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A quantum Monte Carlo method that combines the second-order many-body perturbation theory and Monte
Carlo (MC) integration has been developed for correlation and correlation-corrected (quasiparticle) energy bands
of one-dimensional solids. The sum-of-product expressions of correlation energy and self-energy are transformed,
with the aid of a Laplace transform, into high-dimensional integrals, which are subject to a highly scalable MC
integration with the Metropolis algorithm for importance sampling. The method can compute correlation energies
of polyacetylene and polyethylene within a few mEh and quasiparticle energy bands within a few tenths of an eV.
It does not suffer from the fermion sign problem and its description can be systematically improved by raising
the perturbation order.

DOI: 10.1103/PhysRevB.90.201110 PACS number(s): 05.10.Ln, 02.70.Ss, 31.15.A−, 31.15.V−

Energy bands, observable by angle-resolved photoemis-
sion spectroscopy, are central to characterizing a solid and
have been the main concern of solid-state physics. Density-
functional theory is well documented to be unreliable [1] and
many-body methods such as the GW methods [2] and many-
body perturbation theory (MBPT) [3] are needed for their
accurate prediction. However, they inevitably involve large
tensor contractions, which are fundamentally nonscalable with
respect to both system size and computer size. Stochastic
methods such as those in quantum Monte Carlo (QMC) [4,5]
are intrinsically more scalable, but they have difficulty in
calculating energy differences owing to the noise in total
energies and unknown nodal structures of excited and ground
states (the fermion sign problem). QMC thus cannot easily
compute energy bands as continuous functions of k.

Here, capitalizing on our recent work on molecules [6–9],
we report a method that combines second-order MBPT with
the Møller-Plesset partitioning of the Hamiltonian (MP2) and
a stochastic algorithm for energies and quasiparticle energy
bands of one-dimensional solids. It inherits the systematic,
converging nature of MBPT and a scalable and easily im-
plemented Metropolis algorithm of the Monte Carlo (MC)
integration. We rewrite each of the diagrammatic expressions
of these quantities from an extremely long sum of product
of lower-dimensional integrals into a single high-dimensional
integral using a Laplace transform, which is then evaluated by
an MC method. Quasiparticle energies are obtained directly
as stochastically integrated self-energies and not as small
differences between noisy total energies. No assumed nodal
structure of a wave function is needed. The resulting method,
extensible to higher orders of MBPT [9], is thus a different
branch of QMC and may be called the Brueckner-Goldstone
QMC.

Our work is, therefore, in the same spirit as recent intense
efforts by others [10–13] that “wed” ab initio molecular orbital
theory with stochastic algorithms. However, ours stands apart
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in the following respects: (1) Walkers in our method roam
around in real space as opposed to configuration space and
there is no need for any molecular integrals in any basis,
which are expensive to compute. The transformation of these
integrals from the atomic-orbital (AO) to crystal-orbital (CO)
basis, whose cost scales as the fifth power of system size,
constitutes the computational bottleneck of MP2, which is
eliminated entirely in our method. (2) It is thus fundamentally
more efficient than the others and can be applied to large
molecules and solids. (3) It can compute quasiparticle energy
bands and correlation energies on an equal footing. (4) It shares
with some of these methods the advantage that there is no
fermion sign problem. However, this comes at the expense of
having a bias (from the exact result) and, at higher orders,
the bias will be reduced, but the sign problem will likely be
reintroduced.

The second-order correction to the Hartree-Fock (HF)
energy per unit cell of a one-dimensional solid [14–16] is

E(2) = E(A) + E(B), (1)

with

E(A) = 2
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where εpkp
is the HF orbital energy of the state in the pth band

and wave vector kp and K is the number of evenly spaced wave
vector sampling points in the Brillouin zone (BZ). Each wave
vector is confined within the first BZ, 0 � kp < 2π/l, where l

is the lattice constant, and only three of the four wave vectors
are linearly independent because kb = ki + kj − ka + 2nπ/l

(n is an integer) owing to the momentum conservation law.
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The two-electron integral is given by
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with
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where r12 = |r1 − r2|, ϕ
(M)
pkp

(r) is the CO spanning 2M + 1

unit cells, χμ(m)(r) is the μth AO in the mth unit cell, and C
μ

pkp

is the CO expansion coefficient. The summations over the
unit-cell indices are truncated at the short- (S) and long-range
(L) cutoffs, in accordance with the logic analogous to the one
underlying the Namur cutoff criterion [17]. The two-electron
integral displays the O(K−1) dependence.

In the diagonal and adiabatic approximations to the self-
energy, the second-order correlation-corrected orbital energy
[14–16] is given by
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A plot of ε
(2)
pkp

as a function of kp is the quasiparticle energy
bands. They are reliable when

εHOCO − Eg < εpkp
< εLUCO + Eg, (11)

where Eg = εLUCO − εHOCO and HOCO and LUCO stand for
the highest occupied CO (valence band edge) and lowest
unoccupied CO (conduction band edge) of the HF theory,
respectively. However, they tend to display signs of divergence
outside this domain as the denominators in Eqs. (7)–(10) can
become zero.

Here, we propose a transformation of each of the above
sum-of-product matrix equations of MP2 into the form that
lends itself to a more scalable MC integration, that is, a single
high-dimensional integral. Using the Laplace transform [18],
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one can interchange the order of summations and integrations
to rewrite Eq. (2) into a 16-dimensional integral,
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with
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where G
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+ and G
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− are the traces of the retarded and

advanced Green’s functions, respectively, and defined [9] as
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Equation (3) for E(B) can be likewise written as a single
integral.

Equation (14) illustrates how the 16-dimensional integral
of Eq. (13) can be evaluated by an MC method as a sum of
the ratios of the modified integrand f̃A to the weight function
w at sampling points {r[n]

1 ,r[n]
2 ,r[n]

3 ,r[n]
4 } distributed randomly

but according to the weight function w. Here, N is the number
of MC sampling points or steps and f̃A is the integral of fA

over ki , kj , and ka using a mixed quadrature-MC method (see
below) and over τ evaluated by the 21-point Gauss-Kronrod
quadrature [19],
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where τm and wm are the coordinate and weight of the mth
Gauss-Kronrod grid point and kb is determined by the momen-
tum conservation law. It is readily verified that E(A) (energy per
unit cell) scales as O(K0) and is thermodynamically intensive.

The weight function is the product,

w(r1,r2,r3,r4) = w(r1,r2)w(r3,r4), (19)

with

w(r1,r2) = 1

J
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, (20)
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and

J =
+L∑

m=−L

∫∫
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r12
, (21)

where ρ(m) is the electron density of the mth unit cell or,
more preferably, the sum of diffuse s-type Gaussian-type
orbitals centered in the mth unit cell; the diffuseness causes
oversampling, which is less harmful than undersampling. In
either case, the weight function is non-negative and J can be
evaluated analytically [20].

One of the self-energy diagrams [Eq. (7)] can be expressed
as a single 15-dimensional integral,
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using the Laplace transform,
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Note that this transformation is valid if and only if the
denominator in the left-hand side is negative and this is
guaranteed by the condition of Eq. (11).

The other three terms in Eq. (6) are likewise converted into
single integrals, which are subject to an MC integration. As
suggested by Eq. (23), the above integral can be evaluated
using the same weight function as Eq. (19). Hence, f̃C is given
by
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Self-energy �
(C)
pkp

scales as O
(
K0

)
as it should.

The algorithm consists of three steps: (1) Electron walker
pairs are propagated using the Metropolis algorithm according
to the weight function w(r1,r2) defined by Eq. (20). The
number of pairs is two at minimum ({r1,r2} and {r3,r4}),
but much more than two (say, m) are used in practice to
adopt the redundant-walker algorithm [8], which increases
the sampling efficiency by O(m). (2) When the Metropolis
move is accepted, CO’s and other factors in the integrands are
evaluated at the walker pair coordinates, a set of k’s and τ ’s.
In this particular implementation, the values of kj and ka are
randomly distributed on an evenly spaced grid with K points,
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FIG. 1. (Color online) Convergence of MC-MP2 correlation en-
ergy of polyacetylene.

while ki and kp go over all K points. The integration over ki ,
therefore, uses the trapezoidal rule and those over kj and ka

an MC method with the number of (kj , ka) per step being just
one. In this way, the correlation and self-energy calculations
can share intermediate data. (3) The integrands are evaluated
and accumulated into I

(A)
N , etc. The statistical uncertainty

(σ ) in the MC-evaluated E(A) is then estimated by

σ 2 = 1

N (N − 1)

N∑
n=1

{
I (A)
n − I

(A)
N

}2
, (27)

and similarly for other quantities; this formula, however,
underestimates σ [21]. Clearly, the whole process can be easily
and efficiently parallelized [8].

Figure 1 shows the convergence of the MP2 correlation
energy of an infinitely extended chain of polyacetylene under
the periodic boundary condition using the MC method (MC-
MP2). Two s-type Gaussian-type orbitals per atom are used as
the weight function with S = 4, L = 2, 15 redundant walker
pairs, and 20 k points. A smooth convergence to the correct
deterministic value of the correlation energy is observed, with
the expected N−1/2 falloff of the statistical uncertainty (σ ).
The numerical values at N = 5 × 106 are compiled in Table I
for polyacetylene and also for polyethylene. The data confirm
that MC-MP2 reproduce the correct results for two systems
within a few mEh and 3σ .

TABLE I. The second-order correlation corrections (E(2)) per
C2H2 or C2H4 unit cell to the HF energies of polyacetylene and
polyethylene and associated statistical uncertainties (σ ) in Eh. The
number of MC steps (N ) is 5 × 106, the number of redundant walker
pairs (m) is 15, the number of k points (K) is 20, S = 4, and L = 2.
The geometries are taken from Ref. [22].

System Method E(2) σ

Polyacetylene MP2/6-31G −0.1728
Polyacetylene MC-MP2/6-31G −0.1783 0.0036
Polyethylene MP2/6-31G −0.1827
Polyethylene MC-MP2/6-31G −0.1807 0.0065
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FIG. 2. (Color online) Left: HF energy band and MP2 and MC-
MP2 quasiparticle energy bands of polyacetylene. The statistical
uncertainties are smaller than the diameter of the solid circles. Right:
The same as the left panel but for polyethylene. Larger statistical
uncertainties are shown as error bars. The experimental results are
due to Ueno et al. [29].

Figure 2 compares the correlation-corrected (i.e., quasipar-
ticle) energy bands calculated from MP2 and MC-MP2 for
polyacetylene and polyethylene. HF energy bands are also
superimposed merely to emphasize the importance of electron
correlation; band gaps and widths are exaggerated in HF, as is
well known. For polyacetylene (the left panel), the MC-MP2
results for HOCO and LUCO are rapidly convergent and
fall nearly exactly on the MP2 energy bands. The statistical
uncertainties are a few tenths of an eV. For polyethylene (the
right panel), HOCO, LUCO, and two higher- and lower-lying
bands are computed by MC-MP2 to demonstrate that the
method works not just for the valence and conduction bands,
which are treatable by electron addition or subtraction in QMC
[23], but also for higher- or lower-lying bands. In this case, the
occupied bands obtained by MC-MP2 are rapidly converged
and in accurate agreement with the deterministic results as well
as with the experimental data (but not with the HF results).

On the other hand, the conduction band obtained by MC-MP2
near k = π/l suffers from larger statistical uncertainties, while
there seem no evidence of a bias (from the deterministic MP2
results).

Diffusion Monte Carlo (DMC) has been applied to excited
states with assumed nodal structures to compute band gaps [24]
and energy bands at some points in BZ [25]. A QMC method
for excited states, dubbed the correlation function QMC [26],
has been developed. Auxiliary-field QMC (AFQMC), using an
excited-state determinant as an auxiliary field, has also been
successful in obtaining band gaps [27]. They have difficulty
obtaining bands as continuous functions of k. As compared
with these, MC-MP2 is capable of computing parameters at
any k point and any energy band [within the constraint of
Eq. (11)] without a case-by-case definition of excited-state
wave function structures. Conversely, MC-MP2 is farther
from exactness than DMC or AFQMC, though MC-MP2 has
the advantage of being systematic [9]. The fourth-order MP
method is known to be generally as accurate as the coupled-
cluster singles, doubles, and noniterative triples [CCSD(T)]
method [28], which is widely used for molecular property
predictions. The MP method at any order is inapplicable to
metals, however.

In summary, this Rapid Communication has reported a
QMC method that combines MBPT and an MC integration and
can compute MP2 correlation energy and quasiparticle energy
bands of a one-dimensional solid. Unlike the deterministic
MBPT or MP2, its algorithm does not involve numerous
tensors (molecular integrals) or their contractions, which are
fundamentally nonscalable with respect to both computer
and system sizes. Unlike QMC, MC-MP2 can calculate
energy differences (correlation energies and energy bands)
directly and is systematically improvable toward exactness in
principle. MC-MP2 does not suffer from the fermion sign
problem, but as a trade-off with introducing an inevitable
bias.
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