1. At eV � T the Fano factor ∼3eV/5. At eV → 0
the divergence is a manifestation of the fact that on average no energy
is dissipated in the QD, while fluctuations around this value are finite
[cf. Eqs. (10)].

the energy dissipated in the two leads. (v) We propose an
experimental method whereby the statistics of energy can be
acquired via charge-transport measurements.

The Hamiltonian of a QD, tunnel coupled to two leads
(cf. Fig. 1), is denoted by H = H0 + V . The unperturbed
Hamiltonian H0 = HL + HR + HD is the Hamiltonian of the
three subsystems in the absence of tunneling, where HL =∑

k εkc
†
kck , HR = ∑

q εqc
†
qcq , and HD = ∑

n εnc
†
ncn + HN are

the Hamiltonians of the left lead, right lead, and the QD,
respectively. HN denotes the interactions in the QD in
the presence of N electrons. The tunneling Hamiltonian is
considered to be the perturbation. It is V = HTL + HTR, where
HTL = ∑

k,n tknc
†
kcn + H.c. and HTR = ∑

q,m tqmc
†
qcm + H.c.

denote dot-left-lead tunneling and dot-right-lead tunneling,
respectively.

We employ the second-order version of Fermi’s golden rule
[15] to calculate the cotunneling rates of electrons from lead
to lead [16] that deposit energy �E in the QD (which may be
positive or negative) in the form of a particle-hole excitation
(cf. Fig. 1). For the transition rate per unit energy from the left
lead to the right lead (L → R) we obtain

�RL(�E) = γ Lγ R

2π

∫ +∞

−∞
dεk

∫ +∞

−∞
dεn

∫ +∞

−∞
dεm

×
∫ +∞

−∞
dεqf (εk)[1 − f (εn)]δ(εn − εm − �E)

× f (εm)[1 − f (εq)]δ(εq − εk + εn − εm − eV )

×
∣∣∣∣ 1

εk−εn+eVL−μN

+ 1

εm−εq+μN−1−eVR

∣∣∣∣
2

.

(1)

Here μN ≡ e2/2c� + e(eN + Qg)/c� is a charging energy
associated with electron processes and μN−1 is a charging
energy associated with hole processes; e is the charge of an
electron, c� = c1 + c2 + cg the total capacitance of the QD
to the leads and gate (cf. Fig. 1), Qg the effective charge
on the gate, and eV ≡ eVL − eVR > 0 the bias voltage. It
is assumed that the occupation of electronic states in each

of the subsystems can be described by a Fermi function
f (ε) = (eε/T + 1)−1 (i.e., fast relaxation time). Although the
temperature in the leads and in the QD may differ [5], for
simplicity, in what follows we assume that the temperature is
uniform across the system. Our results are easily generalizable
for the case of a higher steady state temperature in the QD.
The constants γ L(R) = 2πρL(R)ρD|tkn(qm)|2, where ρL(R) is the
density of states in the left (right) lead, are assumed to be
energy independent. The energies εk , εn, εm, εq correspond to
levels in the left lead, QD, QD, and right lead, respectively.

Similar expressions can be obtained for the rates of the other
cotunneling processes, namely, from the right lead to the left
lead, from the left lead to itself, and from the right lead to itself.
The total rate is given by ��(�E) = ∑

s,s ′=L,R �ss ′ (�E),
where �RL(�E) = �̃RL(�E,eV ), �LR(�E) = �̃LR(�E, −
eV ), �LL(�E) = �̃LL(�E,0), and �RR(�E) = �̃RR(�E,0).
The rates marked with a tilde are given by

�̃ss ′ (�E,eV ) ≡
∫ ∞

−∞
dε Peh(ε,eV − �E)

×
∫ ∞

−∞
dε′ Peh(ε′,�E)P ss ′

cot (ε,ε
′,�E), (2a)

Peh(ε,�E) ≡ f (ε) [1 − f (ε + �E)] , (2b)

P ss ′
cot (ε,ε

′,�E) ≡ γ sγ s ′
(μN − μN−1)2/2π

× (ε′ − ε + μN − eVs ′ + �E)−2

× (ε′ − ε + μN−1 − eVs ′ + �E)−2. (2c)

The quantity Peh(ε,�E) represents the probability for
electron-hole excitations, and P ss ′

cot (ε,ε
′,�E) has the meaning

of a probability of a cotunneling process which leaves energy
�E in the QD.

For temperatures and voltages that are small relative to the
charging energy of the QD, this analysis can be further pursued
analytically. We expand the integrands up to first order with
respect to the kinetic energies over the charging energies, and
evaluate the integrals. The result is

�̃ss ′ (�E,eV ) � Css ′ (eV )b(−�E)b(�E − eV )

×�E(eV − �E), (3)

where b(ε) = (eε/T − 1)−1 is the Bose function, and

Css ′ (eV ) ≡ γ sγ s ′

2π

(
1

μN−1 − eVs ′
− 1

μN − eVs ′

)2

×
[

1 −
(

1

μN−1 − eVs ′
+ 1

μN − eVs ′

)
eV

]
. (4)

In order to obtain some physical intuition, we look now
at the limit of zero temperature. Equations (2) readily show
that in this limit all rates vanish besides �RL(�E), due to the
presence of the Fermi functions. Furthermore, 0 < �E < eV .
This is expected, since at zero temperature the only way the
QD can be excited is when an energetic electron starts at
the left lead and passes to the right lead while depositing
some energy in the QD. All other transitions are impossible,
due to the filled Fermi seas in the left lead, right lead, and QD.

201404-2



RAPID COMMUNICATIONS

STATISTICS OF ENERGY DISSIPATION IN A QUANTUM . . . PHYSICAL REVIEW B 90, 201404(R) (2014)

Equation (3) then yields, at T = 0,

��(�E) �
{

CRL(eV )�E(eV − �E), 0 < �E < eV,

0, elsewhere.
(5)

This is depicted in Fig. 2.
We turn now to the calculation of P (E,t), which denotes

the PDF of the QD to absorb an excessive amount of energy
E during the time interval t due to inelastic cotunneling
processes. It is assumed that any amount of energy transferred
to the QD due to a cotunneling electron immediately dissipates
to the environment, namely, that the relaxation time of the
QD to an equilibrium state is the shortest time scale in the
problem. P (E,t) fulfills the following master equation,

∂P (E,t)

∂t
= −��P (E,t)

+
∫ ∞

−∞
d(�E)��(�E)P (E − �E,t), (6)

where �� ≡ ∫ ∞
−∞ d(�E)��(�E) is the sum of rates of inelas-

tic cotunneling at all energies. Taking the Fourier transform

of Eq. (6) with respect to E (τ will designate the variable
conjugate to E) and solving the resulting differential equation,
one obtains

P (τ,t) = P (τ,0) exp {2π [��(τ ) − ��(τ = 0)] t} , (7a)

P (E,t) =
∫ ∞

−∞
dτ P (τ,t)eiEτ . (7b)

Here ��(τ ) = (2π )−1
∫ ∞
−∞ d(�E)��(�E)e−i�Eτ . Norm-

alization gives
∫ ∞
−∞ dE P (E,t) = 2πP (τ = 0,t = 0) =∫ ∞

−∞ dE P (E,t = 0), namely, the PDF evolves in time such
that the total probability is conserved, as it should. To facilitate
the numerical evaluation of Eq. (7b) (see below), we choose
the initial condition P (E,t = 0) = exp(−E2/2σ 2)/

√
2πσ 2.

Physically it may reflect some initial uncertainty in the energy
counter [17].

The cumulant generating function is given by ln〈eiEτ 〉 =
2π [��(−τ )−��(τ = 0)]t . Consequently, the nth cumulant is
given by 2πt in∂n

τ ��(τ )|τ=0, where

��(τ ) = πT 3 [CLL(0) + CRR(0)]

sinh3 (πT τ )
[πT τ cosh(πT τ ) − sinh(πT τ )] + π2T 3

[
CRL(eV )e

eV
2 ( 1

T
−iτ) + CLR(−eV )e− eV

2 ( 1
T

−iτ)]
sinh

(
eV
2T

)
sinh3 (πT τ )

×
[

sin

(
eV τ

2

)
cosh(πT τ ) − eV

2πT
cos

(
eV τ

2

)
sinh(πT τ )

]
. (8)

This function, which provides complete information on
the statistics of energy dissipation in the QD upon dif-
ferentiation, is the central result of our Rapid Commu-
nication. As a consistency check we obtain the standard
inelastic charge current [13] from these results, which,
for CRL(eV ) � CLR(−eV ), reads I = 2πe[�RL(τ = 0) −
�LR(τ = 0)] ∝ eV [(2πT )2 + (eV )2].

The first two cumulants of P (E,t)—the mean value and the
variance—are given by

〈E〉
t

= CRL(eV )eeV/2T − CLR(−eV )e−eV/2T

24 sinh(eV/2T )

× (eV )2[(eV )2 + (2πT )2], (9a)

〈E2〉 − 〈E〉2

t
= 1

30
[CLL(0) + CRR(0)](2πT )4T

+ CRL(eV )eeV/2T + CLR(−eV )e−eV/2T

120 sinh(eV/2T )
eV

× [(eV )2 + (2πT )2][3(eV )2 + 2(2πT )2].

(9b)

It is noted that 〈E〉/t = IV/2 (cf. Ref. [9]). Similarly, it is
possible to evaluate higher-order cumulants of P (E,t).

In the symmetric case where γ L = γ R ≡ γ , and for values
of eVL and eVR which are small relative to the charging
energies, one has Css ′ (eV ) � (μ−1

N−1 − μ−1
N )2γ 2/2π ≡ C. It

follows that

〈E〉
t

= C

12
(eV )2 [(eV )2 + (2πT )2], (10a)

〈E2〉 − 〈E〉2

t
= C

60

{
(2πT )44T + coth

(
eV

2T

)
eV

× [(eV )2 + (2πT )2][3(eV )2 + 2(2πT )2]

}
,

(10b)

〈E2〉 − 〈E〉2

〈E〉 = coth

(
eV

2T

)
3 (eV )2 + 2 (2πT )2

5eV

+ 4T (2πT )4

5 (eV )2 [(2πT )2 + (eV )2]
. (10c)

The information on the average and variance is encapsulated
in the Fano factor, which is the ratio between them; it is shown
in Fig. 2.

In the high bias regime, eV � T , one observes the follow-
ing. The average 〈E〉 /t ∝ (eV )4, implying that the QD is more
probable to absorb energy than to emit energy. The fluctuations
(i.e., standard deviation) ∝(eV )5/2. The Fano factor in this
limit �3eV/5, expressing a corresponding “effective energy
charge.”

The results in the linear response regime, eV 
 T , are quite
different. The average 〈E〉 /t ∝ (eV )2T 2, and the fluctuations
∝T 5/2. This is reflected in the divergence of the Fano factor,
which in this limit �32π2T 3/5(eV )2 [see Fig. 2 (right)].
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FIG. 3. (Color online) The time evolution of the probability
distribution of energy dissipated in the QD, P (E,t) [cf. Eqs. (7)
and (8)]. The time intervals are indicated in the panels. P (E,t) is
obtained by numerical integration with T = 1, eV = 3, C = 10−4,
and σ = 2. The typical time scale associated with the evolution of
P (E,t) is given by �−1

� (τ = 0) � 1570.

The Crooks fluctuation relation is not fulfilled by P (E,t).
In the present context the Crooks relation reads P (E,t) =
P (−E,t)eE/T , which upon Fourier transform yields P (τ,t) =
P (−τ − i/T ,t). The latter relation is generically violated by
P (τ,t) given in Eq. (7a). This can be understood by recalling
that the Crooks relation applies to the total energy (work)
gained by a system, while here E denotes only the energy
gained by the QD (and not the energy dissipated in the left
and right leads). As a consequence of the symmetry of the
problem, P (E,t) is unchanged with respect to a simultaneous
interchange of VL � VR and γ L � γ R.

It is possible to evaluate P (E,t) by performing the Fourier
transform in Eq. (7b) numerically. The evolution of P (E,t)
for a case where eV > T is shown in Fig. 3. P (E,t) is seen
to propagate and widen, where the typical time scale of its
evolution is given by �−1

� (τ = 0).
Experimental considerations. One route to measure P (E,t)

is with sensitive thermometry [1]. However, issues concerning
“back action” due to the measurement device may then arise
[8]. In what follows we propose another method, which is
based on a transport measurement of charge. We first conceive
ideal energy filters deployed in the left and right leads (see
Fig. 1). These filters will allow only electrons with certain
energies, say, εL and εR, to pass through. We define the
rates of charge transfer at these energies, �RL (εL,εR) and
�LR (εL,εR). A measurement of the current and noise, which
are proportional to the difference and the sum of these rates,
respectively, suffices for determining each of them separately
[18]. Change of variables εL,εR → εL + εR, ± (εR − εL) and
integration of �RL (εL,εR) and �LR (εL,εR) over εL + εR then
yield �RL (�E) and �LR (�E), respectively. If the setup is

symmetric, i.e., γ L = γ R, extraction of the two other rates,
�LL (�E) and �RR (�E), is possible. At eV = 0 there is no
net current, and the electric current noise is proportional to the
sum of two equal rates, �RL(εL,εR) and �LR(εL,εR). By taking
1/2 of the measured noise we obtain each of those equal rates,
as well as �LL(εL,ε′

L) = �RR(ε′
R,εR) with ε′

L = εR, ε′
R = εL. At

finite eV , the rates �LL(�E) and �RR(�E) remain unchanged.
Note that restricting ourselves to zero temperature, the PDF is
dominated now by a single rate [�RL(�E)], and our analysis
does not require the knowledge of �LL(�E) and �RR(�E).

Two extra QDs tuned to resonances at energies εL and εR

can be used to implement the energy filters. The resulting
energy resolution will be of the order of the level width of the
filters. We require that this width is determined by the coupling
of the filter to the respective lead rather than to the central QD.
We note that under these conditions, the addition of filters
indeed modifies the transport properties of the setup. What is
significant to our analysis is the fact that within the allowed
filter windows the cotunneling process is hardly modified (the
modification is small in the ratio of QD-filter coupling and the
filter-lead coupling).

To further improve the energy resolution of the filters, one
may introduce a junction with three entry/exit directions in
between the QD and each of the filters. Each junction should
be connected to the QD, to the nearby filter, and to an additional
drain. By breaking the time reversal symmetry the junction can
be tuned such that most backscattered electrons are drained
out of the circuit through the additional drain and hence do not
affect the measurement.

The results reported here constitute a step towards un-
derstanding the energy characteristics of nanoscopic setups.
Quantum dots, being a pillar of such systems, play an important
role in such investigations. By studying a QD operating in the
cotunneling regime, the energy characteristics of the QD in the
“deep” quantum limit have been addressed directly.

To conclude, we have analyzed energy dissipation in a
QD operating in the cotunneling regime, where energy is
transferred to the QD in the form of particle-hole excitations.
The QD is in contact with an environment, which supplies
an equilibration mechanism to the excess energy deposited on
the QD by the cotunneling electrons (this energy may also be
negative). The time scale associated with the equilibration of
the QD is assumed to be the shortest one in the system. We
have analytically obtained the cumulant generating function,
which supplies complete information on the statistics of energy
dissipation in the QD. Specifically, the average, variance, and
Fano factor have been evaluated. We have further obtained
numerically the corresponding PDF. The analysis of the results
in the context of the recently discovered fluctuation relations
underlines that fluctuation relations should be applied with
caution. Our results are amenable to experimental verification
with thermometry, or, with the more common transport
measurement of charge.
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