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The polarization response of a material to a strain gradient, known as flexoelectricity, holds great promise for
novel electromechanical applications. Despite considerable recent progress, however, the effect remains poorly
understood. From both the fundamental and practical viewpoints, it is of crucial importance to know whether
the coupling coefficients are primarily governed by the properties of the bulk material or by the details of the
sample surface. Here we provide, by means of first-principles calculations, quantitative evidence supporting the
latter scenario. In particular, we demonstrate that a SrTiO3 film can yield a positive or negative voltage upon
bending, depending on whether it is terminated by a TiO2 or SrO layer. This result points to a full control of the
flexoelectric effect via surface/interface engineering, opening exciting new avenues for device design.
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Flexoelectricity is a universal property of all insulators,
whereby a macroscopic electrical polarization is generated
in response to an inhomogeneous mechanical strain [1].
The recent surge of interest in this phenomenon [2] has
come with the realization that strain gradients can be huge
at the nanoscale, and generate a large enough polarization
to rival conventional piezoelectricity [3]. Long regarded
as a drawback in the operation of thin-film devices (e.g.,
ferroelectric memories [4], or light-emitting diodes in foldable
electronics [5]), strain gradients are now being increasingly
recognized as a rich playground for exploring new, potentially
useful, functionalities [6,7]. Future progress towards practical
applications crucially relies on identifying the microscopic
mechanisms that are most effective at delivering a large
electrical response, and on harnessing them via specific
materials-design rules. Unfortunately, such a fundamental
knowledge is currently very limited.

A central (yet vastly unexplored) question concerns the
role played by the sample surfaces. Both simplified physical
models [8] and quantum-mechanical theory [9,10] predict their
contribution to be nonnegligible in the thermodynamic limit.
This fact, in principle, calls for a substantial revision of the
currently established device design strategies, where only bulk
electromechanical properties (such as piezoelectricity [11]
and/or electrostriction) are typically taken into account [12].
In practice, however, there are currently little indications on
the importance of the aforementioned surface effects (only
order-of-magnitude estimates are available [8], which predict
their contribution to be comparable to bulk effects), nor on
their microscopic physical nature, so the necessity for their
explicit inclusion in the models remains open to debate. It
appears unlikely that such indications will emerge from the
experiments alone, at least in the near future: as the bulk and
surface contributions scale identically with sample size (unlike
other interface-related phenomena in oxides, e.g., the dielectric
“dead” layer [13,14]), they appear difficult or impossible
to disentangle by purely electrical means. In this context,
theoretical modeling, especially by means of first-principles
electronic-structure methods, can be of great help.

Building on the work of Martin [11] and Resta [15],
Hong and Vanderbilt [9,16] have recently devised a promising
route to addressing the flexoelectric problem at a fundamental

quantum-mechanical level, and applied it to calculating the
response properties of a number of bulk materials in the
framework of density-functional theory (DFT). However,
even at the bulk level, a complete determination of the
full flexoelectric tensor has not been achieved yet, as the
electronic contribution to the transversal components is still
missing [16]. Furthermore, the impact of surface effects
was not considered in Refs. [9,16], nor in any other first-
principles study [17,18] reported to date. Very recent advances
promoted by the author [10,19] have now opened the way to
filling both gaps, by combining density-functional perturbation
theory (DFPT)—-the linear-response version of DFT—with a
covariant formulation of electrostatics in the coordinate system
of the deformed body. Here we use such a methodology
to study the flexoelectric response of SrTiO3, one of the
most important flexoelectric materials, and the best known
experimentally [20]. Our results, in addition to providing
a complete physical picture of the effect, demonstrate that
the surface indeed matters: by modifying the atomically thin
termination layer, one can tune, and even reverse, the voltage
response of a macroscopically thick film.

The flexoelectric performance of an insulating material can
be conveniently quantified as the open-circuit voltage, �V ,
that is linearly induced by a strain-gradient deformation [see
Fig. 1(c)] in the limit of a large film thickness, t ,

ϕxλ,βγ = lim
t→∞

1

t

∂�V

∂εβγ,λ

. (1)

Here εβγ,λ = ∂εβγ /∂rλ is the gradient of the symmetric
strain tensor (εβγ ) along the Cartesian direction rλ, and x

indicates the direction normal to the surface; the relevant
components of εβγ,λ in the context of this work are illustrated
in Figs. 1(d)–1(f). Remarkably, although ϕxλ,βγ (referred to
as “flexovoltage” coefficients henceforth) is a macroscopic
response property of the system, it is known [10] to contain
both bulk- and surface-specific contributions,

ϕxλ,βγ = ϕbulk
xλ,βγ + ϕsurf

xλ,βγ . (2)

The former term is given by ϕbulk
xλ,βγ = μbulk

xλ,βγ /(ε0εxx), where
μbulk is the bulk flexoelectric tensor, ε is the macroscopic
dielectric tensor, and ε0 is the vacuum permittivity. The
latter term, ϕsurf

xλ,βγ , originates from surface piezoelectric

1098-0121/2014/90(20)/201112(5) 201112-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.201112


RAPID COMMUNICATIONS

MASSIMILIANO STENGEL PHYSICAL REVIEW B 90, 201112(R) (2014)

V(x) ΔV

t

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. (Color online) Schematic illustration of the computa-
tional setup. Panels (a) and (b) show the supercell models of the
SrO- (a) and TiO2-terminated (b) SrTiO3 slabs (Ti and O atoms
are represented as squares and circles; Sr atoms are not shown).
Panel (c) shows the induced open-circuit voltage, �V , induced by
a longitudinal [εxx,x , (d)], transversal [εyy,x , (e)]. or shear [εxy,y , (f)]
strain-gradient deformation.

effects [8,10,21], which are present in any material regardless
of crystal symmetry. Based on the total flexovoltage coefficient
of Eq. (2), the short-circuit flexoelectric response of an
electroded slab is then readily given by

μxλ,βγ = ε0εxx

(
ϕxλ,βγ + ϕWF

xλ,βγ

)
, (3)

where ϕWF describes a possible additional contribution coming
from the work function of the metal electrodes. (Note that the
scaling of the surface contribution to μ with the static bulk
permittivity is consistent with earlier predictions [22].)

While techniques for calculating both ϕbulk and ϕsurf

in a first-principles context have recently been pro-
posed [10,16,19], the determination of the bulk flexoelectric
tensor remains challenging, particularly concerning the purely
electronic contributions. In fact, directly calculating the bulk
polarization response to a strain gradient would require access
to the microscopic current density [16,19] induced by a
deformation, whose code implementation is not available
yet. To overcome this methodological obstacle (and solve
for the missing transversal components of ϕbulk) we shall
compute, rather than the polarization response of the bulk,
the internal electric field response of a slab. The advantage
of the latter approach is that it can be carried out with the
sole knowledge of the first-order charge density [19]. For the
sake of computational convenience, we shall initially focus on
“frozen-ion” (in the sense specified in Ref. [10]) deformation
of “truncated-bulk” slabs, i.e., with the unperturbed atoms
placed at their ideal lattice sites. The impact of full ionic
relaxation, which is essential for a quantitative analysis of
the flexoelectric effect, is uncomplicated to calculate once the
electronic contributions to the bulk tensor are known, and will
be dealt with in a later part of this work.

We consider the supercell models illustrated in Figs. 1(a)
and 1(b) (i.e., periodically repeated sequences of symmetri-
cally terminated SrTiO3 slabs and vacuum layers), and proceed
as follows. First, we calculate how the microscopic charge
density of the supercell, ρ(r), responds to a selected set of

long-wavelength acoustic phonons, by using DFPT as imple-
mented in the ABINIT [23,24] package. Next, we perform
a Taylor expansion (in the wave vector q) of such density
response functions, along the lines described in Refs. [10,19].
This analysis readily yields the response to a macroscopic
strain gradient in the curvilinear coordinate system of the
deformed crystal lattice [10]; in particular, one has

∂ρ(r)

∂εβγ,λ

= rλρ
U
βγ (r) + ρG

λ,βγ (r), (4)

where ρU,G are cell-periodic functions [ρU = ∂ρ(r)/∂εβγ

describes the response to a uniform strain, while ρG is the
additional contribution that is due to the gradient]. Finally, we
use ρU and ρG to calculate the induced electric field. In the
curvilinear frame, the first-order E is related to the first-order
ρ via the modified Gauss’s law described in Ref. [10]. (See
Supplemental Material [28], note 1, for further details.) As the
electric field is related to the potential by E(r) = −∇V (r),
knowledge of the former [and of its first-order variation,
∂E(r)/∂εβγ,λ] then yields the linear variation of the latter,
∂V (r)/∂εβγ,λ, and ultimately the sought-after values of the
flexovoltage coefficients, ϕ.

In practice, it is convenient to work with the “macroscopic
averages” [25,26] of the E and ρ response functions, where the
oscillations that occur on the scale of the interatomic spacings
have been appropriately filtered out. This procedure has two
advantages: first, it allows one to identify the relevant electrical
properties of the system in a macroscopic context (e.g., internal
fields, surface potential offsets, etc.); second, it facilitates the
implementation of the Poisson solver by making the problem
one-dimensional. In particular, in close analogy to Eq. (4), one
can write the normal (x) component of the macroscopically
averaged E-field response as

∂Ex(x)

∂εββ,x

= xEU
x,ββ (x) + EG

xx,ββ (x), (5)

∂Ex(x)

∂εxy,y

= EG
xy,xy(x), (6)

where Eq. (5) refers to either the longitudinal or transversal
case (β = x,y), and Eq. (6) concerns a shear deformation.
Note that the parallel (y) components of the induced E field
vanish, hence the exclusive focus on Ex . Note also the absence
of the uniform-strain contribution in Eq. (6): EU

x,xy(x) vanishes
identically in a centrosymmetric slab.

In Figs. 2(a)–2(d) we plot the calculated EU,G
x (x), corre-

sponding to either a SrO- or a TiO2-terminated slab and to each
of the three types of strain gradients shown in Figs. 1(d)–1(f).
(We refer the reader to the Supplemental Material [28],
note 1, for the details of the computational methodology and
parameters.) As anticipated in Eqs. (5) and (6), there is an
important qualitative difference between the longitudinal or
transversal response, where the strain gradient is oriented along
the surface normal, and the shear response, where it is directed
in plane.

In the former two cases, EU
x,ββ (x) (describing the E-field

response to a uniform strain) is roughly uniform and negative
(the oscillations are irrelevant on a macroscopic scale) in a
thin region surrounding the surface layer. This is consistent
with the expected behavior of the electrostatic potential upon
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FIG. 2. (Color online) Electric field and potential response to
mechanical deformations. The EU

x [(a), (b)] and EG
x [(c), (d)] response

functions are shown for a SrO- [(a), (c)] and TiO2-terminated
[(b), (d)] slab. Solid black, dashed red, and dot-dashed green
curves refer to longitudinal, transversal, and shear deformations,
respectively. The location of the SrO (dashed) and TiO2 (solid) atomic
layers is indicated by vertical lines (only half of the symmetric slab
is shown). Panels (e) and (f) show the electrostatic potential that
would be induced in a macroscopic SrO-terminated slab of thickness
t when subjected to a strain gradient of hypothetical magnitude 1/t .
The longitudinal (e) and shear (f) cases are shown, illustrating the
qualitative difference in the response. Dashed and solid lines refer to
the bulk and total contribution, respectively; � = ϕsurf/2.

uniform deformation of the slab: the unperturbed V (x) is a
symmetric potential well, whose depth, φ, is modified by a
diagonal strain component, εββ . Such a dependence of φ on
the strain corresponds precisely to the surface contribution to
the flexovoltage coefficient,

ϕsurf
xx,ββ = dφ

dεββ

= −
∫ +∞

0
dx EU

x,ββ (x). (7)

The functions EG
xx,ββ (x), describing the genuine strain-

gradient effects, display a capacitor-like behavior: the field
is uniform inside the film and zero outside, consistent
with the open-circuit electrical boundary conditions (EBC)
that were enforced. Interestingly, the uniform internal field,
Eslab

xx,ββ = EG
xx,ββ (x = 0), appears to be independent of the

surface termination. This is not a coincidence: the open-circuit
flexoelectric field in the longitudinal and transversal case
is a bulk property of the material, and relates to the bulk
flexovoltage coefficients [10,19] as

ϕbulk
xx,ββ = −Eslab

xx,ββ . (8)

Thus, for a strain gradient of the type εββ,x , the analysis
of the E response of the deformed slab yields complete
information on both surface and bulk contributions to the
flexoelectric effect [their respective impact on the electrostatic
potential of a macroscopic film is illustrated in Fig. 2(e)]. Most
importantly, we have thereby gained access to the transversal

bulk flexovoltage coefficient, ϕbulk
xx,yy , whose computation has

eluded earlier first-principles attempts.
In the shear case, the flexoelectric field depends on both

bulk and surface-specific properties [10], and is therefore
termination-dependent [see Fig. 2(f)]; from the electric field
response functions of Figs. 2(a)–2(d) we can thus only extract
the total flexovoltage coefficient of the slab, ϕxy,xy = −Eslab

xy,xy .
To separate ϕxy,xy into bulk and surface terms it suffices,
however, to complement the above data with a calculation
of bulk SrTiO3. (Details are reported in the Supplemental
Material [28], note 2.) The latter, in particular, yields two
additional response quantities [16] describing the longitudinal
components of ϕbulk along an arbitrary direction in space,

ϕbulk
L1 = ϕbulk

xx,xx, (9)

ϕbulk
L2 = ϕbulk

xx,yy + 2ϕbulk
xy,xy . (10)

Equation (9) constitutes a useful consistency check of the
methodology, as ϕbulk

L1 is redundant with the already calculated
value of ϕbulk

xx,xx . Equation (10), on the other hand, yields the
sought-after value of ϕbulk

xy,xy since we already know ϕbulk
xx,yy from

the slab calculations. Finally, we use ϕxy,xy = −Eslab
xy,xy to infer

ϕsurf
xy,xy = ϕxy,xy − ϕbulk

xy,xy .
Our results for the bulk, surface, and total flexovoltage

coefficients of the truncated-bulk, frozen-ion deformation of
a SrTiO3 slab are summarized in Table I. At the bulk level,
it is interesting to note the relatively small magnitude of the
shear coefficients, ϕbulk

xy,xy and ϕsurf
xy,xy , compared to both the

longitudinal and the transversal ones. Meanwhile, in the latter
two cases there is a large cancellation between bulk and
surface terms; as a result, the values of the total flexovoltage
coefficients, ϕ, are all comparable in magnitude. This fact can
be rationalized by observing that the linear response to atomic
displacements, in a ionic (or partially ionic) solid, is largely
dominated by the rigid displacement of an approximately
spherical charge density distribution surrounding each atom.
The spherical contribution, which is typically large and
negative [9], shows up in ϕbulk

xx,ββ , and with opposite sign in
ϕsurf

xx,ββ ; in the shear case neither the bulk nor the surface term is
affected. (See Supplemental Material, note 1, of Ref. [10] and
Fig. S2 therein.) Remarkably, the resulting values of ϕ depend

TABLE I. Frozen-ion flexovoltage coefficients of a truncated-
bulk SrTiO3 slab. To compute ϕbulk we used ϕbulk

L1 = −16.15 V
and ϕbulk

L2 = −18.07 V (see Supplemental Material [28], note 2; the
agreement with the values reported by Hong and Vanderbilt [16],
ϕHV

L1 = −16.25 V and ϕHV
L2 = −18.17 V, is excellent), and Eslab

xx,yy =
15.08 V [extracted from Figs. 2(c) and 2(d)]. (L), (T), and (S) stands
for longitudinal, transversal, and shear, respectively. Volt units are
used throughout.

ϕbulk ϕsurf ϕ (total)

SrO TiO2 SrO TiO2

xx,xx (L) −16.15 14.36 16.95 −1.80 0.80
xx,yy (T) −15.08 15.68 12.45 0.61 −2.63
xy,xy (S) −1.50 −2.38 −0.51 −3.88 −2.01
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TABLE II. Flexovoltage coefficients of a relaxed SrTiO3 slab.
The frozen-ion (FI), lattice-mediated (LM), and total relaxed-ion
(RI = FI + LM) values of the bulk, surface, and total slab response
are reported. Volt units are used throughout.

ϕbulk ϕsurf ϕ (total)

SrO TiO2 SrO TiO2

FI −10.37 13.47 6.84 3.10 −3.53
LM −0.44 −4.93 5.34 −5.38 4.90
RI −10.81 8.53 12.18 −2.28 1.37

strongly on the details of the surface, and in some cases even
have opposite signs in the SrO- and TiO2-terminated slabs.
Such a conclusion, in fact, persists after we take into account
the full relaxation of the atomic structure; we shall prove this
point in the following paragraphs.

To investigate the relaxed-ion response of the film, we shall
consider an “effective” bending deformation of the type [10]

εeff,x = εyy,x − νεxx,x . (11)

The coefficient ν = Cxx,yy/Cxx,yy is the ratio of the transversal
and longitudinal components of the bulk elastic tensor, Cαβγλ,
and accounts for the mechanical equilibrium condition; i.e., it
ensures that the stress field vanishes everywhere in the interior
of the deformed sample. (Our calculated value for SrTiO3 is
ν = 0.2914.) As before, the overall flexovoltage coefficient
of the slab can be written in terms of a bulk and a surface
contribution,

ϕxx,eff = ϕbulk
xx,eff + ϕsurf

xx,eff, (12)

whose respective impact on the induced electrostatic potential
follow the form of Fig. 2(e). The relaxed-ion (RI) value
of ϕbulk

xx,eff consists in a frozen-ion (FI) contribution, given

by ϕ
bulk,FI
xx,eff = ϕbulk

xx,yy − νϕbulk
xx,xx , plus a lattice-mediated (LM)

part, which we calculate as detailed in the Supplemental
Material [28], note 2. The corresponding contributions to
ϕsurf

xx,eff are calculated by applying a uniform strain of the
type εeff = εyy − νεxx to fully relaxed slab supercells (see
Supplemental Material [28], note 3).

A summary of the results is reported in Table II. The
respective contributions of the bulk and surface are, overall,
in line with the available order-of-magnitude estimates [22].
The values marked with boldface font, i.e., the flexovoltage
coefficient of a fully relaxed SrTiO3 slab subjected to bending,
are the main result of this work. [The beam-bending case

is easily recovered by multiplying the reported values by
τ = Cxx,xx/(Cxx,xx + Cxx,yy). By using the calculated elastic
constants of bulk SrTiO3, reported in Table S2, we find
τ = 0.77.] Note their substantial departure with respect to
the corresponding bulk coefficient, confirming the dramatic
impact of the surface structural and electronic properties on
the electromechanical response of the system. Remarkably,
the aforementioned response coefficients are opposite in sign
depending on whether a SrO- and TiO2-terminated slab
is considered. In fact, the surface shows an even larger
termination dependence at the frozen-ion level, but with
opposite sign: the LM contribution to ϕsurf depends so strongly
on the termination that its inclusion results in a voltage reversal,
both in the TiO2- and SrO-type slabs. (A microscopic analysis
of the surface relaxations is provided in the Supplemental
Material [28], note 3.) By contrast, the LM contribution to
the bulk flexovoltage coefficient is relatively minor, about one
order of magnitude smaller than any other value reported in the
table, and of little impact on the final results. This constitutes
a substantial departure from the commonly accepted idea
that bulk lattice-mediated mechanisms are predominantly
responsible for the flexoelectric polarization. On the contrary,
our results indicate that by modifying the surface, one can fully
control the magnitude, and even the sign, of the flexoelectric
effect, in stark contrast with previous assumptions.

These results have profound implications, both for the
interpretation of the experiments (where surface contributions
are inevitably present) and for the optimization of electrome-
chanical devices based on the flexoelectric effect. Regarding
the experiments, the reported values [2] for the effective
flexovoltage response of SrTiO3 seem to cluster around 1–2 V,
in fair agreement with our theoretical results; unfortunately,
the available data are sparse and sometimes contradictory,
which prevents a more detailed comparison. On the application
side, our results demonstrate that surface/interface engineering
may be a viable route towards controlling (and enhancing) the
flexoelectric performance of a material such as SrTiO3. Given
the rich variety of surface structures and compositions that are
accessible to perovskite oxides depending on thermodynamic
conditions and treatment procedures, this opens up an
essentially unlimited range of opportunities for device design.
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