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We report the investigation of full-counting statistics (FCS) of transferred charge and spin in the transient
regime where the connection between central scattering region (quantum dot) and leads are turned on at t = 0.
A general theoretical formulation for the generating function (GF) is presented using a nonequilibrium Green’s
function approach for the quantum dot system. In particular, we give a detailed derivation on how to use the
method of path integral together with nonequilibrium Green’s function technique to obtain the GF of FCS in
electron transport systems based on the two-time quantum measurement scheme. The correct long-time limit
of the formalism, the Levitov-Lesovik formula, is obtained. This formalism can be generalized to account for
spin transport for the system with noncollinear spin as well as spin-orbit interaction. As an example, we have
calculated the GF of spin-polarized transferred charge, transferred spin, as well as the spin transferred torque for
a magnetic tunneling junction in the transient regime. The GF is compactly expressed by a functional determinant
represented by Green’s function and self-energy in the time domain. With this formalism, FCS in spintronics
in the transient regime can be studied. We also extend this formalism to the quantum point contact system.
For numerical results, we calculate the GF and various cumulants of a double quantum dot system connected
by two leads in the transient regime. The signature of universal oscillation of FCS is identified. On top of the
global oscillation, local oscillations are found in various cumulants as a result of the Rabi oscillation. Finally, the
influence of the temperature is also examined.
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I. INTRODUCTION

A stochastic process can be characterized by the distribution
function. In many cases, the distribution function of a physical
quantity is Gaussian and hence only two variables are enough
to describe the distribution: its average and second cumulant.
Due to the particle nature and quantum effect, electron noise
spectrum is an intrinsic property that manifests in mesoscopic
systems [1]. It was predicted theoretically that distribution of
electron current is binomial, suggesting that all cumulants of
current have to be included in order to fully characterize the
electronic quantum transport process [2,3]. The full-counting
statistics (FCS) is an elegant way to study the current corre-
lations in mesoscopic systems and yield not only the noise,
but all higher-order cumulants [4]. It calculates the probability
distribution function of the number of electrons transferred
through a particular terminal during a given period of time that
contains fundamental information about the current fluctuation
in the system [5]. The current and its fluctuations in mesoscopic
systems have been studied extensively and are very important
to characterize the physical mechanisms and correlations of
a quantum transport system [1]. For instance, the effective
charge of a quasiparticle can be determined from shot-noise
measurement in fractional quantum Hall effect [6]. The cross-
current correlation can reveal statistical information such as
whether the quasiparticle is fermionic or bosonic. The study
of correlation of entangled electron can be valuable in quantum
information processing [7]. A deep relationship has been found
between entanglement and noise in terms of FCS providing a
new framework for quantum entanglement [8]. Furthermore,

*jianwang@hku.hk

the equivalence between fidelity of quantum systems and
a generating function for FCS provides a link between
fields of quantum transport and quantum information [9].
In addition, the measurement of cumulants to very high
orders has been carried out experimentally for electronic
transport in quantum point contact systems [10–12]. So far,
extensive investigation has been carried out on the FCS of
charge transport, less attention has been paid to FCS of
spin transport. It is the purpose of this paper to address this
problem.

The key of FCS is to obtain the generating function
(GF) from which the probability distribution P (n,t) and all
cumulants are calculated [5]. The GF can be calculated by
various ways. Using a gedanken experiment scheme of a
“charge counter” in the form of spin precession, Levitov and
Lesovik [2–4] gave an analytical expression for the GF in the
long-time limit which can be generalized to a general quantum
mechanical variable [13]. The GF has been obtained using the
first quantization method [14] which can be used to study
FCS of dc and ac transport [15,16]. Using the nonequilibrium
Green’s function (NEGF) [17,18] and path integral method (PI)
in the two-time quantum measurement scheme [19–23], the GF
has been calculated to study FCS of phonon transport [24–27]
and electric transport [28].

In this paper, we generalize the existing formalism of
FCS of charge transport in the two-measurement scheme
to spin transport in the transient regime. In particular, we
obtain GFs for spin-polarized charge current, spin current,
and spin-transfer torque in the transient regime for a magnetic
tunneling junction where the spin index is not a good quantum
number. We have also extended this NEGF-PI method to
quantum point contact systems for charge transport. As an
application for this formalism, numerical results are given for
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FCS of charge transport in the transient regime for a double
quantum dot system.

The paper is organized as follows. In Sec. II, we give a basic
definition of quantities needed in studying FCS, and in Sec. III,
which is the central part of this paper, we present details on
how to use the method of path integral together with NEGF
to calculate the GF of FCS for lead-QD-lead system based on
the two-time quantum measurement scheme. This formalism
is designed for transient dynamics. The generalization of this
formalism to spintronics in transient regime is provided in
Sec. IV where we use the magnetic tunnel junction (MTJ) as
an example. The GF for spin-polarized charge transport, spin
transport, and spin-transferred torque for MTJ are calculated.
In Sec. V, we generalize the formalism to the quantum point
contact system. Section VI is devoted to some numerical
results where we apply the formalism to calculate various
cumulants of transferred charge for a double quantum dot
system. Finally, concluding remarks are made in Sec. VII.

II. STATISTICS

The most important quantity in FCS is the GF, from which
various quantities of interest can be obtained. In general, GF
is denoted as Z(λ,t) where λ is the counting field. The GF is
defined as the Fourier transform of the probability distribution
P (�n,t) of the number of transferred electrons �n = nt − n0

which can be calculated from two-time quantum measurement
scheme between time t0 = 0 and t [23]:

Z(λ,t) ≡ 〈eiλ�n〉 =
∑
�n

P (�n,t)eiλ�n, (1)

where �n can be either positive or negative. Various moments
of transferred charge 〈(�n)j 〉 can be obtained by expanding
Z(λ,t) in terms of λ, we have

Z(λ,t) =
∞∑

j=0

(iλ)j

j !
〈(�n)j 〉. (2)

The j th cumulant 〈〈(�n)j 〉〉 can be calculated by taking the j th
derivative of the cumulant generating function (CGF) which
is the logarithm of GF with respect to λ at λ = 0:

〈〈(�n)j 〉〉 = ∂j ln Z(λ,t)

∂(iλ)j

∣∣∣∣
λ=0

. (3)

It is well known that cumulants can be expressed by
moments. For instance, the first cumulant (mean value) is
defined as 〈〈�n〉〉 = 〈�n〉, the second cumulant (variance) is
given by 〈〈(�n)2〉〉 = 〈(�n)2〉 − 〈�n〉2, and the third cumulant
(skewness) is 〈〈(�n)3〉〉 = 〈(�n − 〈�n〉)3〉.

With the GF, the distribution function for the number of the
electrons P (�n,t) can be found through

P (�n,t) =
∫ 2π

0

dλ

2π
Z(λ,t)e−iλ�n. (4)

In particular, the idle time probability, the probability of no
electrons measured at time t , is

�(t) = P (0,t) =
∫ 2π

0

dλ

2π
Z(λ,t), (5)

from which we can calculate the waiting times distribution for
the electronic transport system in the transient regime [28].

Now let us turn to the discussion of waiting time distribution
(WTD). In the dc steady-state transport, the WTD can be
calculated through [15] W2(t) = 〈t〉 d2�(t)

dt2 where 〈t〉 is the
averaged time and WTD depends only on t because of the
time-translational invariance in the dc case (steady state). In
the presence of ac bias, averaging over a time period is needed
so that WTD depends only on t as well [16]. However, in
the transient transport regime, time-translational invariance
does not exist and there is also no time periodicity like the ac
case. As discussed in details in Ref. [28] that in the transient
regime, we ask how long we wait for the detection of the first
transferred electron if we set t0 = 0 as the starting point. We
will use W1 to denote the WTD in the transient regime [5,28]

W1(t) = − d

dt
�(t). (6)

III. MODEL AND GENERATING FUNCTION

A. Two-time quantum measurement

We consider the system of a quantum dot denoted by S

connected by the left and right leads. The full Hamiltonian of
the whole system can be written as

H = H0 + HT = HL + HR + HS + HT , (7)

where H0 consists of the Hamiltonian of the isolated leads and
the isolated central quantum dot

HS =
∑
x∈n

εxc
†
xcx, Hα =

∑
x∈kα

εxc
†
xcx, (8)

where we used the index kα to label the states of the lead
α = L,R and the index n for that of the quantum dot S. Here,
εkα = ε

(0)
kα + q�α , where ε

(0)
kα is the energy level in the lead

α and �α is the external voltage, εn is the energy level of
the quantum dot, and HT is the Hamiltonian describing the
coupling between the two leads and the quantum dot with the
coupling constant tkαn:

HT = HLS + HRS =
∑
kαn

[tkαnc
†
kαcn + tnkαc†nckα], (9)

where tnkα = t∗kαn. The coupling between the two leads and
the quantum dot can be controlled by the two gates between
the leads and the central quantum dots as shown schematically
in Fig. 1.

FIG. 1. (Color online) Schematic diagram of the model: a central
quantum dot coupled to the left and right leads. The two gates between
the leads and the central quantum dot can be used to control the
coupling between the leads and the quantum dot. In the theoretical
derivation, we count the number of transferred electrons in the left
lead.
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To investigate full-counting statistics, we count the number
of transferred electrons in the L lead, and the electrons flowing
from the L lead to the quantum dot is defined as positive
direction of the current. The current operator is given by
(q = 1)

ÎL(t) = −dN
(h)
L (t)

dt
, (10)

where N
(h)
L (t) =∑k c

†
kL(t)ckL(t) is the electron number op-

erator in the L lead, and the superscript “(h)” denotes the
Heisenberg picture. N

(h)
L (t) is related to the number operator

in the Schrödinger picture NL(0) by

N
(h)
L (t) = U (0,t)NL(0)U (t,0), (11)

where the evolution operator is

U (t,t ′) = T exp

{
− i

�

∫ t

t ′
H (t1)dt1

}
(t > t ′), (12)

andT is the time-ordering operator. The anti-time-ordering op-
erator T̃ should be used if t < t ′ and U †(t,t ′) = U (t ′,t). From
the Heisenberg’s equation of motion dA/dt = − i

�
[A,H ], we

find

ÎL(t) = i

�

[
N

(h)
L (t),H (t)

]
= i

�

∑
kn

tkLnc
†
kL(t)cn(t) + H.c. (13)

Now, we discuss the two-time quantum measurement by
counting the number of electrons in the L lead. In the two-time
measurement scheme, we measure the physical quantity such
as number operator NL at two different times, e.g., first at
time 0 and then at time t . After each measurement, the system
is projected onto one of the eigenstates of the operator NL

with the corresponding eigenvalue. We define the projection
operator at time 0 and t as P0 and Pt , respectively. Let us
start from an initial state |	0〉 and assume that |n0〉 forms a
complete set of eigenstates of number operator at time t = 0,
we have

NL(0)|n0〉 = n0|n0〉, P0 = |n0〉〈n0|. (14)

Obviously, we have P 2
0 = P0 and

∑
n0

P0 = 1 and similar
relations hold for Pt .

After the first measurement at time 0, the wave function
becomes P0|	0〉 with a probability of finding this state equal
to 〈	0|P 2

0 |	0〉. After a time interval t , this state evolves to
a new state U (t,0)P0|	0〉 with an eigenvalue nt . After the
second measurement at time t , the wave function becomes
|	t 〉 = PtU (t,0)P0|	0〉, where Pt = |nt 〉〈nt |.

Assuming that the initial state is a mixed state with the
density operator

ρ(0) =
∑

k

ωk

∣∣ψk
0

〉〈
ψk

0

∣∣, ∑
k

ωk = 1, (15)

we find the joint probability to have measured n0 electrons at
time 0 and nt electrons at time t ,

P (nt ,n0) =
∑

k

ωk

〈
ψk

0

∣∣P0U (0,t)P 2
t U (t,0)P0

∣∣ψk
0

〉
= Tr[P0ρ(0)P0U (0,t)PtU (t,0)]. (16)

Keep in mind that we should add a normalization constant to
the joint probability and the GF [Eq. (23)]. We will normalize
the GF when we come to the final result and use the fact that
Z(λ = 0) = 1. The probability distribution for the number of
electrons �n = nt − n0 measured between two measurements
is given by

P (�n) =
∑
nt ,n0

δ[�n − (n0 − nt )]P (nt ,n0), (17)

where δ(n) is the Kronecker δ symbol. Using Eq. (14), we have
n0P0 = NL(0)P0 and ntPt = NL(0)Pt . The GF associated
with the probability P (�n) is [19,29]

Z(λ,t) ≡
∑
�n

P (�n)eiλ�n

=
∑
nt ,n0

eiλ(n0−nt )P (nt ,n0)

=
∑
nt ,n0

Tr[eiλNL(0)P0ρ(0)P0U (0,t)e−iλNL(t)PtU (t,0)]

= 〈eiλNL(0)e−iλN
(h)
L (t)
〉′

= 〈eiλNL(0)/2e−iλN
(h)
L (t)eiλNL(0)/2

〉′
, (18)

where Pt disappears after the summation over nt and the prime
indicates that the average is with respect to

ρ ′(0) =
∑
n0

P0ρ(0)P0. (19)

To remove the projection operator P0, we represent it using
the Kronecker delta function

P0 = |n0〉〈n0|

=
∑

n

∫ 2π

0

dξ

2π
e−iξ (n0−n)|n〉〈n|

=
∫ 2π

0

dξ

2π
e−iξ (n0−NL(0)), (20)

then we can easily express ρ ′(0) in an integral form

ρ ′(0) =
∫ 2π

0

dξ

2π
eiξNL(0)ρ(0)e−iξNL(0). (21)

Using Eqs. (18) and (21), we express the GF as follows:

Z(λ,t) =
∫ 2π

0

dξ

2π
Z(λ,ξ,t), (22)

with

Z(λ,ξ,t) = Tr{ρ(0)Uλ/2−ξ (0,t)U−λ/2−ξ (t,0)}, (23)

where Uγ with γ = λ/2 − ξ or −λ/2 − ξ is the modified
evolution operator (t � t ′)

Uγ (t,t ′) = eiγNL(0)U (t,t ′)e−iγNL(0)

= T exp

{
− i

�

∫ t

t ′
Hγ (t1)dt1

}
(24)

with

Hγ (t) = eiγNL(0)H (t)e−iγNL(0). (25)
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FIG. 2. (Color online) Complex contour defined from time −∞
to time t and then back to time −∞ in Keldysh space. When we
consider the case of the transient regime, in which the subsystems are
connected at time t0 = 0, the complex contour should be from time
t0 = 0 to time t and then back to time t0 = 0 in Keldysh space.

As mentioned before, the anti-time-ordering operator should
be used here if t < t ′.

Since U−λ/2−ξ (t,0) is from 0 to t and Uλ/2−ξ (0,t) is from
t to 0, we can use the Keldysh contour as shown in Fig. 2 to
combine Uλ/2−ξ (0,t)U−λ/2−ξ (t,0), where for the upper branch
of the Keldysh contour

γ+(t) = (−λ/2 − ξ )θ (t), (26)

and for the lower branch

γ−(t) = (λ/2 − ξ )θ (t), (27)

and θ (t) is the step function due to the fact that the first
measurement starts at t = 0. Note that for a time t in the upper
branch and a time t ′ in the lower branch, we always have t < t ′.
In terms of Keldysh contour, we can express Z(λ,ξ,t) as

Z(λ,ξ,t) = Tr

{
ρ(0)TC exp

[
− i

�

∫
C

Hγ (t1)dt1

]}
, (28)

where TC is the contour-ordering operator on Keldysh contour
which has upper and lower branches discussed above. Noticing
the fact that NL(0) commutes with every term except the
coupling term HLS in Eq. (9) and from the Baker-Hausdorff
lemma

eXYe−X = Y + [X,Y ] + 1

2!
[X,[X,Y ]] + · · · (29)

we have eiγNL(0)ckLe−iγNL(0) = e−iγNL(0)ckL, we obtain

Hγ (t) =
∑

x∈kα,n

εxc
†
xcx +

∑
kRn

tkRnc
†
kRcn +

∑
kRn

tnkRc†nckR

+ eiγ
∑
kLn

tkLnc
†
kLcn + e−iγ

∑
kLn

tnkLc†nckL. (30)

Note that in the modified Hamiltonian, the counting field γ

only enters the coupling term between the central quantum dot
and the L lead where we count the number of electrons.

Consider a system where the interaction between the
quantum dot and the two leads is adiabatically switched on
from t = −∞ to 0, the nonequilibrium state ρ(0) can be
obtained by evolving the system from the initially decoupled
state ρ(−∞) = ρL ⊗ ρS ⊗ ρR at t = −∞. This process can
be described by

ρ(0) = U (0,−∞)ρ(−∞)U (−∞,0). (31)

We can rewrite Eq. (23) as

Z(λ,t) =
∫ 2π

0

dξ

2π
Tr{ρ(−∞)Uγ− (−∞,t)Uγ+(t, − ∞)}

=
∫ 2π

0

dξ

2π
Z(λ,ξ,t). (32)

Similarly, in terms of Keldysh contour, we can express
Z(λ,ξ,t) as

Z(λ,ξ,t) = Tr

{
ρ(−∞)TK exp

[
−i

∫
K

Hγ (t1)dt1

]}
, (33)

where we have used “K” to denote the contour, from t0 = −∞
to t and then back to t0 = −∞, for this adiabatic process. In
contrast, t0 is 0 in the previous contour “C.” In general, we can
discuss the following two initial conditions [25]:

(1) Measurement regime. The system starts at t = −∞
with the three different regions (L,R,S) disconnected. The
coupling between them and the dc bias voltage are switched
on adiabatically after t = −∞ and the system evolves to steady
state up to time t = 0. This is the dc transport regime and the
current is independent of time in the steady state. In this case,
we introduce projector P0 to make the first measurement. This
measurement is mathematically done by simply introducing a
parameter ξ in Eq. (20).

(2) Transient regime. In this regime, the coupling between
the leads and the quantum dot is switched on at t0 = 0+.
As shown in Fig. 1, two gate voltages are applied to control
the coupling between leads and central scattering region. By
changing these gate voltages, we can turn on and off the
coupling at will. The density matrix at t = 0, ρ(0) is the
product of initial states of decoupled subsystems ρ(−∞) =
ρL ⊗ ρS ⊗ ρR . We will see later that the above parameter ξ

will not appear under this regime. Obviously, the contour C

should be used in the transient regime.
There is a fundamental question in FCS: how to probe the

state of the system in a noninvasive way. As we will see that
after the first measurement, the quantum state of the system
is altered. This means that the subsequence measurement will
give a different result from what we should get if the system
were not perturbed due to the first measurement. This has been
noted in the early work of Levitov and Lesovik where a mea-
suring device is attached to the right lead of the system so that
the current can be measured from the rotating angle of the spin.
As pointed out by Levitov and Lesovik, their measurement is
noninvasive only in the sense that the reflection amplitude
is unchanged and the transmission amplitude changes by a
phase [4]. However, there are important consequences due to
this phase change. For instance, although the FCS at long times
is correctly represented by the generating function derived
from this approach, the second- and higher-order cumulants
of current at short times will be different from the true value.
This is a known problem in the FCS community.

The transient regime is different. This is because in the
transient regime, the density matrix of the system at t = 0 is
a direct product of the three regions ρ(0) = ρL ⊗ ρD ⊗ ρR ,
the system will not be perturbed if the first measurement is
performed at t = 0. As a result, the first measurement at t = 0
is not necessary and hence only one measurement is needed.
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Therefore, the quantum system will not be altered using the
two-measurement scheme in the transient regime.

B. Keldysh formalism

Now we introduce the Keldysh formalism [18,30,31] to
derive GF. For this purpose, it is convenient to use the
Grassmann algebra whose basic knowledge is presented in
Appendix A. We divide the Keldysh contour from t = −∞ to

t and then back to −∞ in Eq. (32) into 2N equal time intervals
δt , such that t1 = t2N = −∞ and tN = tN+1 = t . We will
use the relation of overcompleteness of the fermion coherent
state (A15) and insert it at each time slice i = 1,2, . . . ,2N

along the contour [30,31]. It is important to note that the
Grassmann fields φ and φ are completely independent fields.
Introducing the abbreviation for evolution operator over δt ,
U (δtj ) ≡ U [t0 + jδt,t0 + (j − 1)δt] and using Eq. (A13), we
find (� = 1)

〈φj+1|U (δtj )|φj 〉 = exp

{
−iδtj

[ ∑
x∈kα,n

εxφ(j+1)xφjx +
∑
kL,n

(eiγj tkLnφ(j+1)kLφjn + e−iγj tnkLφ(j+1)nφjkL)

+
∑
kR,n

(tkRnφ(j+1)kRφjn + tnkRφ(j+1)nφjkR)

]}
〈φj+1|φj 〉, (34)

where the δtj = +δt indicates the forward-time branch and δtj = −δt is for the backward-time branch and we use the index
kα to label the states of the lead α and the index n the quantum dot. Remember that γj = γ+ if j = 1,2, . . . ,N and γj = γ− if
j = N,N + 1, . . . ,2N . From Eq. (A14), one finds 〈φ1|ρ̂(−∞)| − φ2N 〉 = exp{−φ1φ2Nρ(−∞)} [32].

Substituting Eq. (34) into (33) and using Eq. (A16) of the trace formula expressed in coherent states, we obtain the GF

Z(λ,ξ,t) =
∫

D[φφ]eiS[φφ], (35)

with the action

S[φφ] =
2N−1∑
j=1

{ ∑
x∈kα,n

φ(j+1)x

[
i
φ(j+1)x − φjx

δtj
− εxφjx

]
−
∑
kL,n

[eiγj φ(j+1)kLtkLnφjn + e−iγj φ(j+1)ntnkLφjkL]

−
∑
kR,n

[φ(j+1)kRtkRnφjn + φ(j+1)ntnkRφjkR]

}
δtj + iφ1(φ1 + ρ(−∞)φ2N ), (36)

where the term iφ(j+1)xφ(j+1)x/δtj in Eq. (36) comes from the relation of overcompleteness of fermion coherent states (A15). The
term iφ(j+1)xφ(j )x/δtj in the above equation that contains two time indices is due to 〈φj+1|φj 〉 in Eq. (34) after using Eq. (A12).
To avoid integration along the closed time contour, we split the Grassmann field into upper and lower branches of the contour,
respectively [31]. Here, we use + and − to differentiate the upper and lower branches. Setting N → ∞ and δtj → 0, we can
obtain the continuous expression for the action

S[φφ] =
∫ t

−∞
dτ

∑
x∈kα,n

[φx+(i∂t − εx)φx+ − φx−(i∂t − εx)φx−]

−
∑
k,n

[eiγ+φkL+tkLnφn+ − eiγ−φkL−tkLnφn− + e−iγ+φn+tnkLφkL+ − e−iγ−φn−tnkLφkL−]

−
∑
k,n

[φkR+tkRnφn+ − φkR−tkRnφn− + φn+tnkRφkR+ − φn−tnkRφkR−]. (37)

The last term −ρ(−∞) in Eq. (36) is responsible for the boundary condition at the −∞ to connect the upper and lower branches
and this will be easily seen in Eq. (40) later [31].

Now, we want to express Eq. (37) in terms of Keldysh Green’s function. To do that, we consider the free action of the quantum
dot or the leads in the absence of coupling between them or external fields in Eq. (36):

S0 =
2N−1∑
j=1

φ(j+1)

[
i
φ(j+1) − φj

δtj
− εφj

]
δtj + iφ̄1[φ1 + ρ(−∞)φ2N ] ≡

2N∑
j,j ′

φ̄j g
−1
jj ′ φj ′ , (38)

where g−1
jj ′ has double time indices. From the basic property of the Gaussian integral for Grassmann algebra we have

〈φj φ̄j ′ 〉 =
∫
D[φ̄φ]φj φ̄j ′ exp(iS0)∫

D[φ̄φ] exp(iS0)
= igjj ′ . (39)
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From Eq. (38) we can write the matrix ig−1
jj ′ in the following

form (when N = 3):

ig−1
jj ′ =

⎛⎜⎜⎜⎜⎜⎝
−1 −ρ

h− −1
h− −1

1 −1
h+ −1

h+ −1

⎞⎟⎟⎟⎟⎟⎠ , (40)

where h± ≡ 1 ∓ iεδt . As shown in Refs. [30,31], we can
get the discrete form Green’s function of the free quantum
dot or the lead by inverting the matrix in Eq. (40). The
continuous version of the Green’s function can be obtained
by taking the N → ∞ limit while keeping Nδt constant and
also (h+h−)N → 1. Then, the four correlation functions in the
continuum limit are [31]

〈φ+(t)φ̄−(t ′)〉 = ig<(t,t ′) = −nF exp{−iε(t − t ′)},
〈φ−(t)φ̄+(t ′)〉 = ig>(t,t ′) = (1 − nF ) exp{−iε(t − t ′)},
〈φ+(t)φ̄+(t ′)〉 = igt (t,t ′) = θ (t − t ′)ig> + θ (t ′ − t)ig<,

〈φ−(t)φ̄−(t ′)〉 = igt̄ (t,t ′) = θ (t ′ − t)ig> + θ (t − t ′)ig<,

(41)

where nF = ρ/(1 + ρ) is the Fermi occupation number.
Now, we perform the Keldysh rotation. Define the new

fields as

φa1 = 1√
2

(φa+ + φa−); φa2 = 1√
2

(φa+ − φa−), (42)

whereas “bar” fields transform differently:

φa1 = 1√
2

(φa+ − φa−); φa2 = 1√
2

(φa+ + φa−). (43)

The effect of this rotation is to transform the matrix form of
contour-ordered function A into an upper triangular matrix as
follows:(

At (t,t ′) A<(t,t ′)
A>(t,t ′) At̄ (t,t ′)

)
−→

(
Ar (t,t ′) Ak(t,t ′)

0 Aa(t,t ′)

)
(44)

with the following relation:(
Ar Ak

0 Aa

)
= Qσz

(
At A<

A> At̄

)
QT

= 1

2

(
At − At̄ − A< + A> At + At̄ + A< + A>

At + At̄ − A< − A> At − At̄ + A< − A>

)
,

(45)

where Q = 1√
2
(1 −1
1 1 ) and σz = (1 0

0 −1) are orthogonal
matrices. Here, Ar (t,t ′) and Aa(t,t ′) are, respectively, the
usual retarded and advanced Green’s functions. For Green’s
functions or self-energies without counting parameter or other

parameters involved, we have

At + At̄ = A< + A>, Ak = 2A< + Ar − Aa. (46)

Introducing

ψ
T

x (τ ) = [φx+(τ ), φx−(τ )], ψT
x (τ ) = [φx+(τ ), φx−(τ )]

and

φ
T

x (τ ) = [φx1(τ ), φx2(τ )], φT
x (τ ) = [φx1(τ ), φx2(τ )],

we have from Eqs. (42) and (43)

ψx = Qφx, ψx = σzQφx. (47)

The second and third terms of Eq. (37) (denoted as S1) can be
written as

S1[φφ] = −
∫ t

−∞
dτ
∑
k,n

[
tkLnψ

T

kLVψn + tnkLψ
T

n V∗ψkL

+ tkRnψ
T

kRσzψn + tnkRψ
T

n σzψkR

]
, (48)

where V = (eiγ+ − eiγ− )/2 + σz(eiγ+ + eiγ− )/2. Substituting
Eq. (47) into (48), we can rewrite the action of Eq. (37) after
Keldysh rotation as follows:

S[φφ]

= SL + SR + SS + SLS + SRS

=
∫ t

−∞
dτ

∫ t

−∞
dτ ′ ∑

x,x ′∈kαn

φ
T

x (τ )g−1
xx ′ (τ,τ ′)φx ′ (τ ′)

−
∑
k,n

[
tkLnφ

T

kL(τ )�(γ )φn(τ ) + tnkLφ
T

n (τ )�∗(γ )φkL(τ )
]

−
∑
k,n

[
tkRnφ

T

kR(τ )φn(τ ) + tnkRφ
T

n (τ )φkR(τ )
]
, (49)

where we have introduced the abbreviated notation

�(γ ) = QT VσzQ

=
(

(eiγ+ + eiγ− )/2 (eiγ+ − eiγ− )/2
(eiγ+ − eiγ− )/2 (eiγ+ + eiγ− )/2

)
=
{

exp(−iξ ) exp
(− iλ

2 σx

)
, τ � 0

identity matrix, τ < 0
(50)

with exp(− iλ
2 σx) = ( cos λ

2 −i sin λ
2−i sin λ

2 cos λ
2

). Here, the Green’s func-
tion in Keldysh formalism is given by

gxx ′ (t,t ′) =
(

gr
xx ′ (t,t ′) gk

xx ′ (t,t ′)

0 ga
xx ′ (t,t ′)

)
, (51)

where (i∂t − εx)gk
xx ′ (t,t ′) = 0 and (i∂t − εx)gr,a

xx ′ (t,t ′) = δ(t −
t ′)δx,x ′ . We point out that the coupling coefficients
tkLn,t

∗
kLn,tkRn,t

∗
kRn can also depend on τ in Eq. (49).

Now, we write Eq. (49) in a matrix form

S[φφ] =
∫ t

−∞
dτ

∫ t

−∞
dτ ′�

T
(τ )M(τ,τ ′)�(τ ′), (52)
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where we have used the notation �
T

(τ ) =
[φ

T

kL(τ ),φ
T

n (τ ),φ
T

kR(τ )] and

M =

⎛⎜⎜⎝
g−1

kk′L(τ,τ ′) −tkLn′(τ,τ )�(τ ) 0

−�∗(τ )tnk′L(τ,τ ) g−1
nn′ (τ,τ ′) −tnk′R(τ,τ )

0 −tkRn′(τ,τ ) g−1
kk′R(τ,τ ′)

⎞⎟⎟⎠ ,

(53)

where the matrix M(τ,τ ′) contains Keldysh time space, k

space, and orbital space. Note that tkαn and tnkα are diagonal
matrices in Keldysh space which means that t rkαn = takαn and
t<kαn = 0. The upper bound for τ and τ ′ should be t , at which
we take the second measurement.

Using functional integration of the Gaussian integral for
independent Grassmann fields described by Eq. (A11) and
taking into the normalization condition Z(λ = 0,t) = 1 and
the fact �(λ = 0) = 1 into consideration, we can express the
GF as follows:

Z(λ,t) = detM(λ)

detM(λ = 0)
. (54)

Defining the diagonal matrix

P =
⎛⎝gk′kL(τ,τ ′) 0 0

0 I 0
0 0 gk′kR(τ,τ ′)

⎞⎠ , (55)

we have

PM(λ) =
⎛⎝ 1 −gk′kLtkLn′� 0

−�∗tnk′L g−1
nn′ −tnk′R

0 −gk′kRtkRn′ 1

⎞⎠
≡
(

A B

C D

)
, (56)

where

D ≡
(

g−1
nn′ −tnk′R

−gk′kRtkRn′ 1

)
(57)

and A = 1. Here, the summation on repeated indices is
implied. Using the identity

det

(
A B

C D

)
= det(A)det(D − CA−1B), (58)

we find

det[PM(λ)] = det

(
g−1

nn′ − �̃L −tnk′R

−gk′kRtkRn′ 1

)
, (59)

where

�L(τ,τ ′) =
∑
k,k′

tnk′Lgk′kL(τ,τ ′)tkLn′, (60)

and �̃L(τ,τ ′) = �∗(τ )�L(τ,τ ′)�(τ ′). Using Eq. (58) again,
we have det[PM(λ)] = det(g−1

nn′ − �̃L − �R). Finally, from
Z(λ,ξ,t) = det[PM(λ)]/ det[PM(λ = 0)], we obtain the
normalized generating function in a compact form

Z(λ,ξ,t) = det(GG̃−1) = det[I − G(�̃L − �L)], (61)

where the determinant can be calculated in discretized time
slice and real space grid. In the above equation, we have
introduced the following notation:

G̃−1 = g−1 − �̃L − �R, G−1 = g−1 − �L − �R, (62)

where G is the Green’s function of the quantum dot and g =
gnn′(τ,τ ′) denotes the Green’s function of the isolated quantum
dot, and

�̃L(τ,τ ′) = �∗[γ (τ )]

(
�r

L �k
L

0 �a
L

)
(τ,τ ′)

�[γ (τ ′)], (63)

where �[γ (τ ′)] and �∗[γ (τ )] is defined in Eq. (50) and the
Green’s function and self-energy are written in the Keldysh
space in time domain. We can see that the counting field only
appears in the self-energy of the left lead in which we count
the numbers of the electrons. When λ = ξ = 0, we have �̃L =
�L.

The Green’s function G satisfies the Dyson equation defined
on the Keldysh contour from −∞ to t and then back to −∞
with the following relation (for transient regime, we should
replace −∞ with 0):

G(τ ′,τ ) = g(τ ′,τ ) +
∫ t

−∞
dτ1dτ2g(τ ′,τ1)�(τ1,τ2)G(τ2,τ ),

(64)

where �(τ1,τ2) = �L(τ1,τ2) + �R(τ1,τ2). We can write it
explicitly as follows:

Gr,a = gr,a + gr,a�r,aGr,a

Gk = (1 + Gr�r )gk(1 + �aGa) + Gr�kGa. (65)

We point out that if we want to investigate the current cor-
relation between the left and right leads, we should introduce
two counting parameters λL,λR , one for the self-energy of the
left lead and another for the right lead, and calculate GF with
two counting parameters Z(λL,λR,t). For instance, we have
〈nLnR〉 = ∂2Z(λL,λR,t)

∂(iλL)∂(iλR) |λL=λR=0. We can also generalize the GF
to systems with multiple leads.

The self-energy �̃L(τ,τ ′) in the presence of the counting
field should be calculated separately at four different time
regimes. We find from Eqs. (50) and (63) that when −∞ <

τ < 0, 0 < τ ′ < t , �̃L(τ,τ ′) is (�r
L = 0)

�̃L(τ,τ ′) = e−iξ

(−i sin λ
2 �k

L cos λ
2 �k

L

−i sin λ
2 �a

L cos λ
2 �a

L

)
, (66)

and when 0 < τ < t, −∞ < τ ′ < 0, we can write �̃L(τ,τ ′)
as (�a

L = 0)

�̃L(τ,τ ′) = eiξ

(
cos λ

2 �r
L cos λ

2 �k
L

i sin λ
2 �r

L i sin λ
2 �k

L

)
, (67)

and when 0 < τ, τ ′ < t ,

�̃L(τ,τ ′) = exp

(
iσx

λ

2

)
�L(τ,τ ′) exp

(
−iσx

λ

2

)
. (68)

Finally, when −∞ < τ, τ ′ < 0, we have λ = 0 and
�̃L(τ,τ ′) = �L(τ,τ ′). We can see that in the transient regime,
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we only have the case 0 < τ, τ ′ < t , and the parameter ξ does
not appear.

Now, we turn to the cumulants of transferred electrons
between t0 = 0 and time t and current of the transient regime.
In the transient regime, using the relation ln det � = Tr ln �

we can write the CGF as

ln Z(λ,t) = Tr ln[I − G(�̃L − �L)]

= Tr ln[I − GM(e−iσxλ − I )], (69)

where I is the identity matrix and M is given by

M(τ,τ ′) = 1

2

(
−�a

L + �r
L �k

L

−�k
L �a

L − �r
L

)
(τ,τ ′)

. (70)

Taking the derivative of the CGF with respect to λ and using
the relation Tr ln(I − �) = −∑j=1 �j/j , we can get various
cumulants from Eq. (3). The first cumulant, the mean number
of transferred charge, can be expressed as follows:

〈〈�nL(t)〉〉 =
∫ t

0
dτ

∫ τ

0
dτ ′Tr

[
Gr (τ,τ ′)�<

L (τ ′,τ ) + G<(τ,τ ′)�a
L(τ ′,τ )

]
−
∫ t

0
dτ

∫ τ

0
dτ ′Tr

[
Ga(τ ′,τ )�<

L (τ,τ ′) + G<(τ ′,τ )�r
L(τ,τ ′)

]
, (71)

which can be written in a more compact form:

〈〈�nL〉〉 = Tr
[
(Gr − Ga)�<

L + G<
(
�a

L − �r
L

)]
, (72)

where the trace is over both time space and real space.
Similarly, the charge-charge correlation (the second cumulant)
is found to be [28]

〈〈(�nL)2〉〉 = −Tr[(GMσx)2 + GM]. (73)

From 〈〈�nL(t)〉〉 = ∫ t

0 IL(τ )dτ , we find the current at time t :

IL(t) =
∫ t

0
dτ Tr

[
Gr (t,τ )�<

L (τ,t) + G<(t,τ )�a
L(τ,t)

]
+ H.c. (74)

The current here is quite different from Cini’s approach (the
partition-free approach), where the coupling between leads
and the central quantum dot is turned on in the infinite past
while the bias is applied at t0 = 0 [33–35]. In our approach,
both the coupling and the bias are turned on at t0 = 0.

It is not difficult to prove that we obtain exactly the same
expression for the average current as in Eq. (74) in the
measurement regime where two measurements are performed
in the dc case. However, the second and higher cumulants in the
measurement regime are not the same as those of the transient

regime. This confirms the fact that the first measurement does
perturb the system and therefore the current under dc bias is
not a constant after the measurement. Similar behavior has
been found previously in the case of phonon transport [24,25].

We can derive the long-time behavior of the generating
function which recovers the famous Levitov-Lesovik for-
mula [3,4,36,37]. This has been discussed in detail in the
papers of Esposito et al. [19] and Agarwalla et al. [25]. For
completeness of this paper, we just give a brief summary here
about how to get the long-time limit from the FCS in the
transient regime. For convenience, we assume that we switch
on the interaction between the subsystems at −t/2 and we
are interested in the behavior between time −t/2 and t/2.
When t → ∞, the interval becomes (−∞,∞), and the Green’s
function and the self-energy in the time domain are invariant
under the time translation. The CGF, the logarithm of the
determinant of Eq. (61), in the energy space in the long-time
limit is

ln Zs(λ,t) = t

∫
dω

2π
ln det{1 − G(ω)[�̃L(ω) − �L(ω)]}.

(75)

If we use the first equality of the determinant of Eq. (61), CGF
in the energy space in the long-time limit can be expressed as

ln Zs(λ,t) = t

∫
dω

2π
ln det

[(
Gr 0
0 Ga

)(
(gr )−1 − �̃11

L − �r
R −�̃12

L − �k
R

−�̃21
L (ga)−1 − �̃22

L − �a
R

)]
, (76)

where we ignore Gk in the determinant since the Green’s
function is an upper-triangle block matrix in the Keldysh space,
and �̃11

L . Using the relations (Gr )−1 − (Ga)−1 = �a − �r and
Eq. (58), we have

ln Zs(λ,t) = t

∫
dω

2π
ln det

[
I + Gr

(
�r

R − �a
R

)
Ga(eiλ − 1)�<

L

+Gr�<
R Ga(e−iλ − 1)

(
�r

L − �a
L

)
+Gr�<

R Ga(eiλ + e−iλ − 2)�<
L

]
. (77)

Further using the relations �r
α − �a

α = −i�α and �<
α =

i�αfα , we obtain the CGF in the long-time limit as

ln Zs(λ) =t

∫
dω

2π
Tr ln (I + T (ω){(eiλ − 1)[1 − fR(ω)]fL(ω)

+ (e−iλ − 1)[1 − fL(ω)]fR(ω)}) (78)

with the transmission coefficient for the quantum dot T (ω) =
Gr�LGa�R . Next, we get the current generating function
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Ss(λ),

Ss(λ) = lim
t→∞

ln Zs(λ)

t

=
∫

dω

2π
Tr ln (I + T (ω){(eiλ − 1)[1 − fR(ω)]fL(ω)

+ (e−iλ − 1)[1 − fL(ω)]fR(ω)}), (79)

which is the celebrated Levitov-Lesovik formula. Taking the
derivative of the current generating function with respect to λ

at λ = 0, we get the current of the steady state in the long-time
limit which is the Landauer-Buttiker formula [38]

I (t) =
∫

dω

2π
T (ω)[fL(ω) − fR(ω)]. (80)

Finally, we wish to emphasize that the formalism discussed
here cannot be used to study the short-time full-counting
statistics in dc steady-state quantum transport since the first
measurement is not noninvasive. A formalism of short-time
FCS in dc steady state within nonequilibrium Green’s function
formalism is still unknown.

IV. GENERALIZATION TO MAGNETIC
TUNNEL JUNCTION

In this section, we generalize the formalism discussed above
to FCS in spintronics. As an example, we study a magnetic
tunnel junction (MTJ) in which the left and right ferromagnetic
leads are coupled to the nonmagnetic scattering region which
is a quantum dot. The magnetic moment M of the left lead is
along the z axis, while the magnetic moment of the right lead
is at an angle of θ to the z axis, which is along the z′ axis (such
that the coordinate system x ′y ′z′ is obtained by rotating the
coordinate system xyz by an angle θ along the y direction),
the electric current flows in the y direction (see Fig. 3).
The relative orientation of the magnetizations (parallel or
antiparallel) in the two electrodes will induce the tunnel
magnetoresistance (TMR) effect [39–41]. The magnetization
switching probability by non-Gaussian spin-torque shot noise
is recently studied by taking FCS into consideration and using
the fluctuation theorem [42]. Here, we present a formalism
using NEGF which is suitable to study the FCS of transient
behaviors in MTJ. Treating xyz coordinate system as the frame
of reference, the Hamiltonian of the whole system reads as

H = HL + HR + Hdot + HT , (81)

FIG. 3. (Color online) Schematic diagram of a magnetic tunnel
junction (MTJ) in which the left and right ferromagnetic leads are
coupled to the nonmagnetic scattering region which is a quantum dot
in our case. The magnetic moment M of the left lead is along the z

axis, while the magnetic moment of the right lead is at an angle of θ

to the z axis, which is along the z′ axis.

where HL and HR describe the Hamiltonian of the left and
right leads:

HL =
∑
kLσ

(εkL − σML)C†
kLσCkLσ ,

HR =
∑
kRσ

(εkR − σMR cos θ )C†
kRσCkRσ −MR sin θC

†
kRσCkRσ̄ ,

(82)

Hdot describes the nonmagnetic scattering region (quantum
dot)

Hdot =
∑
nσ

εnC
†
nσCnσ , (83)

HT is the Hamiltonian that models the coupling between leads
and the quantum dot with hopping matrix

HT = HLS↑ + HLS↓ + HRS↑ + HRS↓

=
∑
kαnσ

[tkαnC
†
kασCnσ + H.c.]. (84)

In these representations, α represents L or R, C
†
kασ (with σ =

↑,↓ or ±1, and σ̄ = −σ ) is the creation operator of electrons
at energy level k with spin index σ inside the L or R lead.
Similarly, C

†
nσ is the creation operator of electrons at energy

level n with spin index σ inside the quantum dot.
To diagonalize the Hamiltonian of the right lead, we apply

the following Bogoliubov transformation to the creation and
annihilation operator of the right lead [43]

CkR = R ckR, C
†
kR = c

†
kR R†, (85)

where we have used the abbreviation Ckα = (CkR↑
CkR↓),ckα =

(ckR↑
ckR↓), and R = (

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

) in the transformation, while the

creation and annihilation operators of the left lead and central
quantum dot remain unchanged, then we can get the effective
Hamiltonian

Hα =
∑
kα

(εkα − σM)c†kασ ckασ , Hdot =
∑

n

εnc
†
ncn,

HT =
∑
kαn

(c†kαtkαnR
†cn + H.c.) =

∑
kαn

(c†kαTkαncn + H.c.),

(86)

where we used the abbreviation ckα = (ckα↑
ckα↓), cn = (cn↑

cn↓), and

Tkαn = tkαnR
† in the expression of HT . From now on, we

use capital cases C
†
kα , Ckα , C

†
n, Cn to denote the creation

and annihilation operators of the leads and quantum dot
before Bogoliubov transformation while using c

†
kα , ckα , c

†
n,

cn to denote the creation and annihilation operators after the
transformation.

A. FCS of transferred charge with a particular spin direction

Here, we count the number of electrons with spin-up and
spin-down in the z direction (L lead) separately in the transient
regime. For convenience, we just consider the spin-up case and
the case for spin-down is self-evident. As was demonstrated
in the last section that the counting field just enters the
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coupling term between quantum dot and the particular lead
so the modified Hamiltonian Hγ with regard to the spin-up
number operator N̂

(h)
L↑(t) =∑k c

†
kL↑(t)ckL↑(t) can be written

as follows:

Hγ (t) = eiγNL↑(0)H (t)e−iγNL↑(0)

= Hlead + Hdot + HRS + diag(eiγ ,1)
∑

k

c
†
kLTkLncn

+ diag(e−iγ ,1)
∑

k

c†nTnkLckL, (87)

where Tnkα = Rtnkα . Since we are working in the xyz

coordinate system, we have the modified self-energy of the
left lead

�̃L(τ,τ ′) =
(

�∗�L↑� 0

0 �L↓

)
, (88)

where �ασ is defined as �ασ (τ,τ ′) =∑
k,k′ tnkαgkk′ασ (τ,τ ′)tk′αn′ , �∗ and � act on the Keldysh

space. � is almost the same as Eq. (50):

� = exp

(
− iλ

2
σx

)
=
(

cos λ
2 −i sin λ

2−i sin λ
2 cos λ

2

)
, (89)

due to the fact that in the transient regime, � does not depend
on time and the parameter ξ disappears. The normalized GF
can be written as

ZL↑(λ,t) = det(GG̃−1), (90)

where

G̃−1 = g−1 − �̃L − R�RR†,

G−1 = g−1 − �L − R�RR†. (91)

The Green’s function g is for the diagonalized Hamiltonian
of the central quantum dot, R and R† act on the spin
space. A similar expression of GF can be obtained for
spin-down electrons of the left lead by modification of
Eq. (88).

If we are interested in the statistical behaviors of the right
lead, we should use the x ′y ′z′ coordinate system as the frame
of reference. Similar to case of the left lead, if we count the
number of electrons with spin up in z′ direction

∑
k c

†
kR↑ckR↑,

the normalized GF can be written as

ZR↑(λ,t) = det(GG̃−1), (92)

where

G̃−1 = g−1 − �L − R�̃RR†,

G−1 = g−1 − �L − R�RR† (93)

with

�̃R(τ,τ ′) =
(

�∗�R↑� 0

0 �R↓

)
. (94)

Here, we point out that the GF for the spin-up electrons∑
k C

†
kR↑CkR↑ in the z direction of the right lead is totally dif-

ferent from that of z′. For the spin-up electrons
∑

k C
†
kR↑CkR↑

in the z direction of the right lead, the corresponding modified
Hamiltonian is

Hγ (t) = Hlead + Hdot + HLS +
(∑

kn

C
†
kRt̃kRnCn + H.c.

)

with t̃kRn = (e
iγ tkRn 0

0 tkRn
). After Keldysh rotation, t̃kRn be-

comes t̄kRn = (tkRn� 0
0 tkRn

). Because of this we have

G̃−1 = g−1 − �L −
∑
kk′

t̄nkRR gkk′ R† t̄k′Rn

= g−1 − �L −
(

�∗(cos2 θ
2 �R↑ + sin2 θ

2 �R↓)� 1
2 sin θ�∗(�R↑ − �R↓)

1
2 sin θ (�R↑ − �R↓)� sin2 θ

2 �R↑ + cos2 θ
2 �R↓

)
,

where we have used the short notation gkk′ = (gkk′R↑ 0
0 gkk′R↓

).

B. FCS of transferred charge current and spin current

We know that the total charge current operator through lead
α is

Îα = Îα↑ + Îα↓, (95)

while the spin current operator should be

Î s
α = �

2q
(Îα↑ − Îα↓), (96)

with Îασ = q dN̂ασ

dt
, N̂ασ =∑k ĉ

†
kασ ĉkασ , and we can set � =

q = 1 here. The modified self-energy in the GF of the number
of total charge transferred in the lead α is [when α = L(R) we

consider the z (z′) direction]

�̃α(τ,τ ′) =
(

�∗�α↑� 0

0 �∗�α↓�

)
(97)

and modified self-energy in the GF of the total spin transferred

�̃α(τ,τ ′) =
(

�̄∗�α↑�̄ 0

0 �̄�α↓�̄∗

)
(98)

with short notation �̄ = exp(− iλ
4 σx) [44].

Note that GF for the total transferred charge (or total
transferred spin) Z �= Zα↑Zα↓ since the statistics for spin-up
and spin-down transferred electrons are not independent of
each other because of the presence of spin-flip mechanism.
Hence, we cannot directly use the GF for the spin up and spin
down to obtain the GF for the statistics of the total transferred
charge or spin. Similar to Eq. (77), the CGF in the long-time
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limit in the energy space for the number of total transferred
charge or spin in the right lead can be expressed as

ln Zs(λ,t) = t

∫
dω

2π
ln det

[
I + Gr

(
�r

L − �a
L

)
GaRϒ�<

R R†

+Gr�<
L GaRϒ†(�r

R − �a
R

)
R†

+Gr�<
L GaR(ϒ + ϒ†)�<

R R†], (99)

where for the total transferred charge we take ϒ = diag(eiλ −
1,eiλ − 1) while for the total transferred spin we take ϒ =
diag(eiλ/2 − 1,e−iλ/2 − 1).

C. FCS of spin-transfer torque

The total spin torque operator can be derived from the
total spin along the x ′ direction in the right ferromagnetic
electrode [45–47]

Ŝx ′ = �

2

∑
k

c
†
kRσxckR

= �

2

∑
k

(c†kR↑ckR↓ + c
†
kR↓ckR↑). (100)

The spin-transfer torque operator is

τ̂R = i

�
[Ĥ ,Ŝx ′ ] = − i

2

∑
k

tkRnc
†
kRR̄cn + H.c. (101)

with R̄ = (
− sin θ

2 cos θ
2

cos θ
2 sin θ

2

). Now, we can write the modified

Hamiltonian Hγ with regard to the total spin operator Ŝx ′ using
the Baker-Hausdorff lemma Eq. (29) (� = 1),

Hγ (t) = eiγ Ŝx′ (0)H (t)e−iγ Ŝx′ (0)

= Hlead + Hdot + HLS

+
{

eiγ /2 + e−iγ /2

2

∑
kRn

c
†
kRtkRnR

†cn + H.c.

}

+
{

eiγ /2 − e−iγ /2

2

∑
kRn

c
†
kRtkRnR̄cn + H.c.

}
. (102)

Comparing with Eq. (30) for the case of number of transferred
charges, we can easily write the normalized GF for the total
spin (whose time derivative is spin-transfer torque) as follows:

Zx ′ (λ,t) = det(GG̃−1), (103)

where

G̃−1 = g−1 − �L − R�̃R1R
† − R�̃R2R̄ − R̄�̃R3R

†

− R̄�̃R4R̄,

G−1 = g−1 − �L − R�RR† (104)

with

�̃R1(τ,τ ′) =
(

�∗
1�R↑�1 0

0 �∗
1�R↓�1

)
,

�̃R2(τ,τ ′) =
(

�∗
1�R↑�2 0

0 �∗
1�R↓�2

)
,

�̃R3(τ,τ ′) =
(

�∗
2�R↑�1 0

0 �∗
2�R↓�1

)
,

�̃R4(τ,τ ′) =
(

�∗
2�R↑�2 0

0 �∗
2�R↓�2

)
(105)

and

�1 = �̄ + �̄∗

2
=
(

cos λ
4 0

0 cos λ
4

)
,

�2 = �̄ − �̄∗

2
=
(

0 −i sin λ
4

−i sin λ
4 0

)
. (106)

Here, we point out that �1, �∗
1, �2, �∗

2 act on the Keldysh
space while R, R†, R̄ act on the spin space of self-energy in the
GF. Note that R̄ = (0 1

1 0)R
†; we can rewrite G̃−1 in Eq. (104)

in the following form:

G̃−1 = g−1 − �L − R�̃RR† (107)

with

�̃R =
(

�∗
1 �∗

2

�∗
2 �∗

1

)(
�R↑ 0

0 �R↓

)(
�1 �2

�2 �1

)
. (108)

Just like Eq. (75), we can get the expression of CGF of the
spin-transfer torque in the energy space in the long-time limit
as

ln Zs(λ,t)

= t

∫
dω

2π
Tr ln det{1 − G(ω)R[�̃R(ω) − �R(ω)]R†}.

(109)

It can be easily shown that the spin-transfer torque from this
equation is the same as that derived from Ref. [45].

V. QUANTUM POINT CONTACT

In this section, we extend the formalism further to the
quantum point contact (QPC) system which is the simplest
in mesoscopic systems and its transport properties have been
studied extensively. The difference between the QPC and
the quantum dot system studied in the previous sections
is that in QPC, two electrodes are connected directly by
the hopping term; this is experimentally achieved by a
narrow constriction between the electrodes. Examples of two
electrodes involved are conductor-superconductor (N-S) and
superconductor-superconductor (S-S) systems [48]. Such a
system can be described by the following simple Hamiltonian:

H = H0 + HT = HL + HR + HT , (110)

where H0 consists of the Hamiltonian of the isolated electrodes

H0 =
∑
x∈kα

εxc
†
xcx, (111)

where we use the index kα to label the states of the electrode
α. Here, εkα = ε

(0)
kα + q�α(t), where ε

(0)
kα is the energy level

in electrode α and �α(t) is the external voltage, and HT is
the Hamiltonian describing the direct hopping between the
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nearest-neighbor sites in the two electrodes with a coupling
constant tLR = t∗RL:

HT = tLRc
†
LcR + tRLc

†
RcL. (112)

We count the number of transferred electrons in the left
electrode, and the electron flow from the left electrode to
the right one is defined as positive direction of the current.
Following the discussion of the quantum dot system in Sec. III,
in accordance with Eqs. (53) and (54) we can express the GF
as follows:

Z(λ,t) = detM(λ)

detM(λ = 0)
(113)

with

M =
(

g−1
LL(τ,τ ′) −tLR(τ,τ )�

−�∗tRL(τ,τ ) g−1
RR(τ,τ ′)

)
, (114)

where � is the same as Eq. (89) for the transient regime. For
convenience, we introduce the following abbreviated notation:

G̃−1 = g−1 − t̃, G−1 = g−1 − t (115)

with

t =
(

tLR

tRL

)
, t̃ =

(
tLR�

�∗tRL

)
,

g−1 =
(

g−1
LL

g−1
RR

)
. (116)

As mentioned in Sec. III, g−1
LL and g−1

RR contain the Keldysh
components and tLR and tRL are diagonal matrices in Keldysh
space. Then, we write GF as

Z(λ,t) = det(GG̃−1) = det[I − G(t̃ − t)]. (117)

For Green’s function, we have the following Dyson equation
in Keldysh space:

G = g + gtG. (118)

We can write the Dyson equation explicitly as [48]

Gr,a = gr,a + gr,atr,aGr,a,

Gk = (I + Gr tr )gk(I + taGa), (119)

G< = (I + Gr tr )g<(I + taGa)

with

Gr,a,k =
(

G
r,a,k
LL G

r,a,k
LR

G
r,a,k
RL G

r,a,k
RR

)
,

gr,a,k =
(

g
r,a,k
LL 0

0 g
r,a,k
RR

)
, (120)

tr,a =
(

t
r,a
LL t

r,a
LR

t
r,a
RL t

r,a
RR

)
=
(

0 tLR

tRL 0

)
,

and tk = 0 as previously mentioned that t is diagonal in
Keldysh space.

Now, we turn to the cumulants of transferred electrons
between t0 = 0 and time t and current of transient regime.

In the transient regime, from the fact ln det � = Tr ln � we
can write the CGF as

ln Z(λ,t) = Tr ln[I − G(t̃ − t)]. (121)

Taking the derivative of the CGF with respect to λ and using
the relation Tr ln(I − �) = −∑j=1 �j/j , we can get various
cumulants from Eq. (3). Using the relations Tr tLRGr

RL =
Tr tRLGr

LR and Gk = 2G< + Gr − Ga , the first cumulant, the
mean number of transferred charge, can be expressed as

〈〈�nL〉〉 = Tr

[
−G

∂ t̃
∂(iλ)

]∣∣∣∣
λ=0

= Tr

(
1

2
tLRGk

RL − 1

2
tRLGk

LR

)
=
∫ t

0
dτ [tLRG<

RL(τ,τ ) − tRLG<
LR(τ,τ )]. (122)

Hence, from 〈〈�nL(t)〉〉 = ∫ t

0 IL(τ )dτ , we can get the transient
current at time t :

IL(t) = tLRG<
RL(t,t) − tRLG<

LR(t,t). (123)

We note that a similar expression has been obtained in the dc
case [48]. We point out that the derivation above can be easily
generalized to a QPC system with multiple electrodes, or the
systems with spin configuration such as N-S or S-S system.

VI. NUMERICAL RESULTS

We now apply the formalism discussed above to a system
in which two single-level quantum dots are in series and
connected to the left and right leads, respectively. The
Hamiltonian of such a system reads as

H0 = ε1d
†
1d1 + ε2d

†
2d2 + t12d

†
1d2 + t21d

†
2d1, (124)

where ε1 and ε2 are the two energy levels of the quantum
dots and they are, respectively, coupled to the left and right
leads, and the two energy levels are also connected with
coupling strength t12 (t21 = t∗12). In this system, we have the
Rabi frequency between the two dots

�ω = 2

√
�ε2

4
+ |t12|2 , �ε = |ε1 − ε2|, (125)

which is actually the difference between the two eigenvalues
of the Hamiltonian of Eq. (124).

Taking the band structure of the left and right leads into
consideration, we assume that the leads have finite bandwidth
in a Lorentzian form [34] �α(ε) = �αW 2

ε2+W 2 where �α is the
linewidth amplitude of the left or right lead with �L = �R =
�/2 and we further assume that both leads have the same
bandwidth W . During the numerical calculation, the energies
are measured in the unit of � so that 1/� and e� are the units of
the time and current, respectively. In this paper, the bandwidth
is chosen to be W = 10�, the energy levels of the left and the
right quantum dots are ε1 = 6� and ε2 = 4�, respectively. At
t = 0− the system is disconnected. At t = 0+, the system is
connected and the Fermi level of the left lead is �L = 10�

and the Fermi level of the right is zero.
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FIG. 4. (Color online) Cumulants [(a) first cumulant, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth] of transferred charges in the right
lead of a system consisting of two single-level quantum dots connected to the left and right leads at time t0 = 0. The numbers of the transferred
charges are counted from time t0 = 0 to t . The initial electron occupation of the energy level of the left quantum dot is zero and the initial
occupation of the energy level of the right dot is one. � = e = � = 1, the energies are measured in the unit of � and 1/� is the unit of time.
The bandwidth is chosen to be W = 10�, the energy levels of the left and the right quantum dots are ε1 = 6� and ε2 = 4�, respectively. The
figure shows the cumulants as a function of time at different coupling strengths between the two dots with t12 = 1.5�, 3.0�, and 6.0� at zero
temperature, and we show the influence of temperature over the cumulants at a temperature kBT = 5� when the coupling strength t12 = 3.0�

as well, where kB is the Boltzmann constant.

For the double quantum dot system, the GF shall be written
as

Z(λ,t) = det G det

(
g−1

1 − �L −t12

−t21 g−1
2 − �̃R

)
, (126)

so that we are measuring electrons in the right lead. We also
assume that the initial electron occupation of the energy level
of the left quantum dot is zero and the initial occupation of
the energy level of the right dot is one, then g<

1 = 0 and
g<

2 (t1,t2) = i exp[−iε2(t1 − t2)]. The detailed description of
the calculation of the GF which is actually a determinant in
the time domain is presented in Appendix B.

In Fig. 4, we show the first–sixth cumulants of transferred
charges which are counted from time t0 = 0 to the time t in
the right lead of the system. The figure shows the cumulants
as a function of time under different coupling strengths
between the two dots with t12 = 1.5�, 3.0�, and 6.0� at zero
temperature, and we also show the influence of temperature on
the cumulants at a temperature kBT = 5� when the coupling
strength t12 = 3.0�, where kB is the Boltzmann constant. We
can see from Fig. 4, especially Figs. 4(e)–4(f), that there
are two kinds of oscillations in the cumulants: one is the
overall oscillation, and the other one is the local oscillation
with a specific period. Overall, there are more oscillations
of the cumulants 〈〈nj 〉〉 as one increases j , which shows the
phenomenon of universal oscillations in FCS. The universal
oscillations of the cumulants in the Coulomb blockade regime
have been revealed experimentally by Flint et al. [10]. The

local oscillation is caused by two serial quantum dots since
the electron in the quantum dots will oscillate between the two
energy levels and the period of the local oscillations is Tosc =
2π/(2�ω). The oscillation depends on the ratio of coupling
strength between two dots and the coupling between the right
dot and the right lead. If this ratio is small, the oscillation will
not be so obvious since it is easier for the electron in the right
dot to tunnel to the right lead. This can be confirmed from
Fig. 4 that the oscillation of the cumulants of the system with a
coupling strength t12 = 1.5� is weaker than the other two cases
at zero temperature. However, if the coupling strength between
the dots is strong enough, the first cumulant as in the case of
t12 = 6.0� in the figure may have negative values at short times
since the electron tends to oscillate between the dots and is
unwilling to flow to the right lead. This in turn creates a vacancy
in the right dot and hence a larger possibility for the electron in
the right lead to tunnel into the right dot giving rise to a negative
current. It is found that the first and second cumulants, which
are mean values and the variance, do not have too many local
oscillations and are smooth at longer times.

Regarding the influence of the temperature, we compared
the cumulants between zero temperature and kBT = 5� when
coupling strength t12 = 3.0�. The temperature will reduce the
probability that an electron transfer from the right quantum dot
to the right lead and enhance the probability that an electron
tunnel from the right lead to the right quantum dot. Both the
overall oscillation and the local oscillation are smeared due to
the temperature effect.
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FIG. 5. (Color online) WTD (W1) of the two-quantum-dot sys-
tem. The initial electron occupation of the energy level of the left
quantum dot is zero and the initial occupation of the energy level of
the right dot is one. The bandwidth is chosen to be W = 10�, the
energy levels of the left and the right quantum dots are ε1 = 6� and
ε2 = 4�, respectively. We compare WTD at kBT = 0 and 5� with
the coupling strength t12 = 3.0�.

In Fig. 5, we calculated the WTD (W1) in the right lead
in the transient regime, which is the probability distribution
that the first electron transfer to the right lead at different
times after we turn on the interaction between the leads and
the quantum dots at t = 0. The WTD of the system with
parameters �ε = 2�, t12 = 3.0� at zero temperature and
kBT = 5� are presented. Except from the first peak of each
curve, we can see from Fig. 5 that WTD exhibit an oscillation
with a period Tosc = 2π/(2�ω) again due to Rabi oscillation.
The temperature does not influence the oscillation period but
it smears the oscillation amplitude since temperature only
influences the electronic distribution in two leads.

VII. CONCLUSION

Using the technique of path integral and Keldysh nonequi-
librium Green’s function, we express the GF in a compact
form in terms of Green’s function and self-energy in the
time domain. This formalism is suitable for studying FCS
in the transient regime. For the dc steady-state regime,
two measurements are needed to collect to investigate the
finite-time FCS. As we have shown in this paper, the first
measurement actually perturbs the system and hence FCS
after the measurement does not reflect information of a real
system. Therefore, this formalism can not be used to study
finite-time FCS for the dc steady state. We have generalized
the formalism to the magnetic tunnel junction to study FCS of
spin-polarized charge current, spin current, and spin-transfer
torque. Moreover, we have calculated GF for the quantum
point contact system in the transient regime. We have applied
our theory to study FCS of a double quantum dot system.
Both global and local oscillations are revealed. We attribute
the global oscillation to the universal oscillation as observed
experimentally in the Coulomb blockade regime. The local
oscillation can be understood from the Rabi oscillation.

Future work may involve transient FCS of charge trans-
port in quantum point contact systems such as conductor-
superconductor (N-S) and superconductor-superconductor
(S-S) systems. In addition, the transient FCS of spin transport
in a mesoscopic system with spin-orbit interaction is also worth
studying.

Finally, we note that the theoretical framework presented
here can not be applied in the presence of strong electron-
electron interactions. Although exact results cannot be ob-
tained, we think that the perturbative approach can be used in
dealing with the interactions. This is an interesting research
topic which we will pursue in the near future.
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APPENDIX A: FERMIONIC COHERENT STATES

The fermionic coherent states are defined in terms of the
linear superposition of the vacuum state |0〉 and occupied state
|1〉 parametrized by two unrelated complex numbers φ and φ

which are called Grassmann variables [49]

|φ〉 ≡ |0〉 − φ|1〉 = (1 − φc†)|0〉, (A1)

〈φ| ≡ 〈0| − 〈1|φ = 〈0|(1 − cφ). (A2)

The coherent states are the eigenstates of the annihilation
operator:

c|φ〉 = φ|φ〉. (A3)

Similarly,

〈φ|c† = 〈φ|φ. (A4)

The Grassman variables satisfy the following equations:

(φ)2 = (φ)2 = 0, {φ,φ}+ = 0. (A5)

From Eq. (A5) we know that any function of the Grassmann
algebra is at most of the second order

f (φ,φ) = A + Bφ + Cφ + Dφφ. (A6)

Integrations of the Grassmann variables are defined as∫
dφ 1 =

∫
dφ 1 = 0,

∫
dφ φ =

∫
dφ φ = 1. (A7)

Differentials of the Grassmann variables are defined as

∂

∂φ
f (φ,φ) = B + Dφ,

∂

∂φ
f (φ,φ) = C − Dφ. (A8)

This implies that

∂

∂φ

∂

∂φ
= − ∂

∂φ

∂

∂φ
. (A9)
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Performing the integral of f (φ,φ) with respect to φ or φ and
comparing with Eq. (A8), we obtain the operator identities∫

dφ = ∂

∂φ
,

∫
dφ = ∂

∂φ
. (A10)

Using Eqs. (A7) and (A10), we obtain the functional Gaus-
sian integral for the Grassmann variables for any invertible
complex N × N matrix M:∫

D(φφ) exp

⎡⎣−
∑
i,j

φiMijφj + κiφi + φiκi

⎤⎦
= det M exp

⎡⎣∑
ij

κi(M
−1)i,j κj

⎤⎦ , (A11)

whereD(φφ) =∏N
i=1 dφidφi . If we set κi = κi = 0, we arrive

at
∫
D(φφ) exp[−∑i,j φiMijφj ] = det M .

Using Eqs. (A1), (A2), and (A5), we find the overlap
between any two coherent states as

〈φ|φ′〉 = 1 + φφ′ = exp{φφ′}. (A12)

From Eqs. (A3), (A4), and (A6), the matrix elements of a
normally ordered operator, such as the Hamiltonian, take the
form

〈φ|H (c†,c)|φ′〉 = H (φ,φ′)〈φ|φ′〉
= H (φ,φ′) exp{φφ′}. (A13)

Similarly [32],

〈φ|eκc†c|φ′〉 = exp{φφ′eκ}. (A14)

The differential elements dφ and dφ anticommute with
each other. Using Eqs. (A1), (A2), (A7), and (A12), it is
straightforward for us to get the overcompleteness of the
fermion coherent state

1 =
∫

dφ dφ exp(−φφ)|φ〉〈φ|

=
∫

dφ dφ exp(φφ)|φ〉〈φ|. (A15)

The trace of an operator Â is calculated as

TrÂ =
∫∫

dφ dφ e−φφ〈φ|Â|−φ〉. (A16)

APPENDIX B: NUMERICAL DETAILS

Here, we present detailed description on how to calculate
a generating function which is a functional determinant
described by Green’s function and self-energy in the transient
regime. Since the functional determinant is expressed in the
time domain, we should make a discretization of the time
indices. The determinant can be calculated through Eq. (69),
and we should keep in mind that both the Green’s functions and
self-energies have different Keldysh components. The Green’s
function can be obtained through the Dyson equation, which is
Eq. (65) on the matrix level. For the retarded Green’s function,
we should first discretize Gr, gr , and �r which have two

time indices with a time slice �t , and by the rule of matrix
multiplication, we have

Gr = gr + gr�rGr�t2,

where we have used the underlined Green’s function and self-
energy to denote the Green’s function and self-energy in the
matrix form. Given the self-energy and the Green’s function
g of the isolated central system, we can calculate the Green’s
function of the system using

Gr = (I − gr�r�t2)−1gr,

where I is the identity matrix. From Eq. (69), we obtain G<

which allows us to calculate the generating function Z(λ,t).
However, this method is time consuming since at every time
step, we should do a matrix inversion to get Gr .

Following, we introduce a method to make the calculation
much more efficient. First, we calculate the isolated Green’s
function of the central system and self-energy with different
Keldysh components in the time domain [50]. For the
quantum dot with single energy level ε0, gr (τ1,τ2) = −iθ (τ1 −
τ2) exp[−iε0(τ1 − τ2)], where θ (τ1 − τ2) is the Heaviside step
function and ga is the Hermitian conjugate of gr . g<(τ1,τ2)
is zero if the initial occupation of the energy level is empty
while if the energy level is initially occupied with one electron
g<(τ1,τ2) = i exp[−iε0(τ1 − τ2)]. Then, gk(τ1,τ2) is found
through the relation gk = 2g< + gr − ga .

The equilibrium self-energies are chosen to be energy
dependent with a finite bandwidth W ,

�̄r
α(ω) = �αW

2(ω + iW )
, (B1)

so that the linewidth function is the following Lorentzian form:

�α(ε) = �αW 2

ε2 + W 2
, (B2)

where �α is the linewidth amplitude. The self-energy in the
time domain is defined as

�
r,<
β (τ1,τ2) =

∫
dω

2π
e−iω(τ1−τ2)�̄

r,<
β (ω)e−i

∫ τ1
τ2

�β (t)dt
, (B3)

where �̄
r,<
β is the equilibrium self-energy in the energy domain

and �β is the external bias voltage in the lead β. Using Eq. (3),
we find the retarded self-energy of the left lead:

�r
L(τ1,τ2) = − i

4
θ (τ1 − τ2)�We−(i�L+W )(τ1−τ2), (B4)

where we have assumed �L = �R = �/2. For the lesser self-
energy

�<
L (τ1,τ2) = i

∫
dω

2π
e−iω(τ1−τ2)e−i�L(τ1−τ2)f (ω)�L(ω) (B5)

with f (ω) = 1/[eβ(ω−EF ) + 1] and EF = 0.
At zero temperature,

�<
L (τ1,τ2) = ie−i�L(τ1−τ2)

∫ 0

−∞

dω

2π
e−iω(τ1−τ2) �LW 2

ω2 + W 2
. (B6)

(1) If τ1 = τ2,

�<
L (τ1,τ2) = i

8
�W. (B7)
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(2) If τ1 > τ2, let τ = τ1 − τ2,

�<
L (τ1,τ2) = i

8
�W

{
i

π
e(W−i�L)τE1(Wτ )

+ e−(W+i�L)τ

[
2 − i

π
E1(−Wτ )

]}
, (B8)

where E1(x) = ∫∞
x

e−t

t
dt .

At nonzero temperature, note the following:
(1) If τ1 = τ2, the integral is actually Hilbert transformation

of the Fermi distribution function [51]

�<
L (τ1,τ2) = i�W

8
. (B9)

(2) If τ1 > τ2, it has poles −i(2n+1)π
β

and −iW , where
n = 0,1,2,3, . . ., we have

�<
L (τ1,τ2) = i�LW exp[−(W + i�L)(τ1 − τ2)]

2 exp(−iβW ) + 2
− 1

β

+∞∑
n=0

exp

{
−
[

(2n + 1)π

β
+ i�L

]
(τ1 − τ2)

}
�LW 2

W 2 − [ (2n+1)π
β

]2 . (B10)

Using the relation �<
L (τ1,τ2)|τ1<τ2 = −[�<

L (τ1,τ2)|τ1>τ2 ]∗, we
obtain the full expression of �<

L (τ1,τ2). The expression of
�<

R (τ1,τ2) can be obtained similarly. Finally, using the relation
�k = 2�< + �r − �a , we could know �k(τ1,τ2).

We know that a contour-ordered matrix A could be written
in the upper triangular form (A

r Ak

0 Aa) in the Keldysh space
after Keldysh rotation. Since G, which does not contain
the counting parameter, possesses the upper triangular form

in Keldysh space, and its retarded and advanced compo-
nents are lower triangular and upper triangular matrices,
respectively, in the time domain, we can just simplify it
to a diagonal matrix. So, we can just directly calculate
GF by calculating the determinant of the matrix δ(g−1 −
�̃L − �R) which is a block toeplitz matrix where δ is
the diagonal matrix to satisfy the normalization condition
Z(λ = 0,t) = 1.
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