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Generation and transport of valley-polarized current in transition-metal dichalcogenides
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In two-dimensional crystals of transition-metal dichalcogenides (TMDC) having strong spin-orbit interaction
such as monolayer WSe2, quantum states can be labeled by a valley index τ defined in the reciprocal space and
the spin index s. We developed a first-principles theoretical formalism to both qualitatively and quantitatively
predict nonequilibrium quantum transport of valley-polarized currents. We propose a WSe2 TMDC transistor to
selectively deliver net valley- and spin-polarized current Iτ,s to the source or drain by circularly polarized light
under external bias. Due to the lack of translational symmetry of the real-space device, we predict a depolarization
effect that increases with the decrease of the channel length of the transistor.
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I. INTRODUCTION

The notion of valleytronics has attracted great attention due
to its fundamental interest to the physics community as well
as potential for future electronics [1–14]. The valley degree
of freedom is of course well known for semiconductors where
a valley means a local energy extrema in the Brillouin zone
(BZ). The excitement about valleytronics is the idea to store
and manipulate bits of information encoded in the valley
quantum index, namely using discrete values of the crystal
momentum for quantum information. Many systems have been
investigated both theoretically and experimentally to realize
the generation and detection of valley information, including
Si [1,6,11], graphene [2–4,14], bi-layer graphene [13], carbon
nanotube [8,9], bismuth [5], diamond [10] and others.

Most recently, fabrication of two dimensional (2D)
transition-metal dichalcogenides (TMDC) has provided a new
area of valleytronics [15–17], where valley and spin degrees
of freedom are intimately coupled due to strong spin-orbit
interactions (SOI). Monolayer TMDC such as MoS2 and WSe2

have a honeycomb lattice, hence there are two well-separated
valleys labeled as K and K ′ in the BZ [17,18]. It was shown
in both theory and experiment that a finite valley polarization
can be created and detected by circularly polarized light in
periodic monolayer TMDC lattices [17–20]. Such a dynamical
control of valley index clearly demonstrated that the new type
of electronics, valleytronics, may well be emerging.

The next immediate question is how to transfer the valley
polarization once it is created. In particular, a valleytronics
transistor would be interesting where valley-polarized current
is turned on or off selectively. However, since the valley index
is a concept living in the reciprocal space, how to generate and
deliver a valley-polarized electric current to the outside world
that can be received by a circuit is a challenging problem. A
transistor has a source, a drain, a channel, and the existence of
interfaces as well as bias voltages break translational symmetry
(TS), hence it will be very interesting to investigate the
generation and delivery of valley-polarized current in such
a system.

Given the experimental success in TMDC phototransis-
tors, photodetectors [21–24], and optical selectivity of the

valleys [17–20], it should be possible, as we show in this
work, to realize TMDC transistors to deliver a net valley-
polarized electric current to the outside world. Interestingly
and importantly, however, we find that even in the absence
of any disorder, the lack of TS causes a valley depolarization
effect. This effect would be absent in systems having TS. The
depolarization depends on the bias voltage and the length of
the transistor channel and must be taken into account in the
design of valleytronic devices.

Figure 1 shows the TMDC transistor structure we consider,
which is a two-probe open system. Reference [13] proposed
a valley-filtering device for valley-polarized current in bilayer
graphene under intense terahertz radiation in the presence of
a transverse electric field. In contrast to graphene, the strong
SOI in TMDC permits both spin current and valley current to
be generated at the same time. Without losing generality, the
transistor is made of monolayer 2D TMDC material WSe2.
The channel is controlled by a back-gate voltage Vg . In light
of the optical selectivity rule [17,18], valid for periodic TMDC
lattice, we shall consider a monochromatic incident light im-
pinging on the transistor channel. The source and drain extend
to y = ∓∞, where a bias voltage Vds is applied and current
Iτ,s collected. The transistor is driven to nonequilibrium when
Vds �= 0. To calculate Iτ,s , a first-principles technique that can
quantitatively determine the effects of SOI and the light—in
addition to calculating quantum transport at nonequilibrium—
is required. To our knowledge, such a technique does not
yet exist and is developed in this work. We predict that even
though Vds breaks the TS, a net valley-spin-polarized current
IK,↑/K ′,↓ can still be excited by circularly polarized light and,
importantly, can be delivered to the drain of the transistor under
nonequilibrium transport conditions. This way, the quantum
information associated with valley polarization is transferred
from the reciprocal space to the real-space circuitry.

The rest of the paper is organized as follows. In Sec. II,
the theoretical formalism is presented. In Sec. III, numerical
results of valley-polarized (and spin-polarized) current are
discussed. Finally, the paper is summarized in Sec. IV.
In the Appendix, we present further technical details and
present effective transmission coefficient TD(k = K ′,E) at
three different bias voltages.
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FIG. 1. (Color online) Schematic plot of the two-probe mono-
layer WSe2 transistor having a source, a channel where light impinges,
and a drain. The source and drain regions extend to y = ∓∞. The
channel can be controlled by a back-gate voltage Vg . The light has
photon energy �ω.

II. THEORETICAL FORMALISM

Our system is described by a Hamiltonian H = He + He-ph

where He is calculated by a state-of-the-art first-principles
method, i.e., density functional theory (DFT) carried out within
the Keldysh nonequilibrium Green’s function (NEGF) formal-
ism [25–27]. The NEGF-DFT includes SOI and noncollinear
spin under external voltages. Further technical details are
summarized in Appendix A; we also refer interested readers
to Refs. [25,26] and computation details to Ref. [28]. Having
obtained He, we treat He-ph by the first Born approximation.
Here He-ph = e

m
A · P, where A is the electromagnetic vector

potential and P the momentum of the electron [29]. For circu-
larly polarized light, A = ( �

√
μ̃r ε̃r

2Nωε̃c
Iω)1/2(epbe−iωt + e∗

pb†eiωt ).
Here, Iω is the photon flux defined as the number of photons
per unit time per unit area; ω is the frequency of the light; c

is the speed of light; μ̃r is the relative magnetic susceptibility
and ε̃r is the relative dielectric constant; ε is the dielectric
constant; N is the number of photons; and b and b† are bosonic
annihilation and creation operators. In general, ep is a complex
unit vector characterizing the polarization of the light. For
circularly polarized light σ± along the z direction (see Fig. 1),
ep = 1√

2
(1,±i,0). In the Hilbert space of atomic orbital [28],

the self-energy due to electron-photon interaction is [29–31]:

�>
ph = [NM†G>

0 (E+)M + (N + 1)MG>
0 (E−)M†],

�<
ph = [NMG<

0 (E−)M† + (N + 1)M†G<
0 (E+)M],

(1)

where E± = E ± �ω. Matrix elements of M are defined as

Mln ≡ e

m

(
�
√

μ̃r ε̃r

2Nωε̃c
Iω

)1/2

〈l|P · ep|n〉, (2)

where l,n label atomic orbital. In the rest of the analysis we
neglect the emission process, which is the second term of
Eq. (1), because the photocurrent is excited by the absorption
process. Using the Keldysh equation [36], to zeroth order the
lesser and greater Green’s functions can be written as

G
>/<

0 = Gr
0�

>/<Ga
0, (3)

where we have used the lesser and greater self-energies

�< =
∑

α

i�αfα; �> =
∑

α

i�α(fα − 1), (4)

here α labels the source and drain, �α is the line-width function,
and fα is the Fermi function. In Eq. (3), the retarded and

advanced Green’s functions are the ones without He-ph, namely
Gr

0 = [Ga
0]† = (E + iη − He − ∑

α �r
α)−1, where �r

α is the
retarded self-energy due to the presence of source and drain
electrodes.

Finally, the source and drain current is obtained as [36]

Iα,τ,s = e

�

∫
dE

2π

∑
k∈τ

Tα(E,k,s), (5)

which is in terms of the effective transmission coefficient

Tα(E,k,s) = Tr{i�α(E,k)[(1 − fα)G<
ph + fαG>

ph]}ss. (6)

Here, the Green’s functions including the contribution from
voltage (the first term) and photons (the second term) are
obtained as

G
>/<

ph = Gr
0(�>/< + �

>/<

ph )Ga
0. (7)

Our first-principles calculation proceeds in two steps. First,
for the open transistor structure under Vg,Vds, we calculate
He by NEGF-DFT[27] without photons. Second, using He

and perturbatively treating electron-photon interaction He-ph

as presented, we calculate the lesser and greater Green’s
functions by Eq. (7) and determine the current by Eqs. (5)
and (6). A further discussion of the calculation procedure for
the photocurrent can be found in Appendix B.

III. VALLEY-POLARIZED (AND SPIN-POLARIZED)
CURRENT

We investigate transport current Iτ,s along the armchair
direction of WSe2 and consider σ± circularly polarized
light. The photon energy is taken to equal to the energy
gap, �ω = Egap = 1.37 eV, of monolayer WSe2 obtained by
DFT. As shown in Fig. 2(a), the unit cell in the transport
calculation is rectangular (not hexagon anymore). Therefore,
the corresponding BZ is folded as shown in the right of
Fig. 2(a), and in particular the K and K ′ points of the original
infinite lattice are folded into two points along the kx direction.
A bias voltage across the source and drain, Vds, is needed
to deliver Iτ,s . Figure 2(b) describes the qualitative process,
namely a channel electron absorbs a photon to cross the gap
and flows into the drain, leaving a hole behind; at the same
time, an electron from the source fills the hole, resulting in an
overall flow of current between the source and drain.

Next, we fix Vds = 0.3V and Vg = 0 to calculate the
valley current. Note we choose Vds < Egap and zero gate
voltage; there is essentially no DC current, therefore any
detected current in the source or drain must be generated
by the light. The calculated transmission at K,K ′ valleys
are shown in Figs. 2(c)–2(f). Let’s first consider electrons
excited by σ+-polarized light, shown as dashed lines in
Fig. 2 versus electron energy. The transmission coefficients
TS/D(k = K ′,E,s = ↑,↓) and TS/D(k = K,E,↓) are almost
zero; only TS/D(k = K,E,↑) are nonzero. Thus, σ+ light
essentially only excites electrons and holes in the K valley of
the transistor channel, still obeying the optical selection rule of
the periodic lattice [18]. Due to Vds, these excited electrons and
holes flow out of the channel to drain and source. Therefore,
summing over k as in Eq. (5), the current in the drain carries
the K-valley index. The collected K-valley current is also
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FIG. 2. (Color online) (a) Top view of monolayer WSe2. Black dash line in left figure indicates a supercell along the armchair direction.
The corresponding folded BZ is indicated by the dark dashed line in the right figure. Black curved arrows illustrate folding of the K points. (b)
Schematic plot showing the qualitative physics of photocurrent. (c–f) Effective transmission TS/D(k,E,s) at K and K ′ points of the transistor
at Vds = 0.3 V and Vg = 0 V. Dashed and solid lines distinguish the transmission produced by σ+ and σ− circularly polarized incident light.
The reference energy in Figs. 2(e)–2(f) is the Fermi energy of the system at equilibrium.

spin polarized due to the locked valley and spin indices of
monolayer TMDC. Namely, the K-valley current is not only
valley polarized but also spin polarized; one gets IS/D,K,↑ from
the transistor. A similar calculation for σ−-polarized light gives
currents shown in Figs. 2(e)–2(f), where the current carries
the other valley index K ′ and spin-down electrons, IS/D,K ′,↓.
Importantly, we found that the transmission coefficients are
nonzero only when k is near the K and K ′ points for
�ω = Egap, which means the valley indices are good quantum
numbers as far as the transistor is concerned. Finally, in
Appendix C, Fig. 6 compares transmission coefficient TD(k =
K ′,E) for three different values of Vds.

Having understood the transmission coefficients Tα(E,k)
in k space, we now investigate the current Iα,τ,s [37]. We
still restrict Vds < Egap so that there is no current without
photons. Without losing generality, we focus on the valley
current generated by σ−-polarized light; results are presented
in Fig. 3. The valley current is obtained by summing the spin
index s, Iα,τ = Iα,τ,↑ + Iα,τ,↓; similarly, the spin current is
obtained by summing the valley index τ . As shown in Fig. 3(a),
the K valley currents IS/D,K are extremely small in comparison
to the K ′ valley current IS/D,K ′ , since we use σ− light. The
total current is obtained by a further summation over K,K ′,
IS/D = IS/D,K + IS/D,K ′ , which is plotted as black lines in
Fig. 3(a). Note, we have IS = −ID because total current must
be conserved. The central result is that a net valley-polarized
current I τ

S/D (and spin current) is delivered to the source and

drian:

I τ
S/D = (IS/D,K − IS/D,K ′ )/2,

I s
S/D = (IS/D,↑ − IS/D,↓)/2 . (8)

As shown in Fig. 3(b), the net valley currents are nonzero and
satisfy the continuity relation I τ

S = −I τ
D . Since for σ− light

IS/D,K ≈ 0 as discussed above, the net valley current I τ
S/D

delivered by the transistor is composed of electrons having
quantum index K ′. Similarly, the valley current generated by
σ+ light is composed of electrons having index K . Hence, the
transistor under a moderate bias (0.3 V) is efficient in operating
as a valleytronic device. As discussed in the Introduction, for
a pure monolayer WSe2 lattice, the valleys K,K ′ are locked
to spins s = ↑,↓. For the transistor under bias, we found the
valley-spin locking is still largely intact, I τ

α ≈ I s
α . Hence the

valley and spin currents are simultaneously delivered by the
transistor.

Valley polarization is a key quantity to characterize the
valley as information carrier. At nonequilibrium (Vds �= 0),
valley polarization becomes a function of the bias and is
defined by

η(Vds) =
∣∣∣∣Iα,K − Iα,K ′

Iα,K + Iα,K ′

∣∣∣∣. (9)

As shown in Fig. 3(c), η(Vds) is found to decrease with bias.
The reason is that bias breaks TS and increases the intervalley
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FIG. 3. (Color online) (a) Different valley components and total photocurrent in the source and drain of the transistor. (b) The net valley
current in the source and drain of the phototransistor. (c) Valley polarization η versus bias voltage Vds. (d) Valley polarization η versus the
channel length of the transistor. σ− light is shed on the entire central region.

scattering (K to K ′) to reduce the difference between Iα,K

and Iα,K ′ . This depolarization effect was not known before
because TS exists in periodic lattices. Clearly, one expects
η(Vds) → 100% when the channel length of the transistor L →
∞. Fixing bias Vds = 0.4 and 0.6 V, we have calculated η(Vds)
versus L up to L = 20 nm, results shown in Fig. 3(d), and a
clear trend is decerned. By extrapolating the curves, we found η

reaches 99.9% when L is 50 ∼ 100 nm depending on Vds. This
length scale is a lower limit for the optical selection rule [17,18]
to become almost perfect for the real-space transistor having
no TS. Further breaking TS (e.g., by disorder etc.) is expected
to enhance this length scale.

IV. SUMMARY

Valleytronics is a very interesting idea but the valley degree
of freedom is a reciprocal-space concept. In this work we
propose and investigate real-space transport valleytronics, the
WSe2 phototransistor, that selectively delivers a net valley-
polarized electric current and its concomitant spin current to
the outside world in the absence of translational symmetry. To
this end we have developed an atomistic first-principles theory
and computation technique that makes parameter-free predic-
tions, including SOI, noncollinear spin, and electron-photon
interactions. The lack of TS induces a valley depolarization
effect that depends on device parameters such as the bias
voltage and channel length. We estimate that for the WSe2

phototransistor, the lower bound of the channel length by
which perfect valley polarization can be achieved is about
50 ∼ 100 nm depending on the applied bias. At such a scale,
the optical selection rule [18] for the k-space bands become
essentially perfect. Finally, due to similarity of properties of
many TMDC materials, our predicted valley-polarized current
should be observable in other TMDC transistors.
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APPENDIX A

In this Appendix, we discuss further details of the
NEGF-DFT technique, the computation procedure for the
photocurrent, and provide effective transmission coefficient
TD(k = K ′,E) at three different bias voltages.

1. The NEGF-DFT approach

As presented in the main text, the system is described by
a Hamiltonian H = He + He-ph, where He is the Hamiltonian
of the two-probe device without photons and is calculated
by a state-of-the-art first-principles method, i.e., DFT carried
out within the Keldysh NEGF formalism [25]. After He is
obtained, the electron-photon interaction He-ph is treated by
the first Born approximation.

In the familiar semiclassical Boltzmann transport theory,
one solves the Newtonian equation in combination with
nonequilibrium statistical mechanics. In quantum transport
theory, one solves the Schrödinger equation in combination
with nonequilibrium statistical mechanics, and this is realized
by the NEGF-DFT formalism. The original NEGF-DFT
approach was developed for problems without photons, as first
reported in Ref. [25]. Consider a two-terminal device shown in
Fig. 4 where the two electrodes extend to electron reservoirs at
infinity along the transport direction (Z direction). The system
is infinitely large and has no translational symmetry due to
contacts and/or externally applied bias voltages. This is also a
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FIG. 4. (Color online) Schematic plot of a two-terminal device
consisting of a central scattering region enclosed in the simulation
box (between ZL and ZR), and left and right electrodes extending
to electron reservoirs at Z = ±∞, where bias voltages are applied
and electric current is collected. The scattering region includes many
layers of the electrode atoms as indicated by the buffer.

nonequilibrium problem because external bias voltages drive
a current flow.

In practical implementions [25], the two-terminal system
is partitioned into three parts, the central region and the left
and right electrodes. The central region, ZL < Z < ZR , (see
Fig. 4) consists of the device itself plus left and right buffer
regions, which are part of the electrodes. Outside the central
region are the electrodes extending to reservoirs at Z = ±∞.
At equilibrium, the electrochemical potentials of the two
reservoirs (and thus the two electrodes) are equal, μL = μR .
When a bias voltage V is applied, |μL − μR| = eV , where e

is the electron charge, a DC current is driven through.
To self-consistently calculate He, which is the Hamiltonian

of the two-terminal device without photons, we determine
the density matrix at nonequilibrium (due to bias) by NEGF,
namely the density matrix is calculated from the lesser Green’s
function G<(E) as

ρ = −i

∫ ∞

−∞

dE

2π
G<(E),

G<(E) = GR�<GA,

(A1)

where the retarded Green’s function and lesser self-energy
�<(E) are defined as

Gr =
(

E + iη − He −
∑

α

�r
α

)−1

�<(E) = i
∑

α

fα(E)�α(E),

(A2)

Here, the Fermi distribution of the αth electrode is
fα(E) ≡ fα(E − qVα); the line width function �α(E) ≡
�α(E − qVα) = i[�r

α(E − qVα) − �a
α(E − qVα)]. As shown

in Eq. (A2), the electronic Hamiltonian He of the scattering
region is needed to calculate the Green’s functions. In NEGF-
DFT, He is calculated by a self-consistent DFT.

DFT is described by the Kohn-Sham (KS) Hamilto-
nian [38,39] where the potential is a functional of the electronic
density,

He = −∇2

2
+ Veff, (A3)

where

Veff ≡ Vext(r) +
∫

dr′ ρ(r′)
|r − r′| + Vxc(r). (A4)

YES

Initialize ρ

Calculate H[ρ]

Calculate new charge density ρ
from G<

Self-consistent

Data Analysis 

NO 

Compute 
external leads 

FIG. 5. (Color online) Flowchart of the NEGF-DFT self-
consistent procedure.

The first term in Eq. (A4) is the external potential that
includes all static background potentials, in particular the
nuclear potential from all the atoms. The second term of
Eq. (A4) is the Hartree potential, which can be obtained by
solving a Poisson equation with proper boundary conditions.
For the two-terminal structure, the boundary condition is
to match the potentials at ZL and ZR (see Fig. 4) since
the potentials of the electrodes can be calculated first. The
exchange-correlation potential Vxc(r) contains the nonclassical
terms. While the exact functional form of Vxc is unknown,
the local density approximation (LDA) and the generalized
gradient approximation (GGA) are the popular forms of Vxc.
For in-depth discussions of DFT, we refer interested readers
to the vast literature [38,39].

In NEGF-DFT, the density matrix that enters He is obtained
from NEGF via Eq. (A1). A practical implementation is shown
in Fig. 5, showing the flowchart of the NEGF-DFT self-
consistent procedure. The initial electronic density ρ is taken
as that of the collection of isolated atoms forming the device.
Starting from ρ, He is constructed using Eqs. (A3) and (A4),
which is used, together with self-energies calculated from the
electrodes [25], to determine the retarded, the advanced, and
the lesser Green’s functions. G< is then integrated over energy
as in Eq. (A1) to give a new electronic density, which in
turn gives a new He. This process is repeated until numerical
convergence is achieved. This way, the Hamiltonian of the
scattering region is calculated self-consistently including the
external voltages and the open boundary conditions. This way,
self-consistently solving the DFT-like Hamiltonian He within
the NEGF, nonequilibrium quantum transport can be analyzed
including the microscopic details of the device material.

APPENDIX B: PHOTOCURRENT

Having determined He, which is the electronic Hamiltonian
of the two-terminal device without photons, the full Hamilto-
nian of our problem, H = He + He-ph, can be investigated by
the first Born approximation on the electron-photon (e-ph)
interaction He-ph.
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In particular, Eq. (1) of the main text describes the self-
energy due to e-ph interaction, which contains the momentum
matrix Eq. (2) and zeroth-order lesser Green’s function of
Eq. (3) (all in the main text). The lesser or greater Green’s
function G

>/<

0 contains the information of external bias from
lesser or greater self-energy of the electrodes in Eq. (4) of
the main text. The source (and drain) current of Eq. (5) of the
main text is composed of two parts: one is by external bias (e.g.,
when no photons) and the other by e-ph interaction, as clearly
expressed from the composition of the Green’s function in
Eq. (7) of the main text. Namely, the first term in Eq. (7) is due
to external bias and the second term describes the contribution
from the e-ph interaction. If there is no light, only the first
term exists and the formulation recovers the known result of
DC transport [25,36].

For the semiconducting WSe2, in the calculations we apply
Vds < Egap and Vg = 0, hence there is no current without
photon which means the first term of Eq. (7) does not contribute
due to the gap of the material.

APPENDIX C: NONEQUILIBRIUM EFFECTIVE
TRANSMISSION

As shown in Fig. 3(a) of the main text, the absolute value
of the photocurrent increases with bias Vds. This is consistent

FIG. 6. (Color online) Transmission TD(k = K ′,E) for three val-
ues of Vds.

with Eq. (5) (main text), as a larger bias means a larger
integration range over the effective transmission coefficient.
Quantitatively, in Fig. 6 we compare transmission curves for
three Vds values.
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