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Proximity-induced superconductivity in Weyl semimetals
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We study superconducting proximity effects in Weyl semimetals (WSM) with broken time-reversal symmetry
by tunnel-coupling one of its surfaces to an s-wave superconductor using the Green’s function approach. We
find that the band structure develops coherence peaks, but despite the presence of metallic states in the bulk, the
coherence peaks do not extend far into the bulk and remain confined to a few layers close to the interface, similar
to the proximity effect in the topological insulators (TI) which are gapped in the bulk. The Weyl nodes remain
unaffected, and in that sense, no true gap develops. We also study the induced p- and s-wave pairing amplitudes
classified by their symmetries, as a function of the various parameters of the theory, and note the exponential
decay of the induced pairings in the bulk both in the TI and the WSM, even at finite chemical potential.
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I. INTRODUCTION

In recent years, topology has become an important tool
in classifying the phases of matter [1]. Although the study
of topological phases started with the discovery of the
quantum Hall and fractional quantum Hall phases [2] in
the 1980s, it gained momentum with the discovery of the
time-reversal-invariant topological insulators [3] a few years
ago. Topological insulators (TI) are classified in terms of their
bulk band structure, and by now there has been a complete
classification of free-fermion topological insulators in the
presence of disorder [4,5]. All these phases have topologically
nontrivial momentum-space structure, are insulating in the
bulk, and have metallic surface states.

It has been generally assumed that it is the gap in the bulk
electronic spectrum which makes the topologically nontrivial
ground state with its surface states stable and unable to decay to
the topologically trivial phase. However, more recently it has
been shown that it is possible to have nontrivial momentum-
space topology even for gapless fermionic systems. One
such recently identified system is the Weyl semimetal phase
[6,7] which has isolated gapless points (Weyl nodes) in the
bulk spectrum, where exactly 2 bands touch. The low-energy
behavior close to these points is given by a Weyl Hamiltonian
of fixed chirality. The Weyl nodes are topologically protected,
because a gap cannot be opened unless two nodes of opposite
chirality are coupled. The band structure shows unusual
surface states called Fermi arcs [6], which has led to many
interesting work [8]. The topological response of the phase
has been argued to be a realization of the Adler-Bell-Jackiw
anomaly [9] in condensed matter systems. There are several
recent reviews [10] which have discussed various interesting
properties of Weyl semimetals.

The introduction of superconductivity in topological in-
sulators characterizes a new exotic phase, the topologi-
cal superconductor, whose inherent particle-hole symmetry
leads to surface states that support Majorana fermions. The
superconductor-doped TI CuxBi2Se3 [11] was theoretically
predicted [12,13] to be a TI and experimental evidence
was obtained [14] using point-contact spectroscopy to detect
the itinerant massless Majorana state on the surface. The
introduction of superconductivity via the proximity effect [15]

has also led to considerable work on topological insulator–
superconductor hybrid junctions [16–19] with special attention
to the surface states that develop between them. Proximity with
an s-wave superconductor was shown to lead to a significant
renormalization of the parameters in the effective model for
surface states. It was also shown that when the Fermi surface
is close to the surface Dirac cone vertex, the electrons exhibit
s-wave pairing, but away from the vertex, the triplet component
increases in amplitude. A full symmetry classification of all
the induced pairings for proximity to s-wave, p-wave, and
d-wave superconductors was also studied [20,21] and it was
shown that the different induced pairing amplitudes modify
the density of states at the interface significantly [22,23].

Similarly, one might expect that the introduction of super-
conductivity in the Weyl semimetal (WSM) would also lead
to new phenomena. A heterostructure of topological insulators
and s-wave superconductors was studied by Meng and Balents
[24] who showed that superconductivity split the Weyl modes
into Bogoliubov-Weyl modes. By studying vortices in some
of these phases, characterized by different number of Weyl
modes, they found zero-energy Majorana modes under some
conditions. Cho et al. [25] studied superconducting states
of doped inversion symmetric Weyl semimetals and showed
that the finite-momentum FFLO pairing state is energetically
favored over the even-parity BCS state. Recently, Lee et al.
[26] studied the proximity effect in topological insulators,
when the chemical potential is close to but not in the bulk
gap. They found that the superconducting gap penetrates the
bulk and is observable at the naked surface, opposite to the
one in proximity to the superconductor.

However, there has been no systematic study of proximity-
induced superconductivity in Weyl semimetals, which is the
main focus of this paper. Since our model also includes the
topological insulator phase for some region of parameter space,
we also provide results for proximity-induced superconductiv-
ity for topological insulators in our model for comparison. Our
model consists of a 3D topological insulator, converted to a
Weyl semimetal, by including either parity-breaking terms or
time-reversal breaking terms, or both. Time-reversal breaking
leads to Weyl nodes at the same energy and surface states,
which form a Fermi arc between the nodes, whereas parity
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breaking leads to Weyl nodes at different energies and no
Fermi arcs. The dispersion of the Fermi arcs or surface states
is flat in a particular direction and chiral in the other direction
and points along the Fermi arc can be understood as the edge
states of a two-dimensional Chern insulator. When inversion
symmetry is broken, however, the Weyl nodes are separated in
energy and we do not get surface states, distinct from the bulk.
Since we are mainly interested in the new physics coming
from the Fermi arc states, unless otherwise specified, in this
paper we always consider the Weyl semimetal phase induced
by having a time-reversal-breaking perturbation.

Superconductivity is then induced in the semimetal by cou-
pling it to an s-wave superconductor on one of its surfaces. We
compute the self-energy of the topological insulator/semimetal
electrons by integrating out the superconductor degrees of
freedom and use the imaginary part of the Green’s function to
compute the local density of states (LDOS). We find that the
superconductor induces coherence peaks on the LDOS of the
electrons on a few layers close to the interface and we contrast
the behavior of the LDOS on different layers for the TI and
the WSM. For the TI, we find the reduction in the LDOS close
to ω = 0 which is the hallmark of the gap formation, whereas
for the WSM, we find that the enhancement of the density of
states without a superconductor (the hallmark of the flat band)
splits into two bands with a reduction of the density of states
at ω = 0. We study in detail the band structure of the surface
states and find that the surface state of the TI is completely
gapped by the proximity effect, whereas the surface states
of the WSM get split and acquire a small gap, but the Weyl
nodes remain unaffected. Thus the surface band acquires a
superconducting gap in a TI, but no true superconducting gap
is induced in WSM [24].

We also study the behavior of the induced pairing am-
plitudes (singlet, triplet, intraorbital, and interorbital) as a
function of the various parameters in the theory. As shown
in Ref. [20], the induced pairing amplitudes in Bi2Se3-type
materials with tetragonal symmetry are classified in terms
of the irreducible representations � of the D4h group. Since
we are only considering proximity with an s-wave conductor
in this paper, we are only interested in representations with
total angular momentum Jz = 0. We find that the induced
pairings fall off exponentially fast away from the interface
both in the TI and in the WSM. But they are not very
sensitive to other parameters such as the chemical potential and
the time-reversal-breaking parameters. The induced pairings
increase as a function of the superconducting pairing amplitude
of the superconductor and the coupling of the superconductor
to the TI/WSM. It is also perhaps worth mentioning that both
in the singlet and triplet amplitudes, the symmetries of the
two largest amplitudes reverse between the TI and the WSM,
with interorbital pairings being larger in the TI and intraorbital
pairings being larger in the WSM.

II. MODEL SYSTEM

We start with a simple tight-binding four-band lattice model
for the topological insulator (TI) in three dimensions (3DTI),
which can describe strong and weak topological insulators,
Weyl semimetals, and ordinary insulators depending on the
parameters of the model. The Bi2Se3 family of 3DTI have

an effective description in terms of the Hamiltonian given by
H0 = HC + HSO [27] with

HC = ε
∑

r

ψ†
r τxψr − t

∑
〈r,r ′〉

ψ†
r τxψr ′ + H.c.,

HSO = iλSO

∑
r

ψ†
r τz(σxψr+ y − σyψr+x)

+ iλz

∑
r

ψ†
r τyψr+z + H.c., (1)

where ψr is the fermion operator in TI region. r,r ′ refer to site
indices in all three dimensions (in the TI region) and r + x
refers to the nearest neighbor of site at r in the x direction
(similarly for y and z directions). Here z is taken as the
growth direction and σ and τ denote Pauli matrices in spin and
parity (orbital) space, respectively. ε and t denote the on-site
and nearest-neighbor hopping amplitudes. λSO and λz are the
(possibly anisotropic) spin-orbit (SO) interaction strengths in
the x − y plane and in the z direction, respectively.

The topological invariants for the 3DTI, νμ =
(ν0; ν1,ν2,ν3), can be computed easily (due to parity invariance
[15]) and are given by

(−1)ν0 = sgn[(ε − 6t)(ε + 6t)(ε − 2t)3(ε + 2t)3],

(−1)νi = sgn[(ε + 6t)(ε − 2t)(ε + 2t)2],

for i = 1,2,3. This implies that we have the following phases:

|ε| > |6t |, νμ = (0; 0,0,0), ordinary insulator;

|6t | > |ε| > |2t |, ν0 = 1, strong TI; (2)

|2t | > |ε| > 0, ν0 = (0; 1,1,1), weak TI.

At the boundaries of the topological phase transitions
(at ε ≈ ±6t, ± 2t), the bulk gap closes and the effective
Hamiltonian is a massless Dirac Hamiltonian. By introducing
either parity (inversion) or time-reversal (TR) symmetry
breaking perturbations to the Hamiltonian H0, the Dirac node
can be split in 2 Weyl nodes separated in energy or momentum,
respectively. Thus the Hamiltonian for the WSM is given by
HW = H0 + HE, where

HE =
∑

r

ψ†
r (b0τyσz − bxτxσx + byτxσy + bzσz)ψr . (3)

Here b0 and b are parameters that break inversion and
TR symmetry, respectively [27]. Note that the Dirac node
mentioned here is the 3D Dirac node that occurs in the bulk
spectrum at the phase transition between the normal and
topological insulator and should not be confused with the 2D
Dirac nodes, which occur in the surface spectrum of the TI
phase. The phase diagram of the different phases in this model
is given in Fig. 1.

For finite systems, both TI and WSM phases give rise to
surface states. For strong topological insulators, surface states
exist on each surface as midgap states [3], whereas in weak
topological insulators, surface states arise only on particular
surfaces depending on the values of νi (i = 1,2,3) [28].
For Weyl semimetals (within this model), if only inversion
symmetry is broken, the Weyl nodes are separated in energy
and there are no surface states separable from the bulk states.
Surface states arise only when TR symmetry is broken. As an
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FIG. 1. (Color online) A typical phase diagram of our model
system. The Weyl semimetal (WSM) phase appears at the strong
topological insulator (STI) / normal insulator (NI) (ε = 6t) and
strong topological insulator (STI) / weak topological insulator (WTI)
(ε = 2t) boundaries with broken time reversal / parity perturbations.
The WSM phase extends with increasing perturbations (blue filled
region). Parameters used here are λz = λSO and b = (0.6λSO,0,0).

example, if the TR symmetry is broken by b = bxx̂, then the
Weyl nodes occur with a separation of bx/λzx̂ in momentum
space. In this case, we find that surface states exist on the
surfaces parallel to the x-y and x-z planes (not on the third
plane). For a large enough system, the dispersion of surface
states is flat between the two Weyl nodes along the kx direction,
and is linear along ky (on the x-y plane) or kz (on the x-z plane).
The surface states exist only between the two Weyl nodes and
the states on opposite surfaces have opposite chiralities, as
illustrated in Fig. 2. These are the Fermi arc states. Fermi arcs
can be understood as the edge states of a Chern insulator that

FIG. 2. (Color online) The dispersion for a WSM with 2 Weyl
nodes at ±bx/λz is shown along kx and ky . The parameters used
are b = (0.50t,0,0),λSO = λz = 0.50t . The dashed (red) lines denote
both the surface bands. Note that the surface states at opposite ends
have opposite chirality.

exists for each value of kx between the Weyl nodes. It may also
be worth noting that the WSM formed near ε ∼ 6t and ε ∼ 2t

have their chiralities reversed for the top and bottom edges.
For the rest of this paper, we concentrate on the TR-

broken Weyl semimetal, with b0 = 0 and b �= 0, since we are
interested in the proximity effect of the superconductor on the
surface, i.e., on the Fermi arc states.

III. COUPLING TO THE SUPERCONDUCTOR

We now couple one of the surfaces of the WSM to an s-wave
superconductor as shown in Fig. 3. The bulk Hamiltonian of
the s-wave superconductor is given by

HS =εsc

∑
R,σ



†
R,σ 
R,σ − tsc

∑
〈R,R′〉,σ



†
R,σ
R′,σ

+
∑

R

�

†
R,↑


†
R,↓ + H.c., (4)

where 
 is the fermion operator in the superconductor. R,R′
refer to site index in all three directions (in the supercon-
ducting region). εsc and tsc denote the on-site energy and
nearest-neighbor hopping amplitudes in the superconductor,
respectively. The coupling is a tunneling term between the top
layer of the superconductor and the bottom layer of the WSM:

HT =
∑

rc,τ,σ

t̃τψ
†
rc,τ,σ


rc+z,σ + H.c., (5)

where rc denotes the sites in the last layer of the WSM
(perpendicular to the interface) and rc + z denotes the first
layer of the superconductor. τ denotes the orbital in the WSM
and σ is the spin. t̃τ is the tunneling amplitude which can be
different for the two orbitals. In this work, we have assumed
that tτ is the same for both orbitals for simplicity. Using
different tunneling amplitudes for the two orbitals will change
the results quantitatively, but not qualitatively. For detailed
results as a function of the ratio of the tunneling amplitudes
for the TI, see [20].

The Nambu basis for the fermions in the WSM, denoted by
�̃

†
r , is given by

(ψ†
r,↑,1,ψ

†
r,↓,1,ψ

†
r,↑,2,ψ

†
r,↓,2,ψr,↓,1, − ψr,↑,1,ψr,↓,2, − ψr,↑,2),

(6)

ee ee ee

FIG. 3. (Color online) Schematic of our setup. An s-wave super-
conductor is coupled with the Weyl semimetal/topological insulator
system through proximity. Cooper pairs from the superconductor
diffuse into the bulk of the Weyl semimetal/topological insulator
giving rise to induced superconductivity.
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FIG. 4. LDOS for the TI and the WSM, with the top row without coupling to the superconductor and the bottom row with coupling to
the superconductor. (a) and (b) show the LDOS for the TI integrated over all momenta without and with coupling to the superconductor,
respectively. (c) and (d) show the same for the WSM. (e) and (f) show the LDOS at ky = 0 summed over all kx for the WSM without and
with coupling to the superconductor, respectively. The LDOS for the different layers are vertically offset for visibility. The parameters used are
λSO = λz = 0.5t , � = 0.7t , ε = 4t (for TI) or ε = 6t (for WSM) and b = (0.5t,0,0) for WSM.

where ↑,↓ refer to the spin and 1,2 refer to the orbitals. Since
the Hamiltonian is quadratic in the superconductor degrees
of freedom 
, we can integrate them out and compute an
effective action for the WSM. Following the analysis for the
self-energy in Ref. [29], we decouple the superconductor and
TI degrees of freedom and define the (Nambu-Gorkov) Green’s
function G(ω) for the WSM. The derivation is sketched in the
Appendix. The Green’s function is

G(ω) = [(ω + iδ)I − HW − �(ω)]−1 , (7)

where the self-energy is

�r (ω) = δr,rc

πN (0)(t̃)2

√
�2 − ω2

[ωIη − �ηx](Iτ + τ x)Iσ (8)

with rc denoting the sites in the last layer of WSM. Note
that the G at each site is an 8 × 8 matrix comprising the
spin, orbital, and particle-hole pseudospin subspaces. Here,
we have used only the local (on-site) component of the
self-energy. This approximation usually works very well and
we shall justify this in the last section by comparing our
results with this approximation to the result obtained using
exact diagonalization.

IV. LDOS AND THE PAIRING AMPLITUDE

In this section, we use the Green’s function to obtain
the local density of states (LDOS) and the induced pairing
amplitude both in the TI and WSM phases and discuss the
dependence of the pairing on the various parameters of the
model.

Using the Green’s function that we derived in the previous
section, we can compute the local density of states (LDOS) in

the TI/WSM using

D(ω,r) = − 1

π

∑
σ,τ

ImGστ
r r , (9)

σ and τ being the spin and orbital index. As we increase
the coupling to the superconductivity, the LDOS shows the
appearance of coherence peaks in the band structure as a
signature of proximity-induced superconductivity. This is
shown in the panel in Fig. 4 where we have plotted the
LDOS at different values of z, the layer index, both for the
TI and the WSM. Panels (a) and (b) show the LDOS as a
function of energy (summed over all momenta) for the TI.
Note the Dirac spectrum feature of the surface states for the
TI (layers z = 0 and z = 9). We can also clearly see the dip
in the density of states and the appearance of the coherence
peaks in the first 2 layers. The coherence peaks are not sharp
because we are at zero doping. (For the TI, the sharpness of the
coherence peaks increases with the doping, due to the increase
in density of states. For WSM, we have checked that there is no
significant change when the doping is increased, because there
is a significant density of states at the Weyl node even at zero
doping.) Panels (c) through (f) are for the Weyl semimetal,
with (c) and (d) being the LDOS summed over all momenta
and (e) and (f) being the LDOS at ky = 0 summed over all
kx . First, we note the absence of the Dirac spectrum feature
in the edge states. Instead, there is peak in the DOS at ω = 0
(and ky = 0) which is the signature of the flat band in the
absence of coupling to the superconductor. (This feature gets
lost when all ky is summed over, which is why we have also
chosen to show the band structure without summing over ky .)
With the coupling to the superconductor, the single peak splits
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into two with a small gap. The effect of the proximity of the
superconductor on the surface states will be studied in greater
detail in the next section.

Following [30], we now define the different induced pairing
amplitudes. Assuming translation invariance in the x and y

directions, we go to momentum space k = (kx,ky) in two
directions. For each momentum k and each z coordinate, the
Green’s function can be written as

Gz,k(ω) =
(

hz(ω,k) �̄z(ω,k)
�̄∗

z (ω,k) h′
z(ω,k)

)
. (10)

The 4 × 4 pairing matrix �̄z;στ,σ ′τ ′(ω,k) is related to the
pairing amplitudes as

�̄z;στ,σ ′τ ′(ω,k) =
∫ ∞

0

dt

2π
〈cz,−k,σ,τ (t)cz,k,σ ′,τ ′(0)〉eiωt

=
∫ ∞

0

dt

2π
�̂z;σσ ′ττ ′(k,t)eiωt , (11)

where the last equality defines �̂z;σσ ′ττ ′(k,t). We only consider
the equal-time (t = 0) pairing amplitudes from here on. It is
useful to form combinations of the pairing amplitudes which
are even (+) or odd (−) under exchange of orbital index as

�̂i±
z;σσ ′(k) =�̂z;σσ ′,11(k) ± �̂z;σσ ′,22(k),

(12)
�̂I±

z;σ ′σ (k) =�̂z;σσ ′,12(k) ± �̂z;σσ ′,21(k),

where the superscript i or I on the left-hand side refers to
intraorbital and interorbital pairings. Each of these �̂ is a
2 × 2 matrix in spin space and can be written as a sum of

singlet and triplet components:

�̂(k) = iσ yψ(k) + iσ y(d(k) · σ ), (13)

where due to Fermi statistics, ψ(k) is even and d(k) is odd
under k → −k for i± and I+ pairings, whereas ψ(k) is odd
and d(k) is even under k → −k for I pairings. Then, the
even and odd intraorbital and even interorbital amplitudes have
the usual s-wave spin-singlet and p-wave spin-triplet pairing
while the odd interorbital amplitude has a p-wave spin-singlet
and s-wave spin-triplet pairing. Reference [20] found that an
s-wave superconductor does not induce even frequency–odd
interorbital pairings in TI (although a p-wave superconductor
can do so); however, it does induce odd frequency–odd
interorbital pairings. In this work, since we are only interested
in equal-time correlations, we ignore the even frequency–odd
interorbital and all odd frequency pairing amplitudes.

The Hamiltonian of the Bi2Se3-type material considered
here has tetragonal symmetry (since it is written on a cubic
lattice) and the induced pairings are classified in terms of the
irreducible representations � of the D4h group [20]. Thus,
ψ(k) and d(k) must have a functional dependence on k,
which forms an irreducible representation of D4h. Since we
are only considering proximity with an s-wave superconductor
in this paper and assuming that the angular momentum in the
ẑ direction is conserved in the tunneling process, there are
only three relevant representations: A1g , A1u, and A2u. Up to
linear order in k (and taking kz = 0) we have ψ(k) = 1 for
A1g , d(k) = (kx,ky,0) for A1u, and d(k) = (ky, − kx,0) for
A2u. On a square lattice, we may replace k2 by 1 − cos(k)
and terms linear in k by sin(k). We can then classify the �̂(k)

FIG. 5. (Color online) (a) and (b) show the exponential parameter α of the decay (in the unit of 1/lattice spacing in z) for various cases
in the TI/WSM, as a function of the chemical potential μ/t . They are denoted by the black and blue (gray) solid lines for s-wave intra- and
interorbital amplitudes, respectively, and the black line for p-wave intraorbital amplitude. In the inset of (b), we show a typical exponential
decay of the pairing in the bulk. The case shown here is the decay of intraorbital s-wave pairing in the WSM. (c) and (d) show the almost flat
behavior of the pairing amplitudes F a± as defined in Eq. (15) at z = 0 as a function of the chemical potential. The various parameters used are
λSO = λz = 0.5t , � = 0.7t , λS = 0.3t , ε = 6t, b = (0.5t,0,0) for WSM and ε = 4t, b = (0,0,0) for TI.
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FIG. 6. (Color online) The pairing amplitudes as a function of (a)
the time-reversal breaking parameter bx/t and (b) ε/t . The different
pairing amplitudes are denoted by the black and blue (gray) solid lines
as s-wave intraorbital and interorbital amplitudes, respectively, and
the black line as p-wave intraorbital amplitude. Note the crossing of
the black and blue lines (crossing of intra- and interorbital pairings)
as a function of ε/t . Various parameters used are λSO = λz = 0.5t ,
� = 0.7t , λS = 0.3t . For (a), we have used ε = 6t , and b = (0,0,0)
for (b).

found numerically by finding their inner product with the basis
functions. For this, we define

Fa±
σσ ′ = 1

2Nk

∑
k

S∗
σσ ′(k)�̂a±

σ ′σ (k), (14)

where Sσσ ′(k) is one of the basis functions given above. The
superscript a = i,I refers to intra- and interorbital pairing,

respectively. Then the inner product is

Fa± =
∑
σσ ′

Fa±
σσ ′ . (15)

We find that the spin-singlet amplitudes have a dominant
component with A1g pairing as expected, but the triplet
components have A2u pairing and not A1u in both TI and WSM
[31]. This is due to the form of the spin-momentum locked low
energy Dirac surface state which enforces the vanishing of the
A1u triplet amplitude [20].

We note that for the spin singlet, the odd intraorbital pairing
is lower by two orders of magnitude compared to the even
orbital pairings. Thus, only s-wave spin singlets with even
orbital pairings are dominant. For spin triplet, the even orbital
pairings are lower by two orders of magnitude with respect
to the odd intraorbital pairing. Thus, a p-wave spin triplet
with odd intraorbital pairing is dominantly induced. Hence,
for both the TI and the WSM, we only display the behavior
of the following three amplitudes: spin-singlet even intra- and
interorbital pairing and spin-triplet odd intraorbital pairing.

In both the TI and the WSM, the pairing amplitudes fall
off exponentially in the bulk [16,26]. The fall-off can be
numerically fitted to an exponential F ∝ e−αz, where the
direction z is perpendicular to the surface of contact to the
superconductor. In Figs. 5(a) and 5(b) we show how α varies
for the various pairing amplitudes as a function of the chemical
potential μ for TI and the WSM. We note that α starts to
decrease as we increase μ in the case of TI, both for s- and
p-wave amplitudes, which means a greater penetration [26].
For the case of WSM, the s-wave pairing has a decreased
penetration with increasing μ in contrast to the TI, whereas
the p-wave pairing has mildly increasing penetration.

In Figs. 5(c) and 5(d) we compare how the various pairing
amplitudes at z = 0 for the TI and the WSM change as a
function of the chemical potential μ/t . We note that the spin-
singlet amplitudes are higher than the spin-triplet amplitudes
in all cases. There is also not much variation between the
TI and the WSM as far as the spin-singlet amplitudes are
concerned. But the spin-triplet amplitudes have substantially
larger variation between the TI and the WSM.

We have also studied the behavior of these pairing ampli-
tudes in both the TI and the WSM as a function of various
other parameters. The pairing amplitudes remain flat with

FIG. 7. (Color online) We depict the pairing amplitudes F a± as defined in Eq. (15) at z = 0 for the intra- and interorbital s-wave and
intraorbital p-wave channels as a function of the various parameters in the model. The black and blue (gray) solid lines denote intra- and
interorbital pairing for WSM respectively, whereas the black and blue (gray) dashed lines mark intra- and interorbital pairing for TI, respectively.
(a) and (b) show the increase in both the s-wave and p-wave pairing channels as a function of the coupling λS between the superconductor and
the WSM/TI. (c) and (d) show the increase as a function of the superconducting s-wave pairing amplitude � in the superconductor. Various
parameters used, which are not varied, are λSO = λz = 0.5t , � = 0.7t , λS = 0.3t , ε = 6t, b = (0.5t,0,0) for WSM and ε = 4t, b = (0,0,0)
for TI.
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time-reversal-symmetry-breaking perturbations bx , as shown
in Fig. 6(a). In Fig. 6(b) ε/t parametrizes the flow from the TI to
the WSM, which shows a switching from inter- to intraorbital
pairing as one moves from the TI to the WSM. We show
the pairing amplitudes in Fig. 7 at z = 0 as a function of
the coupling to the superconductor λS = πN (0)(t̃)2 and as a
function of the the superconducting pairing amplitude � and
in general, we see that all the pairing amplitudes increase as
the parameters increase.

V. SURFACE STATES AND COMPARISON WITH EXACT
DIAGONALIZATION

Finally, we discuss the effect of superconducting proximity
on the surface states and we compare the results from the
Green’s function method with an exact diagonalization. After
computing the self-energy of the electrons in the WSM due to
the proximity effect as in Eq. (8), we can construct the effective
band structure by solving

Det [HW + �(ω) − ω] = 0, (16)

which, in turn, is the equivalent of finding the peaks in the
LDOS of the system. For the case of the TI, the surface
state acquires an induced pairing which gaps the surface band
completely in agreement with earlier results [16], whereas for
the surface state of the WSM, the induced gap is much smaller
and actually vanishes at the Weyl nodes. This is shown in
Figs. 8(a) and 8(b), where the effective band structure of
the WSM in proximity with a superconductor is plotted as
a function of kx and ky , respectively. The same band structure
has also been plotted using exact diagonalization. Note that
Fig. 8 is only the band structure at the surface in proximity
to the superconductor. This is why the other surface state,
with opposite chirality, is not visible here. The first point
to note is that there is no qualitative difference in the band
structure using the Green’s function technique and using exact
diagonalization. This clearly justifies the approximation of
using only the on-site or local component in the self-energy.
Also, note that in contrast to the dispersion in Fig. 2 without
the proximity effect, we see here that the proximity to the
superconductor has split the flat band into two, giving rise
to a small anisotropic gap. However, the states at the Weyl
nodes are not gapped. This is not unexpected because the
s-wave superconducting correlations couples the electrons at
one node of a certain chirality to holes at the other node of the
same chirality (because the two nodes have opposite chirality,
but the holes and electrons also have opposite chirality); hence,
no gap can open up [24]. It is also of interest to consider the
band structure as a function of ky as shown in Fig. 8(b). The
edge states of the Chern insulator for each fixed value of kx

between the nodes, are now split by the proximity effect into
two edge states, each carrying half the Chern number of the
original edge state. We also compare the LDOS computation
with an exact diagonalization and as can be seen in the figure,
the results match quite well.

VI. DISCUSSION AND CONCLUSIONS

In summary, we have provided a detailed study of
proximity-induced superconductivity in Weyl semimetals. We

FIG. 8. (Color online) Comparison of the Green’s function tech-
nique that we used with exact diagonalization results for the effect
of the proximity-induced superconductivity in the surface bands of
the WSM with momenta (a) kx and (b) ky where the Weyl nodes lie
along kx . The blue (gray) high-density lines are the modified bands
in the system with proximity to the superconductor obtained from the
LDOS at z = 0, while the red (darker) solid line is the surface band at
z = 0 via exact diagonalization. Note that we have only depicted the
surface band at z = 0 and have suppressed the other surface state. The
induced gap vanishes at the Weyl nodes for a large enough system
size, but the surface band splits. The various parameters that have
been used for the LDOS are λSO = λz = 0.5t , � = 0.7t , λS = 0.9t ,
ε = 6t, b = (0.5t,0,0) and the number of sites in z has been taken to
be 20. We have used ky = 0 for (a) and kx = 0 for (b).

have focused on the proximity of the s-wave superconductor
in the current work, though a similar analysis can also be made
for p-wave and d-wave superconductors. We find that despite
the presence of bulk metallic states in the WSM, the induced
pairing remains confined to a few layers close to the interface
and in fact, falls off exponentially fast away from the interface.
We note that the s-wave superconductor induces both s-wave
and p-wave pairing, but the induced p-wave pairing is always
smaller than the dominant s-wave pairing. We also find that
increasing the chemical potential does not increase either the
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penetration into the bulk or the ratio between the p-wave and
the s-wave amplitudes significantly. Both s-wave and p-wave
components of the induced pairing can, however, be increased
by increasing the pairing amplitude in the superconductor or
by increasing the coupling to the superconductor.
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APPENDIX: COMPUTATION OF THE SELF-ENERGY

We compute the self-energy of the Weyl semimetal elec-
trons tunnel-coupled to a superconductor along one of its
surfaces, following Ref. [29]. The complete Hamiltonian is
given as

H = HC + HSO + HE + HS + HT , (A1)

where HC + HSO is given in Eq. (1), HE is given in Eq. (3),
HS is given in Eq. (4), and HT is given in Eq. (5). We work in
the Nambu basis for the fermions given in Eq. (6). In this basis
the Hamiltonian for the WSM is HW = HC + HSO + HE with

HC = −t
∑
〈r,r ′〉

�̃†
r hc�̃r ′ + H.c. + ε

∑
r

�̃†
r hc�̃r ,

HSO =
∑

r

�̃†
rhsx�̃r+x +

∑
r

�̃
†
j hsy�̃r+ y

+
∑

r

�̃†
r hsz�̃r+z + H.c.,

HE =
∑

r

�̃†
rhE�̃r . (A2)

The various h matrices defined above are given as

hc = ηzτ zIσ , hsx = λSOηzτ zσ y,

hsy = λSOηzτ zσ x, hsz = iλzη
zτ yIσ , (A3)

hE = (boη
zτ yσ z) + (−bxIητ

xσ x + byIητ
xσ y + bzIηIτ σ

z),

where, as mentioned below Eq. (1), σ and τ denote Pauli
matrices in spin and parity (orbital) space and η represents the
particle-hole pseudospin.

For the superconductor, we only require a 4-component
Nambu basis 
̃

†
R = (φ†

R↑,φ
†
R↓,φR↓, − φR↑). In this basis, the

Hamiltonian for the superconductor, Eq. (4), is

HS =
∑

R


̃
†
R(εscη

z + �ηx)Iσ 
̃R

− tsc

∑
〈R,R′〉


̃
†
RηzIσ 
̃R′ + H.c. (A4)

The coupling between the semimetal fermions and the
fermions in the superconductor, Eq. (5), is

HT =
∑
r,R

�̃†
rAr,R
̃R + H.c., (A5)

where

Ar,R = δr,rc
δR,r+z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t̃1 0 0 0
0 t̃1 0 0
t̃2 0 0 0
0 t̃2 0 0
0 0 −t̃1 0
0 0 0 −t̃1
0 0 −t̃2 0
0 0 0 −t̃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

The total action for the system can now be written as

S =
∫ ∞

−∞
dt

[∑
R


̃
†
R [i�∂t ] 
̃R +

∑
r

�̃†
r [i�∂t ] �̃r − H

]
,

where H is the complete Hamiltonian given in Eq. (A1). After
taking a Fourier transform over time, the action can be written
in terms of the bare Green’s functions of the superconductor
and the WSM as follows:

S =
∫ ∞

−∞

dω

2π

∑
R,R′,r,r ′

[

̃

†
RG−1

R,R′(ω)
̃R′ + �̃†
rG

−1
Br,r ′(ω)�̃r ′

+ 
̃
†
RA

†
R,r�̃r + �̃†

rAr,R
̃R
]
, (A7)

where G(ω) and GB(ω) are the bare Green’s functions of
the superconductor and the semimetal, respectively. We now
define

χ̃R = 
̃R +
∑
r,R′

GR,R′(ω)A†
R′,r�̃r

and obtain

S =
∫ ∞

−∞

dω

2π

[∑
R,R′

χ̃
†
RG−1

R,R′(ω)χ̃R′ +
∑
r,r ′

�̃†
rG

−1
r,r ′(ω)�̃r ′

]
,

where G−1(ω) = G−1
B (ω) − �(ω) is the inverse of the full

Green’s function and the self-energy is given by

�r,r ′(ω) =
∑
R,R′

Ar,RGR,R′(ω)A†
R′,r ′ . (A8)

The two fields χ̃ and �̃ are decoupled and the effect of the
superconductor on the WSM is encoded in the self-energy
term. Now, we approximate G by the bulk Green’s function of
the superconductor given by

GR,R′ (ω) =
∑

K

ei K ·(R−R′)

ω2 − (
ξ 2
K + �2

)

×

⎛
⎜⎝

ω + ξK 0 � 0
0 ω + ξK 0 �

� 0 ω − ξK 0
0 � 0 ω − ξK

⎞
⎟⎠ ,

where K is the momentum in all three dimensions and ξK =
εsc − 2tsc

∑
i cos Ki . This approximation essentially ignores

any surface effects that might exist in the superconductor itself.
We ignore these, since the surface effects of a superconductor
are not of primary interest here.
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Then assuming t̃ to be the same for both the orbitals, the
on-site (r = r ′) self-energy is

�r,r (ω) = (t̃)2δr,rc

∑
K

1

ω2 − (
ξ 2
K + �2

)
×[ωIη − �ηx + ξKηz](Iτ + τ x)Iσ . (A9)

Summing over the momenta, we get the final expression for
self-energy to be

�r (ω) = δr,rc

πN (0)(t̃)2

√
�2 − ω2

[ωIη − �ηx](Iτ + τ x)Iσ , (A10)

as used in the main text.
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