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Spin relaxation of a diffusively moving carrier in a random hyperfine field
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Relaxation, 〈Sz(t)〉, of the average spin of a carrier in a course of hops over sites hosting random hyperfine
fields is studied theoretically. In low dimensions, d = 1,2, the decay of average spin with time is nonexponential
at all times. The origin of the effect is that for d = 1,2 a typical random-walk trajectory exhibits numerous
self-intersections. Multiple visits of the carrier to the same site accelerates the relaxation since the corresponding
partial rotations of spin during these visits add up. Another consequence of self-intersections of the random-walk
trajectories is that, in all dimensions, the average, 〈Sz(t)〉, becomes sensitive to a weak magnetic field directed
along z. Our analytical predictions are complemented by the numerical simulations of 〈Sz(t)〉. The scenario of
acceleration of spin relaxation due to returns applies also to the non-Markovian decoherence of a qubit surrounded
by multiple fluctuators.
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Introduction. It is known for more than four decades that
in crystalline semiconductor lacking inversion symmetry, the
spin relaxation time is determined by spin-orbit coupling and
is given by τ−1

s = 〈�2
k〉τ [1], where �k is the precession

frequency around the spin-orbit field, which depends on
electron wave vector k, and τ is the scattering time. Consider
now the situation when the spin-orbit coupling is negligible,
and the electron mobility is very low, so that the transport
can be viewed as random inelastic hops of carriers between
the sites. Then the spin relaxation is due to spin precession in
random hyperfine fields of nuclei surrounding the sites, and
the Dyakonov-Perel expression [1] takes the form τ−1

s = b2
0τ ,

where b0 is the rms hyperfine field, and τ is the waiting time
for a hop. The above situation is germane to the carbon-based
organic semiconductors [2], which have low mobility and
weak spin-orbit coupling. On the other hand, spin relaxation
in these material is an issue of practical importance, since
these materials are considered as promising candidates for
spin-valve devices [3].

Naturally, for long τs , a typical partial rotation of spin,
δϕ = b0τ , during the waiting time is weak, δϕ � 1. Assuming
that all partial rotations are completely uncorrelated, the
spin polarization, averaged over realizations of the hyperfine
fields, falls off with the number of hops, N , as 〈Sz(N )〉 =
Sz(0) exp(−Nδϕ2). This suggests that the evolution of 〈Sz〉
with time t = Nτ is a simple exponent

〈Sz(t)〉 = S(0) exp
(
− t

τs

)
. (1)

The main message of the present Rapid Communication is
that the random walk of a carrier over the sites induces the
correlation in hyperfine fields “sensed” by the carrier spin.
This correlation modifies the decay law, Eq. (1). The origin
of correlation is the self-intersections of the random-walk tra-
jectories (see Fig. 1). These self-intersections imply multiple
visits of the carrier to the same site. Then the corresponding
partial rotations add up which leads to acceleration of the spin
relaxation. The effect is most dramatic if the carrier moves
in one dimension. Then, in the course of N hops, the carrier
visits N1/2 sites, and the number of visits to a given site is
also N1/2. The N dependence of 〈Sz〉 can be found from the
above derivation of Eq. (1) upon replacement N → N1/2 and

δϕ → N1/2δϕ. This yields 〈Sz(N )〉 = Sz(0) exp
(−N3/2δϕ2

)
,

and, correspondingly, the time dependence

〈Sz(t)〉 = S(0) exp

(
− t3/2

τ 1/2τs

)
. (2)

In higher dimensions, d = 2 and d = 3, the number of
self-crossings of an N -step random-walk trajectory is ∼N

and ∼N1/2, respectively, i.e., each site is visited twice with
probability ∼1 for d = 2, and with probability N−1/2 for
d = 3. As a result, the change, 〈δSz(t)〉, of the decay law,
Eq. (1), due to accumulation of the partial rotations is of the
order of 〈Sz(t)〉 for d = 2 and of the order of (τ/t)1/2 〈Sz(t)〉
for d = 3. But even in the latter case the correction to Eq. (1)
can be important since it induces a sensitivity of 〈Sz(t)〉 to
a weak external magnetic field directed along z. Recall that,
without self-intersections, the B dependence of τs is given
by the Hanle-type expression τs = 1+B2τ 2

b2
0τ

, which applies for

B � b0 and predicts that sensitivity to B emerges at B ∼
τ−1 � b0. We will demonstrate that, with self-crossings of
the random-walk trajectories taken into account, the sensitivity
to B develops at much smaller field B ∼ (ττ 2

s )−1/3 � τ−1 in
one dimension and at B ∼ τ−1

s � τ−1 for d = 2 and d = 3.
Remarkably, the returns to the same site after a long time,
t , give rise to the oscillatory correction ∝cos Bt to 〈Sz(t)〉,
which is most pronounced for d = 1.

Diagrammatic expansion. To illustrate our main message,
consider first a simplified situation, when the hyperfine field
is located in the x,y plane. Moreover, we will assume that the
randomness in the in-plane field, b⊥ = (bx,by), is exclusively
due to randomness in the azimuthal angle φ, i.e., bx = b0 cos φ,
by = b0 sin φ (see Fig. 1).

The spin operator satisfies the equation of motion i dŜ
dt

=
[Ŝ,Ĥ ], with Hamiltonian Ĥ = Ŝ · b(t). Excluding the in-plane
components of the operator Ŝ, the equation of motion for Sz

takes the form

Sz(t) = 1 − b2
0

∫ t

0
dt1

∫ t1

0
dt2 cos [φ(t1) − φ(t2)] Sz(t2). (3)
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FIG. 1. (Color online) (a) In the course of diffusion 1 → 2 →
3 → 4 → 5 → 3 → 6 over sites hosting random hyperfine fields
(black arrows) a carrier visits site 3 twice. As a result, the partial spin
rotation doubles (see enlargement). (b) (i) For a trajectory without
self-intersections 〈Sz(t)〉 is given by a sequence of nonintersecting
solid arcs encoding the correlator C0. (ii) Graphical representation of
Eq. (9) for the d = 2 spin relaxation; self-intersections are captured
by a single dashed arc encoding the correlator CD . (iii) Spin relaxation
for d = 1 is described by diffusive diagrams only.

To find the time evolution of the average, 〈Sz(t)〉, it is necessary
to iterate Eq. (3) as

Sz(t) = 1 − b2
0

∫ t

0
dt1

∫ t1

0
dt2 cos[φ(t1) − φ(t2)]

+ b4
0

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∫ t3

0
dt4 cos[φ(t1) − φ(t2)]

× cos[φ(t3) − φ(t4)] − · · · (4)

and perform averaging over the random azimuthal angle, φ(t).
Without self-intersections of the random-walk trajectories, this
averaging is straightforward since the angles φ(t),φ(t ′) are
correlated only for |t − t ′| � τ � t , i.e.,

〈cos[φ(t) − φ(t ′)]〉 = exp[−|t − t ′|/τ ]

= C0(t,t ′). (5)

The exponential character of C0 expresses the Poisson distri-
bution of the waiting times.

Each term of the expansion, Eq. (4), can be graphically
expressed as a diagram (see Fig. 1). Because of the short-time
decay of C0, the arcs corresponding to C0 terms are not allowed
to cross. More precisely, each crossing of arcs gives rise to a
small factor τ/t � 1. On the other hand, averaging of each
term with n nonintersecting arcs yields (−1)n(b0τ )2n/n!, and
we restore Eq. (1).

As a consequence of self-intersections of the random-walk
path, the difference [φ(t) − φ(t ′)] can be small even if the
moments t and t ′ are well separated in time. Quantitatively, this

is captured by the diffusive contribution, CD , to the correlator

〈cos[φ(t) − φ(t ′)]〉 =
[

1

2πD|t − t ′|
]d/2

= CD(t,t ′), (6)

where the diffusion coefficient D is 1/τ assuming that the
separation between neighboring sites is unity. In Eq. (6), self-
intersections are accounted for in the continuous limit as a
probability to return to the origin after moving diffusively for
a time t ′ − t .

The correlator CD should also be incorporated into the
diagrammatic expansion; we denote it with dashed arcs (see
Fig. 1). For example, the diagram involving only one dashed
arc is given by

λd (t) =b2
0

∫ t

0
dt1

∫ t1

0
dt2

[
1

2πD |t1 − t2|
]d/2

. (7)

Evaluation of the double integral yields

λd (t) =

⎧⎪⎪⎨
⎪⎪⎩

4
3(2π)1/2

t3/2√
ττs

, d = 1
1

2πτs

[
t ln

(
t
τ

)]
, d = 2

2τ 1/2

(2π)3/2τs

(
t√
τ

− 2
√

t
)
, d = 3,

(8)

where we have expressed b2
0 in terms of τs and have taken

into account that the diffusive description applies when t1 −
t2 � τ . The double integral, Eq. (7), converges for d = 1 and
the result, Eq. (8), confirms the qualitative argument given
in the Introduction. Namely, the averaged expansion, Eq. (4),
becomes a series in the dimensionless combination b2

0t
3/2τ 1/2.

Note also, that for d = 1 the diffusive contribution, Eq. (7),
exceeds by (t/τ )1/2 the contribution coming from a single solid
arc. This illustrates the fact that each site is visited many times
in the course of a d = 1 random walk.

In two dimensions, the contribution λ2(t), to 〈Sz(t)〉 from
a dashed arc exceeds logarithmically the contribution from
one solid arc. On the other hand, this contribution contains a
prefactor (2π )−1. We will take advantage of the smallness of
this prefactor and sum up all diagrams containing only zero or
one dashed arc, as illustrated in Fig. 1(b). The most delicate
ingredient of this procedure is that the insertion of solid arcs
under a dashed arc amounts to the replacement CD(t1,t2) →
CD(t1,t2) exp[− (t2−t1)

2τs
]. Physically, this means that between

the two subsequent visits to the same site at time moments
t1 and t2, the spin polarization is “forgotten” in the course
of many short-time hops. The emergence of the nontrivial
factor 1/2 in the exponent is demonstrated in the Supplemental
Material [4] where we also show that the presence of a z

component of the hyperfine field amounts to the replacement
CD(t1,t2) → CD(t1,t2) exp[− 3(t1−t2)

4τs
].

For planar hyperfine fields the resulting expression for
〈Sz(t)〉, which is shown graphically in Fig. 1(b), takes the
form

〈Sz(t)〉 = e−t/τs − g2

2πτs

e−t/τs

∫ t

0
dt1

∫ t1

τ

dt2
exp

[− (t2−t1)
2τs

]
t1 − t2

,

(9)

where the numerical factor g2 should be 1, but is retained
intentionally for future comparison with numerics. The second
term is responsible for the deviation from a simple exponential
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decay. This term can be easily reduced to a single integral, and
we get

〈Sz(t)〉 = e−t/τs

[
1 − g2

π

∫ t/2τs

τ/2τs

dw

w

(
t

2τs

− w

)
ew

]
. (10)

For small t � τs , Eq. (10) yields the correction,
− g2

2πτs
t ln(t/τ ), to a simple exponent which reproduces Eq. (8).

In the limit t � τs the correction takes the form g2

π
( exp(−t/2τs )

(t/2τs ) ).
In fact, this asymptote applies already at t > τs . It decays
slower than exp(−t/τs), so that 〈Sz(t)〉 should exhibit a sign
reversal followed by a minimum. Our numerics, see below,
show that this minimum is very shallow.

Turning now to d = 3, we find that the first dominant term
in Eq. (8) describes the contribution from short times and
essentially renormalizes τs . The second subleading term comes
from long diffusive trajectories. It yields a correction to 〈Sz(t)〉
which is small as ( t

τs
)1/2 at t � τs and as ( τs

t
)3/2 exp( −t

2τs
) at

t � τs . The importance of this correction is that it causes a
sensitivity of 〈Sz(t)〉 to a weak external magnetic field, as we
show below.

With the magnetic field along the z axis. Incorporating the
constant, B = z0B, and random, bz(t), components of the
magnetic field amounts to the replacement

[φ(t1)−φ(t2)]→
[
φ(t1) − φ(t2) +B(t1−t2)+

∫ t2

t1

dt ′bz(t
′)
]

(11)

in Eq. (4). As discussed in the Introduction, the solid-arc
diagrams describing the hops to nearest neighbors during the
time intervals ∼τ develop the sensitivity to B only for strong
B ∼ τ−1. On the other hand, the dashed-arc diagrams are
defined by much longer times, and are thus sensitive to much
weaker B. Below, we demonstrate [4] that the B-dependent
correction has the form tB−1/2, t ln Bt , and tB1/2 for d = 1, 2,

and 3, respectively. In addition, these corrections [4] develop
oscillations.

Numerical results. We simulated the spin evolution nu-
merically using the discrete version of the equation of
motion

Si = [Si−1 − ni (ni · Si−1)] cos b0τ

+ (ni × Si−1) sin b0τ + ni (ni · Si−1) , (12)

so that the local hyperfine field had the same magnitude, b0,
on all sites, while the directions, ni , were defined by either
a random azimuthal angle, φi , or by two spherical angles, φi

and θi . The diffusive motion of a carrier was simulated by
randomly choosing ni at the next step from one of the nearest
neighbors of ni at the previous step.

Our numerical results are shown in Figs. 2 and 3. We
started by verifying that, for a directed walk, when all ni

are uncorrelated, 〈Sz(i)〉 decays as a simple exponent. It is
seen from Fig. 2 that, upon allowing self-intersections, the
numerical curve 〈Sz(t)〉 drops below the result for uncorrelated
ni after several steps. For a spherical hyperfine field, ln〈Sz(t)〉
remains essentially linear at large t , but with bigger slope,
i.e., the evolution of 〈Sz(t)〉 exhibits a crossover from one
simple exponent at short times to another simple exponent
at long times. By contrast, for planar hyperfine field, 〈Sz(t)〉
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FIG. 2. (Color online) (a) d = 2 spin relaxation for uncorrelated
(no self-crossings) hyperfine fields bi (red), with self-intersections
and spherically distributed bi (green), and with self-intersections
and planar bi (black). (b) Same as (a) but in logarithmic scale.
The decay 〈Sz(t)〉 is a simple exponent (red), shows crossover
between two simple exponents (green), strongly nonexponential
(black). The yellow line is plotted from Eq. (9) with g2 = 0.75.
(c) and (d) Weak external field B ∼ τ−1

s suppresses the effect of
self-intersections. Numerical (c) and analytical (d) results illustrate
how a simple-exponent decay is restored upon increasing Bτs . Results
for B = 0 (blue), Bτs = 2 (green), Bτs = 5 (red), and Bτs = 10
(black) are shown.

is strongly nonlinear in the logarithm scale at all times. This
completely nonexponential decay is very well described by
Eq. (10) with g2 = 0.75 instead of 1. As we argued above, self-
intersections give rise to the sensitivity of the spin relaxation
to magnetic field B ∼ 1

τs
� 1

τ
. Evolution of the numerical

curves with B is shown in Fig. 2. A significant slowing down
of the relaxation starts from B ∼ 5

τs
. We have also plotted

an analytical dependence of 〈Sz(t)〉 obtained by introducing
cos Bt(x1 − x2) into the integrand of Eq. (9). Qualitatively,
the numerical and analytical curves exhibit similar behavior.

Numerical results for random walk in one dimension are
shown in Fig. 3. First, we established that these numerical
results perfectly satisfy the scaling relation predicted from the
qualitative reasoning. Namely, when plotted versus t3/2b2

0τ
1/2,

they all fall on a single curve. We also see that the empirical
prediction, Eq. (2), does not apply. In fact, for purely planar
hyperfine field, the numerical curve, 〈Sz(t)〉, drops to a negative
value 〈Sz〉 ≈ −0.16 before approaching zero. As we explained
above, only the dashed arcs are responsible for the spin
relaxation for d = 1. Therefore, capturing the nontrivial decay
of 〈Sz〉 analytically, requires summation of at least a part of
dashed-arc diagrams to all orders.

In the Supplemental Material we present two variants of
such summation. They essentially reduce to exponentiating of
one-dashed-arc contribution, λ1(t), Eq. (7), and differ by the
way the numerical factors in the diagrams with crossings are
counted. Two ways of approximate counting yield 〈Sz(t)〉 =
exp [−λ1(t)] and 〈Sz(t)〉 = 2 exp[− λ1(t)

2 ] − 1, which lie above
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FIG. 3. (Color online) For d = 1 random walk the decay, 〈Sz(t)〉,
is a universal function of b2

0

√
τ t3/2. (a) Numerical results for a

planar hyperfine field (black) exhibit spin reversal at intermediate
time. For a spherically distributed bi (blue) the decay is monotonic
but nonexponential and is accurately captured by the solution of
the self-consistent equation, Eq. (13) (pink). The green curve is the
numerical solution of Eq. (13) for planar hyperfine field. (b) The black
curve is the same as in (a), while brown and dashed brown show the
result of partial summation of the diffusive diagrams (see text). Weak
external field slows down the decay of 〈Sz(t)〉 for both spherical (c)
and planar bi (d). Numerical results are shown for the following
values of B

b
4/3
0 τ1/3

: 0 (dark blue), 1 (light blue), 2 (dark green), 4 (light

green), and 8 (red).

and below the numerical results (see Fig. 3). An alternative
approach is to sum only the contributions from nonoverlapping
diffusive diagrams, Fig. 1. It leads [4] to a self-consistent
equation

d〈Sz〉
du

= −


∫ u

0
du1〈Sz(u1)〉 exp

[−(
u2/3 − u

2/3
1

)3/2]
u1/3u

1/3
1

(
u2/3 − u

2/3
1

)1/2 , (13)

where u = b2
0τ

1/2t3/2 and 
 = 4
9(2π)1/2 . For planar fields the

numerator in Eq. (13) is one. The numerical solutions of

Eq. (13) are shown in Fig. 3. We see that for the spherical
case the solution closely reproduces the simulated decay of
〈Sz(t)〉. For the planar case, the depth of the minimum in 〈Sz(t)〉
predicted by the self-consistent equation is −0.28 instead of
−0.16. In addition, Fig. 3 indicates that the oscillations in
〈Sz(t)〉 develop as the magnetic field is switched on, namely,
at B ≈ b

4/3
0 τ 1/3.

Discussion. In modern spintronics [5] the spin-relaxation
time, τs , is a key parameter which determines whether or not a
given material is suitable for applications. In the past decade,
the values τs are routinely inferred from Hanle curves in an
external magnetic field, i.e., from the behavior, (1 + B2τ 2

s )−1,
of the nonlocal resistance [6–9]. In this regard, our finding
of accelerated relaxation can be reformulated as follows:
memory effects broaden the Hanle curve and affect its shape
transforming the Lorentzian closer to Gaussian. Note, that
hyperfine fields, being the origin of spin relaxation, are crucial
for the memory effects considered above. With spin-orbit
fields, the memory effects [10–12] play the opposite role, i.e.,
they tend to preserve spin.

Our main finding can also be reformulated in the language
qubit decoherence in a random environment (see, e.g., the
recent review, Ref. [13]). A two-level system constituting
a qubit naturally maps on a spin in a magnetic field. A
common model of the environment [13] is an ensemble of
two-level systems surrounding a qubit, which “modulate”
this magnetic field at the random time moments of their
switching. As a result, the spin senses the random field which
assumes discrete values, much like the spin of an electron
hopping over the sites. The main finding of the present Rapid
Communication—that returns in the course of diffusion ac-
celerate the relaxation—also applies to the qubit decoherence.
Indeed, in the language of the environment, a random-walk
return corresponds to all two-level systems coming to their
initial state. At short enough times, before the magnetic field of
the environment “explores” all of its possible values, the statis-
tics of the returns is quite similar to the statistics of random
walks.
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