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Non-Abelian topological insulators from an array of quantum wires
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We suggest a construction of a large class of topological states using an array of quantum wires. First, we
show how to construct a Chern insulator using an array of alternating wires that contain electrons and holes,
correlated with an alternating magnetic field. This is supported by semiclassical arguments and a full quantum-
mechanical treatment of an analogous tight-binding model. We then show how electron-electron interactions can
stabilize fractional Chern insulators (Abelian and non-Abelian). In particular, we construct a non-Abelian Z3

parafermion state. Our construction is generalized to wires with alternating spin-orbit couplings, which give rise
to integer and fractional (Abelian and non-Abelian) topological insulators. The states we construct are effectively
two dimensional, and are therefore less sensitive to disorder than one-dimensional systems. The possibility of
experimental realization of our construction is addressed.
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Introduction. The integer quantum Hall effect (IQHE) [1]
was discovered in two-dimensional (2D) systems subjected
to a strong perpendicular magnetic field. The quantized con-
ductance is a consequence of the emergence of a topological
number [2], known as the Chern number. Haldane [3] showed
that a graphenelike material which breaks time-reversal
symmetry due to an alternating (zero average) magnetic
field may have a nonzero Chern number as well. These
types of materials, which have a nonzero Hall conductance
with a zero total magnetic flux, are referred to as Chern
insulators (CIs).

The existence of edge modes [4] in the QHE can be
understood in various ways. In particular, one can understand
the presence of edge modes by studying the classical curved
trajectories of electrons in a magnetic field. In fact, it is possible
to construct a semiclassical theory for a specific set of Chern
insulators as well. Consider a system consisting of electrons
and holes (whose masses differ in sign). In the presence of
a magnetic field, their classical trajectories are curved in
opposite directions. If, however, the electrons and the holes
experience opposite magnetic fields, the trajectories will be
curved in the same direction. One can imagine constructing
a Chern insulator by separating the plane into regions which
contain only holes and only electrons. If the magnetic field
is opposite in the two regions, the classical trajectories will
be similar to those of electrons in a uniform magnetic field.
This suggests that, upon quantization, this system should have
a nonzero Chern number [5], despite the fact that the total
magnetic flux vanishes.

Motivated by this semiclassical picture, we will study in
this Rapid Communication an effectively 2D system which
consists of alternating wires that contain electrons and holes.
Approaching the 2D problem from the quasi-one-dimensional
(Q1D) limit enables a full quantum-mechanical analysis,
and an analytic treatment of interaction effects using the
bosonization technique.

References [6,7] argue that it is possible to understand the
IQHE by considering a set of weakly coupled parallel wires.
First, we will show that one can use an array of wires to
construct a CI as well [see Fig. 1(a)]. We then introduce
a tight-binding version of this model and obtain a phase

diagram, showing the Chern number as a function of the model
parameters.

Kane et al. [8] generalized the wires approach to the Abelian
fractional quantum Hall effect (FQHE) using the bosonization
technique. We will generalize our construction to a fractional
CI (FCI) as well.

To do so, we introduce composite particles. This trans-
formation maps the electrons and holes at 1/3 filling to
composite particles at filling 1. The possibility of a FCI has
recently been discussed quite extensively in the literature [9].
Numerical investigations [10–15] of lattice models with nearly
flat bands presented strong evidence for FCI states. More
general approaches, connecting the properties of the known
FQHE states and analogous FCI states, were found [16,17].
Here we present an alternative analytic approach to the subject,
which may be applicable in experiments.

Teo and Kane [18] expand the approach of Ref. [8] to non-
Abelian states. We will see that our results can be generalized
to the non-Abelian case as well, and we will provide a detailed
construction of a state similar to the Z3 Read-Rezay state.
This state supports Fibonacci anyons, which may be used for
universal quantum computation [19,20].

Using an analogy between a magnetic field and a spin-
orbit coupling (in the ẑ direction only), we will construct
a topological insulator from an array of wires using an
alternating spin-orbit coupling. It will then be straightforward
to generalize the above model to a fractional topological
insulator (FTI) [21]. Other realizations of FTI states were
discussed in Refs. [22–26].

We note that the Q1D approach was recently used by various
papers [27–29] to discuss a variety of topological states.

Wire construction of a CI. Motivated by the above
semiclassical picture, we have designed the wire construction,
shown in Fig. 1(a). In each unit cell there are four different
wires. We tune the wires’ chemical potentials such that wires
1 and 2 of each unit cell are near the bottom of the band,
and wires 3 and 4 are near the top. Effectively, we have
alternating pairs of wires that contain electrons and holes. A
positive (negative) magnetic field is introduced between the
pairs of electron (hole) wires. This is a Q1D version of the
semiclassical picture we described above.
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FIG. 1. (Color online) (a) Physical scheme of the Q1D model we
study. Blue wires contain electrons, and red wires contain holes. The
black arrows represent the magnetic field through the system. The
circles represent the sites of the corresponding tight-binding model
[30], and the tunneling amplitudes of the tight-binding model are
represented by colored arrows. (b) The energy spectrum of the wires
(as a function of kx) near zero energy without tunneling between the
wires (t,t ′,t ′′ = 0). The wires are tuned such that the four parabolas
cross each other at zero energy, and the chemical potential is set to be
zero. The spectra in blue, dashed blue, dashed red, and red correspond
to wires 1, 2, 3, and 4 in a unit cell, respectively. (c) The energy
spectrum when t is switched on. A gap opens near kx = 0. (d) The
spectrum when t ′ is switched on as well. This gives an additional gap
at kx > 0. Free chiral modes are left on wires 1 and 4. Finally, if one
switches on t ′′, there are free chiral modes at the edge of the system,
which suggests that there is a nonzero Chern number.

For illustration and simplicity it is convenient to choose
a gauge in which the vector potential A points at the x̂

direction. We can tune the wires’ bands in such a way that
all their crossing points match in energy. In this case, the
energy spectra are similar to those depicted in Fig. 1(b). We
define k0

F as the Fermi momenta in the absence of an external
magnetic field. kϕ = eBa

2�c
is the shift of the parabolas due to

the magnetic fields [see Fig. 1(b)].
If, in addition, neighboring wires of the same type are

weakly tunnel coupled (with an amplitude t), a gap opens
between parabolas 1 and 2, and parabolas 3 and 4. The
spectrum in this case is depicted in Fig. 1(c).

Introducing now a coupling between the electrons and holes
inside a unit cell (t ′), a gap will open at kx > 0, and we arrive
at the spectrum depicted in Fig. 1(d). If we now switch on
small tunneling between different unit cells (t ′′), the coupling
between the edges decays exponentially with the sample width,
and in the thermodynamic limit we expect to find gapless edge
states. The observation of gapless edge states indicates that
there is a nonzero Chern number. To show this explicitly, we
have constructed a 2D tight-binding model, which is the lattice
version of the above continuous model. The tight-binding
model enables an exact derivation of phase diagram, showing
the Chern number as a function of the model parameters.
For more details see the Supplemental Material [30], where
the tight-binding model is defined, and its phase diagram is
derived, ensuring that the results of the above discussion are
valid. We note that, by construction, our model has only a

FIG. 2. (Color online) (a) A diagrammatic representation of the
energy band structure in the case ν ≡ k0

F /kϕ = 1 [see Fig. 1 for
definitions of kϕ and k0

F ]. The y axis shows the wire index inside
the unit cell, and the x axis shows kx in units of kϕ . The symbol
� (⊗) represents kL

i (kR
i ). Colored arrows represent tunneling

amplitudes between the wires. (b) The same diagram for a topological
insulator with ν = 1

3 . Colored arrows now represent the multielectron
processes responsible for the creation of Laughlin-like states. These
complex processes in terms of the electrons (ψ ∼ eiφ) for ν = 1/3
are mapped to simple tunneling processes in terms of the fermions
ψ̃ ∼ eiη. Thus, ν = 1/3 for ψ is equivalent to ν = 1 for ψ̃ . In the
presence of spin-orbit coupling, spin up (blue) and spin down (light
red) experience opposite alternating effective magnetic fields.

single chiral edge mode, leading to the fact that the model can
only have Chern numbers C = ±1. Generalization to larger
Chern numbers is a possible interesting extension.

FCI. The wire construction invites us to add interactions
and use bosonization techniques, similar to those used in
Refs. [8,18]. This allows us to generalize the above results
to FCI states. In the presence of interactions, multielectron
processes may open a gap even if the Fermi point of the left
movers is not equal to the Fermi points of the right movers
[8,18,31,32].

To understand the required conditions for a gap opening due
to multielectron scattering processes, it is useful to present the
spectra of Fig. 1(b) in an alternative way. Instead of plotting
the entire spectrum of the wires together, we plot only the
Fermi points as a function of the wire index. Soon, we will
linearize the spectra around these points. A cross (

⊗
) denotes

the Fermi point of a right mover, and a dot (
⊙

) denotes the
Fermi point of a left mover. Before analyzing the fractional
case, it is useful to revisit the simple ν = 1 case. We will see
that the main results of the tight-binding model arise naturally
in the bosonization framework. Figure 2(a) shows the diagram
that corresponds to this case [Fig. 1(b)].

Linearizing the spectrum around the Fermi points of each
wire, and using the standard bosonization procedure, we define
the two chiral bosonic fields φR

i and φL
i for each wire. In

terms of these, the fermionic operators are ψR
i ∝ ei(kR

i x+φR
i ),

ψL
i ∝ ei(kL

i x+φL
i ).

Without interactions, a momentum conserving single-
electron tunneling between the wires [denoted in Fig. 2(a)
by an arrow] is possible only when the left and right movers
of adjacent wires are at the same point in k space. The
single-electron tunneling operators between adjacent wires
[denoted in Fig. 2(a) by green, red, and dashed red arrows]
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are

tψ
R†
1(3)ψ

L
2(4) + H.c. ∝ t cos

(
φR

1(3) − φL
2(4)

)
,

t ′ψR(L)†
2 ψ

L(R)
3 + H.c. ∝ t ′ cos

(
φ

R(L)
2 − φ

L(R)
3

)
, (1)

t ′′ψR(L)†
4 ψ

L(R)
1′ + H.c. ∝ t ′′ cos

(
φ

R(L)
4 − φ

L(R)
1′

)
.

We switch on the operators in the following way: First, we
switch on a small t � tx . Since this is a relevant operator,
it gaps out the spectrum near kx = 0. Then, we switch on
smaller electron-hole couplings t ′,t ′′ < t . The terms ψ

R†
2 ψL

3

and ψ
R†
4 ψL

1′ gap out the rest of the spectrum, leaving a gapless
edge mode. As we discussed before, this indicates that there is a
nonzero Chern number. Note that the terms ψ

L†
2 ψR

3 and ψ
L†
4 ψR

1′
contain fields which are conjugate to those already pinned by t .
Strong quantum fluctuations are therefore expected to suppress
these terms.

We now turn to generalize this to Laughlin-like FCI states,
with a filling factor ν = k0

F /kϕ = 1/(2n + 1), where n is a
non-negative integer. For example, the k-vector pattern of the
wires with ν = 1/3 is shown in blue in Fig. 2(b). In this case,
multielectron processes are expected to gap out the system
(except for the edges). To see this, it is enlightening to define
new chiral fermion operators

ψ̃
R(L)
i = (

ψ
R(L)
i

)(n+1)(
ψ

†L(R)
i

)n ∝ ei(qR(L)
i x+η

R(L)
i ), (2)

with

η
R(L)
i = (n + 1)φR(L)

i − nφ
L(R)
i , (3)

and q
R(L)
i = (n + 1)kR(L)

i − nk
L(R)
i . A direct calculation of the

commutation relations of the η fields shows that they have
an additional factor of 2nπ compared the φ fields. This gives
an extra (trivial) phase factor ei2πn in the anticommutation
relation of the ψ̃’s compared to the ψ’s, ensuring that the ψ̃’s
are fermionic operators. In addition, it can easily be checked
that the resulting structure of the q’s is identical to that of the
k’s in the case of ν = 1 [Fig. 2(a)], so that ψ̃ can be regarded
as a fermionic field with ν = 1. This procedure can therefore
be interpreted as an attachment of 2n quantum fluxes to each
electron (cf. Jain’s construction of composite fermions [33]).

Repeating the analysis of the ν = 1 case, we can now write
single ψ̃ tunneling operators, identical to those found in Eq. (1)
(replacing ψ → ψ̃,φ → η, with new tunneling amplitudes
t̃ , t̃ ′, and t̃ ′′). In terms of the original electrons, these operators
describe the multielectron processes shown in Fig. 2(b). Note
that when the interactions are strong enough, these operators
become relevant [8,18,31]. From here, the process is identical
to the integer case. The gap due to the ψ̃ tunneling operators
ensures that competing processes (for example, single-electron
tunneling between wires 2 and 3, or 4 and 1′) are suppressed,
as they contain fields that are conjugate to the fields pinned by
t̃ (which is dominant by our construction).

The fact that the composite η fields (and not the original
φ fields) are pinned leads to the various properties of these
Laughlin-like states, such as the fractional charge and statistics
of the excitations, in analogy to the known FQHE states [8,18].

Non-Abelian FCI. As the discussion above shows, the
wire construction allowed us to create Abelian fractional
Chern insulators. Reference [18] constructed non-Abelian
QHE states by enlarging the unit cell, and taking a nonuniform

magnetic field inside each unit cell. By our construction, any
non-Abelian state constructed by Ref. [18] can be generalized
to the CI case. To do so, one can take two unit cells from
the construction in Ref. [18], reverse the magnetic field of the
second unit cell, and use holes instead of electrons. However,
the lack of a total magnetic flux in our system enables a simpler
construction of non-Abelian states, which do not have a direct
analog in the QHE. We now show that a slight modification of
the procedure that enabled the construction of Laughlin-like
states may lead to non-Abelian states. We will focus here on
a state similar to the Z3 Read-Rezay state. Generalization to
other non-Abelian states is possible.

To obtain a Z3 parafermion state, we take ν = 1/3, and
construct the ψ̃ operators. Let us start in the special point
where t̃ , t̃ ′, and the coupling between ψ̃R

1 and ψ̃L
4 are tuned to

have exactly the same value, denoted by v (at the end, when
the topological nature of our construction will be revealed, this
strict requirement can be relaxed, as long as the bulk gap does
not close). It can be shown (see the Supplemental Material [30]
for more technical details) that under these assumptions our
problem can be mapped to the β2 = 6π self-dual sine-Gordon
model, which was studied in Refs. [34,35]. Specifically, it was
shown that this model is mapped to a critical Z3 parafermionic
field.

We have established that any unit cell has two counter-
propagating Z3 parafermionic fields (around k = 0), and two
counterpropagating charge modes at kx = −2kϕ . As earlier, we
can in principle gap out the spectrum by switching on specific
coupling terms between different unit cells, leaving eventually
a Laughlin-like charge mode and aZ3 parafermion mode at the
edge of the sample [30,34]. However, in order to leave a chiral
parafermion mode we need to consider quasiparticle tunneling
terms, which are hard to realize in the present construction
[30,34]. This technical problem is easily solved by adding an
additional flavor quantum number to each wire, which allows
one to effectively create a thin FQHE state in each unit cell
(see Supplemental Material [30]). This way, in addition to
supporting gapless parafermion modes in each unit cell, our
construction enables their coupling. We point out that the above
construction is related to the bilayer QHE system presented by
Ref. [36]. Note that while the non-Abelian part is the same as
the non-Abelian part of the Z3 Read-Rezay state, the charge
mode is different.

Topological insulators from the wire approach. The entire
analysis presented here can also be carried out for spinful
electrons if one introduces spin-orbit interactions (in the ẑ

direction only). This can be done if an alternating electric
field is introduced instead of an alternating magnetic field.
For example, the electric field can be tuned in such a way
that the spin-orbit coupling is positive at wires 1 and 4, and
negative at wires 2 and 3. Figure 2(b) shows the appropriate
Fermi momenta corresponding to ν = 1

3 (in blue for spin up
and light red for spin down). If one considers only processes
which conserve Sz, we get a simple construction for integer,
Laughlin-like, and non-Abelian topological insulators [21],
which are simply two copies of the FCI states discussed above
(with opposite chiral modes for the different spin species). If
we now introduce small time-reversal invariant terms which
violate Sz conservation (but do not close the gap), the chiral
modes remain protected.
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FIG. 3. (Color online) (a) A possible experimental realization of
our construction. Green lines represent current carrying wires, which
produce the alternating magnetic field needed for our construction.
This way, the magnetic field is positive (i.e., out of the page, denoted
by

⊙
) in n regions that contain electrons, and negative (

⊗
) in p

regions that contain holes. (b) Another possible realization of our
construction where now the 2D plane is replaced by many V grooves
connected in parallel. Again, blue regions contain electrons and red
regions contain holes. The arrows represent the constant external
magnetic field. In this geometry, electrons and holes experience
opposite magnetic fields.

Generalization. The approach we present here can be
extended to hierarchical Abelian states, as well as other
non-Abelian states (such as a Moore-Read-like state). One can

also study the effects of proximity to a superconductor, which
is expected to yield other non-Abelian states. A detailed further
study of these constructions will be performed in the future.

Experimental realizations. The above theoretical construc-
tion may also be applicable in experiments with superlattices
that realize the particle-hole structure we suggest. The alter-
nating magnetic field can be generated, for example, using a
snakelike wire [37], as shown in Fig. 3(a) (for more technical
details, see the Supplemental Material [30]), or using an array
of V grooves [38], as shown in Fig. 3(b). We note that stripes
with an alternating magnetic field can also be realized in cold
atom systems [39]. By coupling many (or maybe only a few)
wires together we get an effective 2D system. Our construction
lacks the disadvantages of fractional 1D states [31,32], which
are not topologically protected [40,41], and the need to invoke
proximity to a superconductor and a strong magnetic field
simultaneously in 2D [34,42,43]. As long as the width of
the edge modes is smaller than the sample width, it behaves
practically as a topologically protected 2D system.
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