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We investigate electron transport in disordered Hubbard chains contacted to macroscopic leads, via the
nonequilibrium Green’s function technique. We observe a crossover of currents and conductances at finite bias
which depends on the relative strength of disorder and interactions. We provide a proof that the coherent potential
approximation, a widely used method for treating disorder averages, fulfills particle conservation at finite bias
with or without electron correlations. Finally, our results hint that the observed trends in conductance due to
interactions and disorder also appear as signatures in the single-site entanglement entropy.
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In today’s quest for novel electronics and quantum-
information technologies, materials with properties largely
determined by electron correlations are an important asset [1].
Altogether, they exhibit a wide range of nontrivial phenomena,
making them excellent potential candidates to exploit for
cutting-edge functionalities and devices. However, materials
behavior is often far from ideal because of uncontrolled,
random inhomogeneities in the sample, i.e., disorder. Disorder
can greatly affect the behavior of a solid (for example, it can
dramatically alter conduction properties) and thus it should be
considered in a comprehensive theoretical description [2].

Significant understanding of the behavior of noninteracting
electrons in disordered solids is obtained in terms of a scaling
theory of electron localization [3,4]. Interactions add great
complexity to the picture, but the reverse is also true: Describ-
ing electronic correlations in the presence of sample-to-sample
statistical fluctuations is much harder than for the homogenous
case. For this, one can either resort to straightforward but
computationally expensive sums over configurations, or to
analytical treatments of statistic fluctuations such as typical
medium theory [5] or the coherent potential approximation
(CPA) [6,7]. Traditionally, CPA has been mostly used in static
ab initio treatments of disordered metallic alloys [8], but,
recently, it has also been used in nonequilibrium setups [9–11].

On the whole, until now rigorous understanding of in-
teracting electrons in strongly disordered systems has come
primarily from numerical studies [4,12–14] in and near
equilibrium regimes, by looking, e.g., at linear conductances
[15–17], spectral functions [5,18,19], the degree of localization
via the inverse participation ratio [20], or signatures in the
entanglement entropy [21,22].

Out of equilibrium, the situation is less defined: Even
for “simple” cases such as one-dimensional (1D) wires in a
quantum transport setup (for a recent review of work on 1D,
see, e.g., Ref. [23]), many issues are only partially or not
at all settled. For example, how do interactions and disorder
together affect conduction in a small wire when a finite electric
bias is applied? And what is their effect on the entanglement
in the wire in the presence of a current?

In this Rapid Communication, we use the nonequilibrium
Green’s function (NEGF) technique [24,25] to address these
and related questions. Specifically, we study electron transport
through interacting disordered chains with Hubbard interac-
tions and diagonal disorder (besides being of fundamental

interest, such systems are highly relevant for molecular
electronics and quantum information).

Our main results are as follows: (i) Far from equilibrium,
the current exhibits a nonmonotonic behavior due to the
competition of disorder and interactions; (ii) for the cases
considered, the interaction changes the exponential decrease
of the conductance as a function of system size, typical of
a noninteracting system, with a much weaker dependence;
(iii) signatures of the mutual interplay of disorder and
interactions can appear in the single-site entanglement en-
tropy; and (iv) CPA is particle conserving, with or without
electron correlations, and is thus suitable for nonequilibrium
treatments.

Theoretical formulation. We consider short, interacting
disordered chains attached to two noninteracting leads. In
standard notation, the Hamiltonian is

H = HRR + HLL + HCC + HRC + HCL, (1)

where R(L),C refer to the right (left) lead and central region,
respectively. The lead Hamiltonian Hαα (α = L,R) is

Hαα = −J
∑

〈ij〉∈α,σ

c
†
iσ cjσ + bαN̂α, (2)

with bα the (site-independent) bias in lead α and J > 0
the tunneling amplitude. The total number operator in lead
α is N̂α = ∑

i∈α n̂i , and n̂i = n̂i↑ + n̂i↓, n̂iσ = c
†
iσ ciσ . The

chain/central region Hamiltonian HCC is

HCC = −J
∑

〈ij〉∈C,σ

c
†
iσ cjσ +

∑
i

εi n̂i + U
∑

i

n̂i↑n̂i↓, (3)

where the εi’s are the (random) on-site energies of the
chain, which account for disorder in the system. U is the
(site-independent) contact interaction strength in the chain. In
obvious notation, the leads-chain coupling is

HLC + HRC = −J
(
c
†
1L

c1C
+ c

†
1R

cLC

) + H.c., (4)

i.e., the semi-infinite leads are connected to the ends of
the chain. We take J to be the same everywhere, which
corresponds to transparent boundary conditions, i.e., only
disorder and interactions affect the electron transmission
through the chain. Also, we put J = 1, which sets the
energy scale. Furthermore, for noninteracting leads, one can
solve in closed form for the NEGF in the central region

1098-0121/2014/90(20)/201109(5) 201109-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.201109


RAPID COMMUNICATIONS

DANIEL KARLSSON AND CLAUDIO VERDOZZI PHYSICAL REVIEW B 90, 201109(R) (2014)

via an embedding self-energy �emb = �L + �R [26,27]. To
calculate steady-state properties, we evaluate the lesser G<(ω)
and the retarded GR(ω) Green’s functions in the chain,

GR(ω) = 1

ω + iη − H0 − �R(ω)
, (5)

G<(ω) = GR(ω)�<(ω)GA(ω), (6)

where H0 is the noninteracting part of Eq. (3). In the most
general case, the self-energy is � = �HF + �MB + �emb +
�CPA, i.e, the sum of Hartree-Fock, correlation, embedding,
and disorder contributions, respectively. When disorder is
treated via numerical configuration averaging, the �CPA is
omitted. In all our calculations, the bias is applied only to
the left lead, and the leads are half filled. In the numerical
configuration averaging, we study both box (uniform) disorder,
εi ∈ [−W/2,W/2], and binary disorder, εi = −W/2,W/2.
For box disorder, we performed averages over at least 50
configurations, and we checked that this number is enough
to produce reliable currents and densities. For binary disorder,
we performed complete averages.

We use the second-Born Approximation (BA) to include
correlation effects. The BA takes into account all diagrams
of second order in the interaction and incorporates nonlocal
effects. Exact benchmarks from small isolated clusters [28,29]
and quantum transport setups [30] show that the BA is a versa-
tile, overall fairly accurate approximation for low/intermediate
interaction strengths. In the BA, for local interactions, �MB(t)
in steady state reads

�MB
ij (t) = UiUjGij (t)Gji(−t)Gij (t), (7)

which, by the Langreth rules, yields expressions for �<
MB and

�R
MB. The density is calculated as nj = 2

∫ ∞
−∞

dω
2πi

G<
jj (ω), and

the current through lead α is obtained via the Meir-Wingreen
formula [31],

Iα =
∫ ∞

−∞

dω

2π
Tr{	α(ω)(G<(ω) − 2πifα(ω)A(ω))}. (8)

The trace is taken over the central region, fα is the (T = 0)
Fermi distribution of lead α, and the nonequilibrium spectral
function is defined as −2πiA = GR − GA, with GA = (GR)†,
and 	α = −2 Im(�α). Equations (5) and (6) were solved self-
consistently with the frequency integrals in the BA performed
via fast Fourier transform (FFT).

Disorder versus interactions: Results. In Fig. 1, we illustrate
the dependence of the averaged current in the steady state
on the strength of disorder W and interactions U . Results
are for a chain of L = 10 sites, and bias bL = 0.5. Starting
with Fig. 1(a), we note that the current has a different
qualitative behavior in different regions of the U -W plane.
In fact, close to the no-interaction (no-disorder) line the
current decreases monotonically as a function of disorder
(interactions). However, as shown in the current heat map,
for intermediate interactions and/or disorder (relative the
scale considered), the current clearly exhibits nonmonotonic
behavior at finite bias. The behavior is clearly depicted in
Fig. 1(b): As a function of W , the region of nonmonotonic
behavior for the current moves to higher U values and widens.
On the other hand, looking at Fig. 1(c), it appears that, within

FIG. 1. (Color online) The effect of interactions and disorder on
the current for a bias bL = 0.5. (a) Heat map for the current. (b) Cuts
along a fixed disorder strength (horizontal cuts in the heat map) as
a function of U . (c) Cuts along a fixed interaction strength (vertical
cuts) as a function of W . In (b) and (c), the lines are a guide for the
eye. The legend applies to both (b) and (c).

the region of parameters considered, for any fixed value
of U , the current monotonically decreases as a function of
disorder strength. This observation appears to be inconclusive
for higher W values since, quite interestingly, the spread of
the current values reduces with increasing U and it is possible
to note quite distinctly that the curvature changes at high U

values.
The overall picture receives further support from the

behavior of the differential conductance σ = δI
δb

, obtained
by numerical differentiation. In Fig. 2, we examine how σ

scales with the size L of the central region. For U = 0 (solid
and dashed red curves), we observe the expected exponential
decrease in conductance. However, for U > 0, σ still decreases
with increasing L, but in the interval of sizes considered, the
trend is not as clear as for U = 0. An interesting feature in
the equilibrium case is that when W = 0 and U > 0, σ is
oscillatory. We have observed that these oscillations appear
be connected to the variance of the density with the same
periodicity L = 3m (with m an integer) and, on speculative
grounds, this could be related to Friedel oscillations induced
by the lead-chain-lead boundaries when U > 0. Coming now
to the biased case, we recover the trends discussed earlier for
L = 10, i.e., a competition between disorder and interaction

201109-2



RAPID COMMUNICATIONS

TRANSPORT OF CORRELATED ELECTRONS THROUGH . . . PHYSICAL REVIEW B 90, 201109(R) (2014)

0 4 8 12

0.2

0.4

0.6

0.8

1

c
o
n
d
u
c
t
a
n
c
e

0 4 8 12

size L

U=0
U=2
U=4

0 4 8 12

U=0
U=2
U=4

W = 0

W = 1 W = 3

b
L
=0 b

L
=0.5

FIG. 2. (Color online) Averaged differential conductance σ = dI/db as a function of the chain size L for box disorder and for bias bL = 0
(dashed curves) and bL = 0.5 (solid curves). The conductance is in units of the quantum of conductance.

which manifests as a nonmonotonic behavior of σ as a function
of U . This is a robust feature for W = 3, present for all
sizes considered, while for weaker disorder the trend in the
dependence of σ on U also depends on the chain size.

The present results differ from a previous time-dependent
density functional theory (DFT) treatment [32] where non-
local correlation effects were neglected: The nonmonotonic
trend in currents and conductances, missed in Ref. [32],
stems from the ability of the BA to account for such
effects.

The coherent potential approximation. We turn to another
main topic of our work, namely, CPA out of equilibrium. CPA
treats the disorder-averaged system by an effective medium,
chosen so that the average t matrix of the local scatterer
〈ti(ω)〉 = 0. This fulfills in an approximate way the constraint
that, on average, the scattering matrix 〈T 〉 = 0 [33]. The
equilibrium CPA condition is

〈ti(ω)〉 =
〈

Vi − �CPA
ii (ω)

1 − [
Vi − �CPA

ii (ω)
]
Gii(ω)

〉
= 0. (9)

Here, Vi and Gii(ω) are the impurity level and the averaged
local propagator, respectively. This is how, in ground-state
calculations, the complex, local in space, energy-dependent
CPA self-energy �CPA can be found.

Nowadays, by combining CPA with DFT in a NEGF self-
consistent scheme, ab initio simulations of transport in realistic
disordered systems are feasible [10,11]. On the other hand,
ab initio NEGF treatments where CPA is combined with self-
energies based on many-body approximations are still lacking.
It is thus very timely and useful to assess CPA’s performance
when out of equilibrium and its conserving properties as a
theory.

Usually, a conserving self-energy scheme for NEGF results
from the existence of a so-called � functional [34], which
guarantees particle, energy, and momenta conservation. As far
as we know, such a functional has yet to be found for the
CPA, and we here take a different route to rigorously prove
that particle current is explicitly conserved out of equilibrium.
This can be done either by reformulating Eq. (9) in terms of
a set of auxiliary equations which are then reinterpreted as
relations on the Keldysh contour [35], or by directly using
the Langreth rules to extract the different components on
the contour from Eq. (9). Either way, if we schematically

rewrite (site indexes and frequency arguments are omitted
for simplicity) Eq. (9) as c = (1 − ab)−1a = 0, then one
can show that the retarded component cR = (1 − aRbR)−1aR

and, for the lesser one, c< = (1 − aRbR)−1a<(1 − aAbA)−1 +
cRb<cA. The Langreth rules for the retarded part give the CPA
condition

0 = 〈tR〉 =
〈

V − �R
CPA

1 − (
V − �R

CPA

)
GR

〉
, (10)

while for the lesser/greater parts of �CPA one arrives at

�
<,>
CPA = G<,> 〈|tR|2〉〈∣∣ 1

1−(V −�R
CPA)GR

∣∣2〉 , (11)

i.e., �
<,>
CPA = G<,>f (GR,�R

CPA), with f a real non-negative
function. Equation (11) is valid for any noncorrelated disorder
distribution. Except for noninteracting systems, Eqs. (10)
and (11) must be solved together.

Using Eq. (8), the current difference �I becomes [36]

�I =
∫ ∞

−∞

dω

2π
Tr[�<

c G> − �>
c G<], (12)

where �c = � − �emb refers to self-energy parts beyond the
embedding self-energies. For a conserving approximation,
�I = 0. We first consider mean-field-type interactions, which
means that �<,>

c = �
<,>
CPA . Using Eq. (11), the integrand of

Eq. (12) becomes∑
i

(�<
CPA)iiG

>
ii − (�>

CPA)iiG
<
ii

=
∑

i

G<
iifiG

>
ii − G>

iifiG
<
ii = 0. (13)

This holds for any number of leads, any type of (uncorre-
lated) disorder, and also when interactions are described with a
mean-field-type self-energy, e.g., Hartree-Fock or Kohn-Sham
DFT. To include interactions beyond mean field, we treat the
self-energies as additive, i.e., �c = �CPA + �MB. The BA is,
by itself, a conserving scheme. However, when CPA (for which
the existence of a � is not obvious) and BA are combined,
particle conservation needs to be proven explicitly. We again
use Eqs. (12) and (13), this time only for �MB. This is more
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FIG. 3. (Color online) Steady-state currents for eight-site chains
with binary disorder (A50B50 alloy) as a function of disorder and
interaction strength. The applied bias bL = 0.5. Both results for the
exact distribution of currents (histograms) and CPA current averages
(circles) are shown, discussed in the main text.

conveniently done in time space [Eq. (7)], where �I becomes

�I =
∫ ∞

−∞
dt Tr[�<

MB(t)G>(−t) − �>
MB(t)G<(−t)]. (14)

Using the symmetries G
<,>
kl (−t) = −[G<,>

lk (t)]∗, we get

�I = 2i
∑
kl

UkUl

∫ ∞

−∞
dt Im{[G<

kl(t)]
2[(G>

kl(t))
∗]2}. (15)

Thus �I is cast as a purely imaginary expression. However,
all reasonable approximations give real currents and the entire
expression must vanish, i.e., CPA + BA is particle conserving.
Our numerical calculations confirm that at self-consistency
�I = 0. However, in the initial self-consistency cycles, far
away from convergence, we found that �I/I ≈ 1, i.e., self-
consistency for CPA is crucial in quantum transport. Having
shown the conceptual foundation of CPA for nonequilibrium
treatments, we briefly discuss its performance in practice. By
investigating short chains with binary disorder, we found that
CPA, at least for the systems considered, can perform rather
poorly and can in fact be unreliable even at the qualitative
level. As an example, in Fig. 3 we report the distribution
of currents for an eight-site chain with 50% binary disorder.
As in Fig. 1, increasing the interactions reduces the role of
disorder, and thus the typical value of the current (i.e., the

TABLE I. The spread of Ek for different values of the bias and
the disorder strength, in units of 10−3. The minimum values of the
spread are in bold.

U = 0 U = 1 U = 2 U = 4

W = 1, bL = 0.0 1.4 2.4 3.8 4.7
W = 1, bL = 0.5 2.3 0.81 2.1 3.4
W = 2, bL = 0.0 13 11 18 17
W = 2, bL = 0.5 17 6.3 10 14

maximum value of the distribution) generally occurs at higher
values. For W = 1,2 it is also true that if U is further increased
(i.e., U = 4), the current diminishes again. In any case, CPA
currents are quantitatively incorrect, and only provide the
correct qualitative picture for larger disorder W = 3.

Entanglement, disorder, and conductance. Recently, there
has been an increasing interest in the use of entangle-
ment entropy to characterize disordered interacting sys-
tems in equilibrium [21,22]. Here, we are interested
in the nonequilibrium case, and specifically consider the
single-site entanglement entropy E , defined (in equilibrium)
for site k [37] as Ek = −∑

μ,ν=+,−〈X̂μ

k↑X̂ν
k↓〉 log2〈X̂μ

k↑X̂ν
k↓〉,

where X̂+
kσ = c

†
kσ ckσ and X̂−

kσ = 1 − X̂+
kσ . The expression

for Ek is straightforwardly generalized to finite biases. It is
readily seen that Ek can be expressed in terms of the particle
density nk = 〈X̂+

k↑ + X̂+
k↓〉, obtained via G<, and the double

occupancy dk = 〈X̂+
k↑X̂+

k↓〉. For the latter, we take the steady-
state limit of the expression for the time-dependent double
occupancy given in Ref. [38] and, for numerical convenience,
separate the Hartree-Fock part:

dk = n2
k

4
+ 1

Uk

∫ ∞

−∞

dω

2πi

(
�<

MBGA + �R
MBG<

)
kk

. (16)

We have examined different sets of W,U,bL parameters and
their effect on Ek . A convenient way to scrutinize the behavior
is, for each set of parameters, to collect the pairs (nk,Ek)
from all sites and disorder configurations, and arrange them
in a cumulative histogram. In Fig. 4 we show histograms
for the cases U = 0,2,4 when W = 2 and bL = 0.5. In the
noninteracting case, Ek is completely determined by nk . For
interacting systems, Ek(nk) is multivalued. It is apparent that,
on increasing U , the spread of densities is reduced, and
the densities are shifted to lower values. Similarly, Ek shifts
to lower values. More in general, studying other sets of
parameters (as shown in Table I) we found that the main effect

FIG. 4. (Color online) Cumulative distribution of the single-site entanglement entropy Ek as a function of the interaction strength for a
ten-site chain with W = 2 and bias bL = 0.5. The black solid curves at the base of the entanglement histograms correspond to Ek for a
noninteracting system, i.e., 〈X̂μ

k↑X̂
ν
k↓〉 = 〈X̂μ

k↑〉〈X̂ν
k↓〉, where nk ∈ [0,2] and Ek ∈ [0,2].
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of increasing W is to increase the spread of the distributions,
while applying a bias results in a shift of the density towards
higher values. The spread of the distributions has, in the biased
case, a similar type of nonmonotonicity as the current.

For each histogram in Fig. 4, we also calculated the variance
of Ek , and this is smallest for U = 2. Since these parameters
correspond to a crossover case in Figs. 1 and 2, this suggests
a possible connection between the nonmonotonic behavior of
currents (or conductances) and the single-site entanglement
entropy, i.e., the latter could be an indicator of the competition
between disorder and interactions.

Conclusions. By means of NEGF, we investigated short
disordered Hubbard chains contacted to leads to address
questions regarding particle currents, conductances, and en-
tanglement in quantum transport. We find that, in the presence
of an electric bias, interactions can increase the current
through a disordered system connected to macroscopic leads,
but increasing interactions further can decrease the current

again. Our work generalizes to the quantum transport case
the qualitative equilibrium picture for uncontacted systems
with homogeneous disorder and interactions, and partially
supports previous mean-field-type treatments for transport
geometries. We have also shown that, out of equilibrium, the
spread of entanglement entropy exhibits the same crossover
as for currents and conductances. Finally, we gave a proof
that CPA out of equilibrium is particle conserving, with or
without electron correlations on the level of second-Born.
This puts nonequilibrium CPA on conceptually firm ground,
and sets the stage for considering electron correlations and
disorder on equal footing in ab initio theories of systems out
of equilibrium.
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Royal Physiographic Society in Lund.
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