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Quantum bubble defects in the lowest-Landau-level crystal
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A longstanding puzzle for the lowest-Landau-level crystal phase has been an order of magnitude discrepancy
between the theoretically calculated energy of the defects and the measured activation gap. We perform an
extensive study of various kinds of defects in the correlated composite fermion crystal and find that the lowest
energy defect is a sixfold symmetric “hypercorrelated bubble interstitial,” in which an interstitial particle forms
a strongly correlated bound state with a particle of the crystal. The energy of the bubble defect is a factor of ∼3
smaller than that of the lowest energy defect in a Hartree-Fock crystal. The anomalously low activation energies
measured in transport experiments are thus a signature of the unusual quantum nature of the crystal and its defects.
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When the extent of the quantum mechanical wave function
of particles localized at the lattice sites of a crystal is
comparable to the lattice constant, quantum mechanical effects
can produce qualitatively new behavior. That has inspired
fascinating developments in the contexts of 3He and 4He solids
[1], as well as a longstanding interest in the crystal of electrons
in the lowest Landau level (LLL) of a two-dimensional electron
system (2DES) where the lattice constant is comparable to the
magnetic length that governs the size of the electron wave
packet. (In contrast, for the electron crystal on the surface
of liquid helium [2], the quantum nature of electrons plays
no measurable role.) The insulating phase observed at low
fillings of the LLL [3–14] is believed to be a pinned crystal,
and it is natural to ask in what ways the quantum nature
of this crystal manifests in measurements. We show in this
Rapid Communication that a striking feature of this crystal
is the appearance of an unusual, nonclassical defect with an
extremely low energy.

Surprisingly little theoretical work has been performed to
investigate the lowest energy defects of the LLL crystal, even
though it was deduced experimentally more than two decades
ago from the activated behavior of the longitudinal resistance
ρxx ∝ e�/kBT in the insulating phase. The theoretical energies
of various defects in a Hartree-Fock (HF) crystal, shown below,
are found to be roughly an order of magnitude larger, thus
indicating that the HF crystal is not a good description of the
actual state. Indeed, theoretical work has shown that a crystal
of composite fermions [15–19] is superior to a HF crystal of
electrons, and is also very close to the crystal formed in exact
diagonalization studies [17]. Electrons thus take advantage of
both the composite fermion (CF) and the crystal correlations to
seek the lowest energy state: They bind fewer than the maximal
number of vortices available to them and use the remaining
degrees of freedom to form a crystal. We consider several
point defects of the triangular CF crystal (CFC) and find the
striking result that the lowest energy defect is not one of the
standard point defects (i.e., a vacancy, an edge interstitial, or a
centered interstitial) but rather a sixfold symmetric interstitial
that we call a “bubble interstitial,” depicted in Fig. 1(a), in
which the interstitial composite fermion forms a strongly
correlated liquid bubble with one of the composite fermions
forming the crystal; such a defect is not captured by elasticity
theory because of its short range correlations. Furthermore,
the CF bubble defect has a substantially lower energy than the

lowest energy defect in the HF crystal. That leads us to suggest
that the anomalously low energy of defects as deduced by
transport experiments is a signature of the correlated quantum
mechanical nature of the LLL crystal as well as its defects.

We define the defect energy ED as [20]

ED = lim
N→∞

(
E

(N)
def − E

(N)
0

)
, (1)

where E
(N)
def is the energy of an N particle crystal containing a

defect and E
(N)
0 is the energy of a defect-free N particle crystal.

These energies include the interaction with the background and
are evaluated at constant density (i.e., equal area). We find a
smoother behavior as a function of N by using the relation

ED = lim
N→∞

(
N

N ± 1
E

(N±1)
def − E

(N)
0

)
, (2)

because the lattice away from the defect is minimally changed
between the crystals with and without defect.

We perform our calculations in the spherical geometry
[21]. We form crystals on the surface of a sphere by placing
wave packets at the Thomson minimum locations [22,23]
determined by minimizing the energy of N charged point
particles on the sphere. The sites are generally sixfold co-
ordinated, although the presence of some disclination defects
is unavoidable in this geometry. The microscopic coordinates
are denoted by rj = (θj ,φj ) and the electron sites are denoted
by Rl = (γl,δl) in terms of the polar and the azimuthal angles.
When describing the wave functions, it is convenient to use the
spinor notation (uj ,vj ) = [cos(θj /2)eiφj /2, sin(θj /2)e−iφj /2]
and (Ul,Vl) = [cos(γl/2)eiδl/2, sin(γl/2)e−iδl/2]. We create a
vacancy or an interstitial by removing a particle from a lattice
site or by adding a particle to an interstitial site. Edge interstitial
sites are given by Redge = (R1 + R2)/|R1 + R2| and centered
interstitial sites are given by Rcentered = (R1 + R2 + R3)/|R1 +
R2 + R3|, where R1, R2, and R3 are any three neighboring
lattice sites. A bubble interstitial [24,25] in a HF (CF) crystal
consists of an electron (CF) pair localized at a Thomson lattice
site.

Relaxing the crystal lattice around a defect is crucial
for obtaining realistic defect energies. Past techniques for
calculating the defect energy [20,26,27] rely on a periodic
repetition of a large unit cell, and are not appropriate for
use in the spherical geometry. One must also take care not
to relax the lattice by minimizing the energy of the entire
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FIG. 1. (Color online) (a) A schematic representation of the
defect configurations that we have considered. A vacancy is shown
on the top left. Going clockwise, the other three defects are centered,
edge, and bubble interstitials (with the added particle shown in
red). The vacancy and the bubble interstitial have sixfold symmetry,
whereas the centered and edge interstitials have threefold and twofold
symmetry, respectively. (b) The energies of various defects in a
classical crystal, calculated using the radial relaxation procedure only,
as a function of the system’s size on the sphere. (c) The energy of
the fully relaxed edge interstitial defect for the LLL Hartree-Fock
(HF) crystal (solid circles) and the classical crystal of point charges
(dashed line) as a function of filling factor.

system since this will simply heal the defect and produce a
Thomson crystal with one more or fewer composite fermions.
We have developed an efficient method for calculating the
defect energy that proceeds along the following steps. We
place the defect far from native disclinations on the sphere
and first carry out “radial relaxation” which consists of a
series of cycles during each of which we systematically allow
successive sets of the defect’s nearest neighbors to move either
away from or toward the defect until the lowest energy is
obtained. We find that for the system sizes considered here,
the first relaxation cycle is the most important for the classical
and HF crystals, reducing the defect energy by ∼70% for
a vacancy and ∼85% for an interstitial; subsequent cycles
produce a relatively small further reduction of 1%–2% for a
vacancy and within ∼5% for an interstitial. Radial relaxation
alone cannot be expected to produce the lowest possible defect
energies, however. The complete relaxation procedure consists
of relaxing the defect’s first through fifth nearest neighbors
using the conjugate gradient method [20] (we found no further
energy reduction by going to farther neighbors), relaxing the
remainder of the lattice using radial relaxation, and obtaining
the final defect energy by extrapolating to the thermodynamic
limit. We have tested the effectiveness of this relaxation
procedure by calculating defect energies for classical and
LLL HF crystals (details below), where point charges interact
through the Coulomb or the Maki-Zotos (MZ) interaction
[28] [the MZ interaction VMZ = √

πI0(r2/8)sech(r2/8)/4,
where I0 is the modified Bessel function, gives the Coulomb

interaction energy between two Gaussian wave packets in the
LLL] for system containing up to N = 2000 particles. For a
fixed filling factor in the spherical geometry, the density of a
system has a slight N dependence; the effect of this variation
can be eliminated by making the “density correction” to total
energy by multiplying it by a factor of

√
2Qν/N , which

improves convergence of our results to the thermodynamic
limit; we make this correction in all results. We plot the
defect energies for classical systems calculated using radial
relaxation in Fig. 1(b) and the fully relaxed classical and HF
edge interstitial defect energy in Fig. 1(c). The energies of a
classical crystal in zero magnetic field are expressed in units of
e2√ρ/ε and those for the LLL crystal in units of e2/ε�, where
� = √

�c/eB is the magnetic length. We find that the classical
defect energies calculated using this method are consistent
with those found in previous studies [20,26,27], producing
centered and edge interstitial defect energies of 0.125, and 0.19
for the vacancy defect. Comparison with Fig. 1(b) indicates
that radial relaxation alone is not satisfactory, especially for
the interstitials. The lowest energy defects for both classical
and HF systems are interstitials, with there being only a small
difference between the edge and the centered interstitial. We
note that the HF defect has significantly higher energy than
the corresponding classical defect for the filling factor range
of interest [Fig. 1(c)].

We now proceed to describe the crystal and defect wave
functions for composite fermions. To construct the wave
function for the defect-free CFC of composite fermions
carrying 2p vortices, denoted 2pCFC, we place wave packets
of electrons, φ

2Q∗
Rl

(rm) = (Ũlum + Ṽlvm)2Q∗
, at the Thomson

minimum locations [23], where 2Q∗ is the effective monopole
strength; antisymmetrize the product; and then composite-
fermionize by attaching 2p vortices to each particle [29,30].
The final wave function is given by

�
2p

2Q,{R} =
N∏

j<k

(ujvk − vjuk)2pA

⎛
⎝ ∏

1�j�N

φ
2Q∗
Rj

(rj )

⎞
⎠ , (3)

where N is the number of particles, the monopole strength
is 2Q = 2Q∗ + 2p(N − 1), {R} ≡ {R1,R2, . . . ,RN } denotes
the Thomson lattice sites, and A is the antisymmetrization
operator.

The wave function for an unrelaxed vacancy is identical to
that of the N particle CFC except that a single lattice site
is left unoccupied. For an unrelaxed interstitial, we insert
an additional CF at RI . Following Zheng and Fertig [31],
we also consider a “hypercorrelated” interstitial in which we
attach q extra vortices to the interstitial defect to build in
additional repulsive correlations with the surrounding lattice.
The resulting interstitial wave function is given by

�
2p,q

2Q,{R},RI
=

N+1∏
j<k

(ujvk − vjuk)2p

×A

⎛
⎝(J1)qφ2Q′

RI
(r1)

∏
1�j�N

φ
2Q′′
Rj

(rj+1)

⎞
⎠ , (4)
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where Jj = ∏
k 
=j (ujvk − vjuk), 2Q′ = 2Q∗ − q(N − 1),

2Q′′ = 2Q∗ − q, and for a given q we consider only those
2Q∗ for which 2Q′ > 0.

We also consider the bubble interstitial, which consists of
two particles with a relative angular momentum of 1 local-
ized at a Thomson lattice site. Similarly to hypercorrelated
interstitials, one can create hypercorrelated bubble interstitials
through the attachment of additional vortices, with its wave
function given by

�
2p,q

2Q,{R},RB
=

N+1∏
j<k

(ujvk − vjuk)2pA

⎡
⎢⎢⎣(J1)q(J2)q

× (u1v2 − v1u2)φ2Q′
RB

(r1)φ2Q′
RB

(r2)

×
∏

1 � j � N − 1
Rj ∈ {R} \ {RB }

φ
2Q′′
Rj

(rj+2)

⎤
⎥⎥⎦ , (5)

where RB ∈ {R} is the location of the defect pair, 2Q′ = 2Q∗ −
q(N − 1) − q − 1, and 2Q′′ = 2Q∗ − 2q.

We have performed an exhaustive evaluation of energies
for the vacancy, interstitial, and bubble interstitial defects in
N = 32 and 64 particle systems, for 2p = 0, 2, 4, 6, and
q = 0, 1, 2, over a wide range of filling factors using standard
Markov-chain Monte Carlo techniques. To relax the CFC
lattice surrounding the defect, we find it sufficient to perform a
single cycle of radial relaxation; subsequent cycles only have
a small effect. Remarkably, even radial relaxation causes only
a very slight reduction in the defect energy for the 2pCFC,
reducing the energies of vacancy and interstitial defects by
no more than 20% and producing essentially no change at all
for the hypercorrelated bubble defect. (In contrast, the energy
of the classical centered interstitial goes from ∼1.48 to ∼0.18
after radial relaxation, and to 0.125 after full relaxation, with all
energies in units of e2ρ1/2/ε.) This shows that the correlations
introduced by composite fermionization automatically relax
the surrounding lattice to a great degree. This also indicates
that further relaxation would have a negligible impact on the
CFC defect energies. We have also found that the defect energy
has negligible dependence on its location on the sphere. In
Fig. 2 we show density plots for certain typical relaxed bubble
defects.

FIG. 2. (Color online) Density plot of a bubble interstitial in (a)
a HF crystal and (b) a CF crystal. (c) shows a hypercorrelated bubble
in a CF crystal. The plots are for a system of N = 64 particles at
ν = 0.21. The number of vortices attached to every electron, 2p, and
the number of additional vortices attached to the bubble interstitial,
q, are shown. The densities are shown in units of the average density.

FIG. 3. (Color online) The bubble interstitial energy as a function
of the filling factor for crystals of composite fermions with vorticity
2p = 0, 2, 4, and 6 (from top to bottom panels). Purple squares, red
circles, blue triangles, and orange diamonds correspond to q = 0,
1, 2, and 3, respectively, where q denotes the number of additional
vortices attached to the bubble, as discussed in the text. The HF bubble
corresponds to 2p = 0 and q = 0. The shaded regions correspond to
the filling factor regions where the 2pCFC under consideration is
the lowest energy crystal, according to the phase diagram derived by
Archer, Park, and Jain [19]. The lowest energies in the shaded regions
are obtained for hypercorrelated bubbles with q � 1. The results are
for N = 65 particles; error bars on each curve show the Monte Carlo
statistical uncertainty in the energy.

The four panels of Fig. 3 show the energies of various
defects for 2p = 0, 2, 4, and 6. The physically relevant region
for each CFC is highlighted in yellow in each panel, according
to the phase diagram of 2pCFCs evaluated previously [19]. In
all cases we find, surprisingly, that the hypercorrelated q = 1
bubble interstitial has the lowest energy. (This is surprising
because the bubble interstitial has a rather high energy in the
HF crystal.) Furthermore, the energy of the hypercorrelated
bubble interstitial is a factor of 3 lower than the lowest energy
HF defect near ν = 1/5. The energy of the bubble interstitial
in N = 64 particle crystals is shown in Fig. 3 as a function
of the filling factor. (The other defects in the CFC have a
higher energy, and will be described elsewhere.) We have
accounted for the finite thickness of the 2DES, indicated
by the dashed lines in Fig. 3, by modifying the microscopic
interaction following Shi et al. [32]. We have compared the
bubble interstitial defect energies in N = 32 and 64 particles
systems and found that the difference is smaller than the Monte
Carlo statistical uncertainty, which leads us to believe that our
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results shown in Fig. 3 are a good representation of the bubble
interstitial defect energy in the thermodynamic limit.

Experiments have measured the activation energy for the
crystal surrounding the ν = 1/5 fractional quantum Hall
(FQH) state [4–9]. They find substantial filling factor depen-
dence of the activation energy close to 1/5, but for filling factors
sufficiently far below 1/5 this energy becomes approximately
constant, and is given by 0.004 e2/ε� in the highest mobility
samples [7]. This is significantly lower than the energy of the
lowest energy HF defect at ν = 0.18, which is 0.028 e2/ε�

[Fig. 1(c)]. It is in better agreement with the energy of the
q = 1 hypercorrelated bubble defect, which has an energy of
approximately 0.010 e2/ε� for the 2CF crystal surrounding the
1/5 state (Fig. 3).

A vanishing defect energy signals an instability of the
crystal phase. Two kinds of instability may be seen in Fig. 3.
The top panel illustrates the first type, where we see that
the energy of a q = 1 hypercorrelated bubble in a 0CFC is
negative for ν > 0.3; this indicates that the HF state is unstable
to the formation of composite fermions. The bottom three
panels of Fig. 3 illustrate another type of instability, where
the energy of the q = 0 bubble defect becomes negative as
ν∗ → 1 [ν → 1/(2p + 1)]; this signals the transition of the
2pCFC into an FQH state.

We note that our theory does not capture the rapid decay in
the activation energy upon approach to ν = 1/5, as observed
in experiments [7]. Such behavior is indeed not expected
for a first-order transition from a crystal to liquid state. We
attribute this behavior to the presence of disorder, which
broadens the transition region while also converting it into
a continuous one; this view is consistent with the fact that
the transition region is sharpest in the highest mobility sample
[7]. Narevich, Murthy, and Fertig [16] have treated the CFC
in the vicinity of 1/5 with an effective Hamiltonian theory.

They find that while 4CFC produces low defect energies with
strong ν dependence (resulting from an instability into the
1/5 FQH liquid, as explained above), the more relevant [19]
2CFC produces defects of much higher energy (greater than
0.1 e2/ε�) in the vicinity of ν = 1/5.

We have neglected a number of features that can have
a quantitative impact on the calculated defect energy. We
have not accounted for Landau-level mixing and disorder,
which are expected to lead to a lowering of the gaps [33,34].
This suggests that improving sample quality should lead to
even higher experimental activation energies, a trend that is
apparent in the experiments of Jiang et al. [6,7] and Du
et al. [9]. While these effects are beyond the scope of this
Rapid Communication, it is worth noting that the discrepancy
between the measured and theoretical defect energies is
comparable to that between measured and theoretical gaps
of the prominent FQH states, which is often attributed to a
combination of Landau-level mixing and disorder [35–37].

In summary, we have shown that the quantum nature of
the LLL crystal has striking implications for the defects.
The lowest energy defect is a sixfold hypercorrelated bubble
interstitial, the energy of which is a factor of 3 lower than
the lowest defect in an uncorrelated Hartree-Fock crystal. The
very low energy defects measured in experiments are thus
a manifestation of the unusual quantum nature of the LLL
crystal.
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