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Topological effects in chiral symmetric driven systems
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Recent years have seen a strong interest in topological effects within periodically driven systems. In this work,
we explore topological effects in two closely related 2-dimensional driven systems described by Floquet operators
possessing chiral symmetry (CS). Our numerical and analytical results suggest the following. First, the CS is
associated with the existence of the anomalous counterpropagating (ACP) modes reported recently. Specifically,
we show that a particular form of CS protects the ACP modes crossing the quasienergy band gap at ±π . We also
find that these modes are only present along selected boundaries, suggesting that they are a weak topological
effect. Second, we find that CS can give rise to protected 0 and π quasienergy modes, and that the number of
these modes may increase without bound as we tune up certain system parameters. Like the ACP modes, these
0 and π modes also appear only along selected boundaries and thus appear to be a weak topological effect. This
work represents a detailed study of weak topological effects in periodically driven systems. Our findings add to
the still-growing knowledge on driven topological systems.
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I. INTRODUCTION

Topological effects in periodically driven systems are by
now a subject of considerable theoretical and experimental
interest [1–26]. The main reason for this interest is that driving
fields offer an easy way of tuning a system’s topological
properties, unlike the case for static systems in which their
topological properties are for most intents and purposes fixed
during the fabrication process. This fact was first theoretically
demonstrated in Ref. [5], in which a system was tuned from
being topologically trivial to nontrivial by means of a driving
field, forming a Floquet topological insulator (FTI). Recently,
this effect has also been theoretically demonstrated in graphene
[19]. There are also various interesting effects which are pecu-
liar to driven systems, of which we name only a few for brevity
(see Ref. [11] for a review). First, driven systems can host
two types of edge modes with zero group velocity. These are
the 0 or π quasienergy edge modes [2,9,13,14], whereas static
systems can only give rise to zero-energy edge modes. Second,
driven systems allow for the generation of Floquet Majorana
modes [4] which are described by different invariants [16] than
their static counterparts and may in theory be generated in large
number simply by increasing the period of the driving field
[18]. Third, driving fields have been proposed as a means of
achieving a semimetal-insulator phase transition in graphene
[21]. To understand these driving-induced effects, general
theoretical frameworks for solving driven lattice systems have
been proposed in Refs. [22,24]. Fourth, driving fields have also
been found to induce anomalous counterpropagating (ACP)
chiral edge modes in lattice systems [1,26], which are currently
not well understood theoretically (see below for details). Most
recently, a driving-field-induced spin Hall effect has been
theoretically proposed [25].
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Along a separate vein, the subject of weak topological
insulators (WTIs) is also an area of ongoing research activity
[27–31]. WTIs are mostly spoken of in the context of three-
dimensional (3D) systems [32,33]. These phases are weak
for two reasons. First, the edge modes of WTIs only exist
along certain boundaries (i.e., it depends on the shape one
cuts out from an infinite lattice to obtain a finite sample
and also on which boundary of the sample one looks at),
in contrast to the situation for strong topological insulators
(STIs), in which edge modes always exist on the boundary
regardless of its shape and direction. Secondly, WTIs are in
general not stable in the same way that STIs are, because
they are associated with invariants in a lower dimensionality
than that of the physical system. It was first thought that
because coupling the two-dimensional (2D) layers of a
3D WTI system in pairs renders them topologically trivial
[32,34], WTIs are no more interesting than topologically
trivial insulators. However, it was pointed out in several
papers [27,34,35] that random disorder, which is unlike the
coherent pairwise coupling mentioned above, is insufficient
for localizing all the edge states. Also, several papers showed
that the lower-dimensional topological effects can manifest as
protected conducting channels at dislocations [36] or “terrace
structures” [28,37] in 3D lattices. In other words, WTIs display
topological effects because the lower-dimensional topological
nontriviality survives even in the higher dimension. Recently,
there has been an interest in WTIs in the context of 2D systems
[29–31]. References [30,31] introduced topological numbers
which demonstrate the bulk-boundary correspondence of 2D
WTIs, while Ref. [29] studied the 1-dimensional (1D)–2D
transition in topological behavior of a square lattice as it is
gradually built up from stacking 1D chains atop one another.
Along another line of work, it is also known that chiral
symmetry gives rise to interesting topological zero modes and
Dirac points in graphene [39–41].

The present work studies weak topological effects in chiral
symmetric driven systems, making it relevant to all three
themes above, namely FTIs, WTIs, and chiral symmetry.
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We study these effects in the context of two topologically
nontrivial driven 2D models. These are lattice versions of the
kicked Harper model (KHM) [42–44] (this was regarded as a
kicked quantum Hall system in Ref. [1]) and an on-resonance
double-kicked rotor (ORDKR) model [45,46]. We chose to
study these two models because their eigenstates are related
by a precise 1-1 correspondence which ensures that their
Chern numbers (when computable) must be equal [47] (see
Sec. III for details). This guaranteed equality of Chern numbers
suggests that any differences in topological edge state behavior
seen in the two models is not directly related to the Chern
numbers, making this a good opportunity to study weak
topological behavior. In this work, we study these weak
topological properties analytically and numerically. It is our
hope that this work motivates further investigations into weak
topological effects in driven systems, an area which is still
unexplored and might thus contain new physics.

We briefly summarize the contributions of this work as
follows. The number of Floquet bands in these models may
be tuned by one’s choice of experimental parameters. When
an odd number of bands are present, the bands’ Chern
numbers [1,6,47] successfully predict the net number of chiral
modes within each quasienergy gap according to the usual
bulk-boundary correspondence rule [15] (see Sec. IV for
details). However, there also occur in both models anomalous
counterpropagating (ACP) modes [1] whose existence cannot
be predicted from the Chern numbers. These ACP modes
were first discovered in Ref. [1] in the lattice KHM under
a particular choice of boundary condition (BC). Our work
here builds on their finding in two ways. First, we identify the
existence of these modes in several other instances, namely
under different BCs and also in a totally separate model in
the form of the ORDKR lattice. Second, we show that these
modes are in fact a weak topological effect and show results
suggesting that they are related to the particular form of chiral
symmetry (CS) operator describing the system. Moving on to
consider an even number of bands, we report the existence
of topologically protected 0 and π quasienergy modes in
the ORDKR model but not in the KHM. These modes only
occur along open BCs along one dimension but not along
the other dimension. We show that they are in fact governed
by 1D topological invariants [13,14], demonstrating that they
are once again a manifestation of a weak topological effect.
The existence of these 1D invariants is again tied back to
the particular form of CS operator. Our numerics also reveal
that as certain parameters of the ORDKR model are tuned
up, a large number of these topological edge modes occurs,
together with a proliferation of Dirac cones in the quasienergy
spectrum. This finding may be useful for quantum information
processing with Floquet Majorana modes [48] and the study
of Dirac cones [49–54]. Again, our main contribution is to
consider weak topological effects in driven systems.

The outline of this paper is as follows. In Sec. II,
we introduce briefly the KHM and the ORDKR models,
originally discussed in the quantum chaos literature and
typically addressed in the angular momentum representation.
To study their edge state behavior, we introduce 2D lattice
versions of these two models, which we refer to as the kicked
Harper lattice (KHL) and the double-kicked lattice (DKL)
models, respectively. These lattice versions are mathematically

identical to the original KHM and ORDKR (due to the
equivalence between the lattice sites representation and the
angular momentum representation) but are physically more
meaningful. To lay the groundwork for later sections, we
analyze the symmetries of the two models on a general level
in Sec. III. In Secs. IV and V, we specialize to 3-band and
2-band cases, respectively, in both models and study their weak
topological edge state behavior along different boundaries. The
3-band and 2-band cases are typical examples of odd-band
and even-band behavior in our driven systems. We point out
the relationships between these topological states and the
symmetries as well as bulk topological invariants present in
the models. We conclude in Sec. VI.

II. TWO DYNAMICAL MODELS AND THEIR
IMPLEMENTATIONS ON A LATTICE

For completeness, we give a brief introduction to the
background of the KHM and the ORDKR models which are
both well studied in the context of quantum chaos. We note in
passing that a very recent study [55] has argued that topological
phenomena may emerge as a result of chaos, thus suggesting
that the two seemingly disparate topics of chaos and topolog-
ical insulators may even be related in a fundamental way.

The KHM displays chaos (given a suitable choice of
parameters) when treated classically, yet its quantum version
is simple enough for accurate numerical study. Insights on
many topics have been gained from studies of this model.
Such topics include metal-insulator transitions [56–58] and
quantum eigenstate topology [59,60]. Remarkably, the KHM
displays an unusual fractal-like quasienergy spectrum due to
its close connection [44] with the famous Hofstadter butterfly
spectrum [61].

The ORDKR model is a particular example of modulated
kicked rotors [45,62] and is another classically chaotic model
which has yielded interesting features quantum mechanically.
It displays intriguing features such as ratchet acceleration
[63] and exponential quantum spreading [64]. This model has
close connections with the KHM. Under an appropriate choice
of parameters, the ORDKR also displays a Hofstadter-like
quasienergy spectrum analogous to that of the KHM while
at the same time displaying qualitatively different dynamics
[46,65]. Subsequent work [66] found that the spectra of the
two models are identical provided that either an effective
Planck constant parameter is irrational or a union of spectra
over an added phase shift parameter (as we shall see later,
this phase shift parameter may be regarded as the crystal
momentum along the second dimension of a 2D model) is
taken in both models.

The vast literature on KHM and our earlier studies of the
ORDKR are based on the angular momentum representation,
with both models displaying continuous Floquet bands due
to a translational invariance in the angular momentum space.
This is not appropriate for the investigation of topological
edge states because it is not clear how to introduce a physical
boundary in the angular momentum space. For that reason we
consider instead lattice versions of ORDKR and KHM.

Originally both KHM and ORDKR were 1D dynamical
models. However, to study weak topological effects, we shall
investigate 2D generalized versions of these two models. In
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particular, we start with a 2D square lattice of Lx × Ly sites,
with both open and periodic boundary conditions along x and
y. We denote by |nx(y)〉 the discrete lattice sites along x (y),
where nx(y) = 0, . . . ,Lx(y) − 1 [67]. An arbitrary state in the
Hilbert space is then written as |ψ〉 = ∑

nx,ny
ψnx,ny

|nx〉|ny〉.

A. DKL as a lattice version of ORDKR

The first model we consider is a double-kicked lattice
(DKL) model [68,69], a lattice version of ORDKR, described
by the following Hamiltonian:

HDKL(t) = V (t)n̂2
x + 1

2

Lx−1∑
nx=0

(Ĵ (t)|nx + 1〉〈nx | + Ĵ †(t)|nx〉〈nx + 1|), (1)

with

V (t) = 0; Ĵ (t) = J1

Ly−1∑
ny=0

|ny + 1〉〈ny | for 4m � t < 4m + 1,

V (t) = V ; Ĵ (t) = 0 for 4m + 1 � t < 4m + 2,

V (t) = 0; Ĵ (t) = J2 for 4m + 2 � t < 4m + 3,

V (t) = −V ; Ĵ (t) = 0 for 4m + 3 � t < 4(m + 1),

(2)

where m ∈ Z. The above Hamiltonian describes a time-
periodic protocol consisting of four stages per period. During
the first stage, the Hamiltonian describes a particle undergoing
hopping in a diagonal fashion on the lattice. In the second
stage, the particle is subject to a potential of strength V which
is quadratic along x and independent of y. Next, the particle
experiences a nearest-neighbor hopping of strength J2/2 along
only the x direction. Finally, the particle experiences again
the same potential that is quadratic along x, except with
negative strength −V , meaning that this parabolic potential is
inverted relative to the earlier one. The consideration of a finite
lattice (i.e., open boundary conditions) will reveal edge state
properties, whereas applying periodic boundary conditions
will reveal the bulk spectrum. For the latter purpose, we may
obtain a compact form of the Floquet operator for the DKL
by introducing the translationally invariant crystal momentum
states, defined by

|kx(y)〉 = 1√
Lx(y)

Lx(y)−1∑
nx(y)=0

|nx(y)〉e−ikx(y)nx(y) (3)

along x(y), where kx(y) = −π + j × 2π/Lx(y) and j =
0,1, . . . ,Lx(y) − 1. Using the above equation, one may show
that the Floquet operator which propagates from t = 0 to t = 4
takes the form

UDKL(J2,V ,J1) = ein̂2
xV e−iJ2 cos(k̂x )e−in̂2

xV e−iJ1 cos(k̂x+k̂y ), (4)

where we have chosen to work in dimensionless units such
that � = 1. Within each ky subspace, the above UDKL is seen
to be of precisely the same form as the Floquet operator of
a 1D ORDKR treated in the angular momentum space [46],
where n̂x plays the role of the angular momentum operator, k̂x

the role of an angular variable, and ky the role of a phase shift
parameter. A similar perspective was discussed by others [70]
where the 2D model was referred to as the “ancestor” of 1D
models within each ky subspace.

Throughout, we denote the quasienergy and the associated
eigenstate of a Floquet operator U as ωn and |ψn〉, respectively
[71], with Û |ψn〉 = e−iωn |ψn〉. Since the quasienergy is only

defined modulo 2π , we define the quasienergy Brillouin zone
(BZ) as ranging from −π to π . By choosing V such that
V = πM/N , where M,N ∈ Z, the Floquet operator UDKL

becomes periodic in the |nx〉 representation with period N .
Bloch’s theorem then yields that we will have a quasienergy
spectrum consisting of N bands. For low values of J1,2,
the spectrum consists of N bands separated by large gaps.
For a fixed value of V , increasing the values of J1,2 will
cause the quasienergy bands to broaden and occupy more
space within the quasienergy BZ. As J1,2 increase beyond
certain special values, the quasienergy bands will touch and
reseparate, possibly causing a topological phase transition.
Later, we shall study the spectra obtained as J1,2 increase
for different V = πM/N and observe the effects that the
topological phase transitions have on the topological invariants
and related edge states.

B. KHL as a lattice version of KHM

Here we consider a lattice version of KHM, which we
refer to as the kicked Harper lattice (KHL), described by the
Hamiltonian

HKHL(J,R,b) = J

2

Lx−1∑
nx=0

(|nx + 1〉〈nx | + |nx〉〈nx + 1|)

+ R

2

Lx−1,Ly−1∑
nx,ny=0

(einxb|nx,ny〉〈nx,ny + 1|+ H.c)

×
∑
m

δ(t − m)

= J cos(k̂x) + R cos(n̂xb − k̂y)
∑
m

δ(t − m),

(5)

with m ∈ Z, where we have made use of Eq. (3) in order to
obtain the second line that applies to the case under periodic
boundary conditions (for the purpose of understanding the bulk
spectrum). The above Hamiltonian is directly related to a solid-
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state system subject to a kicking control field and in Ref. [1] it
was called a kicked Hall system. The Floquet operator evolving
states from time t = 0+ to time t = 1+ is then given by

UKHL(J,R,b) = e−iR cos(n̂xb−k̂y )e−iJ cos(k̂x ). (6)

Within each single ky subspace, this is indeed the familiar form
of the 1D KHM Floquet operator, with ky playing the role
of a phase shift parameter as introduced in our early studies
[47,63,66]. By choosing b = 2πM/N , where M,N ∈ Z, we
again obtain an N -band quasienergy spectrum just like we did
for the DKL Floquet operator. This completes our construction
of the lattice versions of ORDKR and KHM.

III. GENERAL ANALYSIS OF SYMMETRIES

A. Brief review on chiral symmetry in driven systems

The work of Ref. [3] suggested that given a Floquet operator
Û , assuming that there is no winding of quasienergy across
the BZ seen in the spectrum (i.e., the quasienergy spectrum
remains between −π and π at all points in the BZ), one may
extract an effective static Hamiltonian, Ĥeff, via the relation

Û ≡ e−iĤeff , (7)

and classify Ĥeff according to the tenfold classification scheme
for static systems [72], thus effectively classifying Û . Follow-
ing this approach, a Floquet operator Û is said to possesses
chiral symmetry (CS) [3,13,72] if there exists a unitary and
Hermitian operator � such that

�Û�† = Û−1, (8)

with � obeying �2 = 1 [3,13]. We shall refer to � as the CS
operator. An ambiguity naturally arises at this point. Namely,
there is an arbitrary choice of which one-period time interval
to choose for a Floquet operator to propagate across. It turns
out that different choices can lead to Ĥeff possessing different
symmetries or none at all. We follow the strategy introduced in
Ref. [13] and seek “symmetric time frames,” which are defined
as choices of time frames resulting in Floquet operators Û of
the form

Û = F̂ Ĝ, (9)

where F̂ and Ĝ are unitary operators related with each other
via the CS operator:

�F̂� = Ĝ−1. (10)

It is trivial to prove that once this relation is obeyed, so too is
the CS condition in Eq. (8). Such symmetric time frames do
not exist for arbitrary Floquet operators but do in the case of the
DKL and KHL, as we shall prove shortly. It is easy to see that
if a symmetric time frame exists corresponding to a Floquet
operator Û ′ = F̂ Ĝ, then there must also be a second symmetric
time frame corresponding to Floquet operator Û ′′ = ĜF̂ [13].
We note for general interest that Floquet operators possessing
CS in symmetric time frames in general do not obey CS in
arbitrary (nonsymmetric) time frames. This fact hints at the
existence of some generalized form of chiral symmetry which
is present regardless of the choice of time frame. If such a
generalization exists, it has yet to be found, but we do not
tackle this issue in the present work.

B. Symmetry operators for DKL and KHL

The Floquet operator for the DKL model in a symmetric
time frame from t = 2.5 to t = 6.5 [cf. Eqs. (1) and (2)] reads

U ′
DKL(J2,V ,J1) = e−i

J2
2 cos(k̂x )e−in̂2

xV e−iJ1 cos(k̂x+k̂y )ein̂2
xV

× e−i
J2
2 cos(k̂x ), (11)

where

F̂ ≡ e−iJ2 cos(k̂x )/2e−in̂2
xV e−iJ1 cos(k̂x+k̂y )/2,

Ĝ ≡ e−iJ1 cos(k̂x+k̂y )/2ein̂2
xV e−iJ2 cos(k̂x )/2. (12)

The CS operator is given by

�DK = ein̂xπ . (13)

It is clear that

�2
DK = 1 (14)

and

�DK = �
†
DK = �−1

DK (15)

since n̂x has only integer eigenvalues. Making use of the fact
that

ein̂xπf (k̂x)e−in̂xπ = f (k̂x + π ) (16)

for an arbitrary function f , we see that

�DKU ′
DKL�DK = �DKF̂ Ĝ�DK

= �DKF̂�2
DKĜ�DK

= Ĝ−1F̂−1

= U
′−1
DKL. (17)

This proves that the DKL Floquet operator possesses CS in a
symmetric time frame.

Next, we analyze the symmetry of the KHL Floquet
operator. Defining the Floquet operator as propagating states
across the symmetric time frame from t = 0.5 to t = 1.5 [cf.
Eq. (5)], we obtain

U ′
KHL(J,R,b) = e−i J

2 cos(k̂x )e−iR cos(n̂xb−k̂y )e−i J
2 cos(k̂x ). (18)

The CS operator of the above model is given by

�KH = ein̂xπ ein̂yπ . (19)

Clearly,

�2
KH = 1 (20)

and

�KH = �−1
KH = �

†
KH. (21)

The CS condition may be easily verified using Eq. (16) as
follows:

�KHe−i J
2 cos(k̂x )e−iR cos(n̂xb−k̂y )e−i J

2 cos(k̂x )�KH

= e−i J
2 cos(k̂x+π)e−iR cos (n̂xb−(k̂y+π))e−i J

2 cos(k̂x+π)

= ei J
2 cos(k̂x )eiR cos(n̂xb−k̂y )ei J

2 cos(k̂x )

= U
′−1
KHL(J,R,b). (22)

Thus, the KHL model possesses CS. We note that it may be
shown that both models still obey the CS condition of Eq. (8)
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with their respective CS operators even when open BCs are
taken along one or both axes.

In the following sections, we shall study the two models
when V = π/N and b = 2π/N , where the N = 3 and N = 2
cases will be considered in Secs. IV and V respectively. It is
useful to set up some notation here for this purpose. Later, we
will consider the two models under both periodic and open
boundary conditions (BCs) in order to study bulk-boundary
correspondence. When periodic BCs are taken along x and y,
we shall write the Floquet operators of both models, referred
to generically as U , in the crystal momentum representation
which reflects their translational invariance. This representa-
tion is defined as follows. The lattice sites along x, {|nx〉}, are
divided into sublattices labeled P , where P = 0, . . . ,N − 1,
each of size S ≡ Lx/N . The sites of sublattice P are denoted
as |n̄x,P 〉 ≡ |nx = P + n̄xN〉, where n̄x = 0, . . . ,S − 1. We
then define reciprocal lattice (crystal momentum) states of
|n̄x,P 〉 via the discrete Fourier transform as

|k̄x,P 〉 = 1√
S

∑
n̄x

|n̄x,P 〉e−in̄x k̄x , (23)

where k̄x = −π, − π + 2π/S, . . . ,π − 2π/S. Note that the
reciprocal lattice states |k̄x ,P 〉 are Bloch periodic (i.e., periodic
up to a phase factor) in the lattice space over every N sites,
unlike the |kx〉 seen earlier which are Bloch periodic over
every 1 site. Along the y direction, we simply work in the
representation of |ky〉 defined in Eq. (3). In this representation,
our Floquet operators will take the form

Û =
∑
k̄x ,ky

[U (k̄x,ky)] ⊗ |k̄x〉〈k̄x | ⊗ |ky〉〈ky |, (24)

where [U (k̄x,ky)] is an N × N unitary matrix describing
the coupling between the P (sublattice) degrees of freedom
within each k̄x space. A recurring theme in our analysis in
the following sections will be to analyze the effect of the
CS operators in Eqs. (13) and (19) on the Floquet matrices
[U (k̄x,ky)] and how they transform these matrices into their
inverses within the same or different (k̄x,ky) subspace. When
we take open BCs along one direction and periodic BCs along
the other, the above decomposition into different momentum
spaces will only be possible along one direction and the
Floquet operator will take the form

Û =
∑

k

[U (k)] ⊗ |k〉〈k|, (25)

where k here may refer to k̄x or ky depending on the direction
along which periodic BCs are taken. The matrix [U (k)] then
describes the coupling within each k space. This notation will
be useful for discussing the topological behavior of our models
for the 3-band and 2-band cases.

Before ending this section, we elaborate on the 1-1 mapping
between the two models that we alluded to in the introduction.
In Ref. [47], we proved that when V = b/2 = πM/N for all
odd N , the matrices [UDKL(k̄x,ky)] and [UKHL(k̄x + Nπ,ky −
k̄x/N )] are related to each other by a unitary transformation
whenever J1 = R and J2 = J . We have since discovered that
an analogous mapping also holds for all even N [75]. This
exact mapping result means that the eigenstates of the two
N × N matrices (i.e., the full Floquet operator’s eigenstates

projected onto one unit cell) are related to each other by unitary
transformations. Since it is these reduced eigenstates that
feature in expressions for topological invariants, by studying
the topological properties of the two models, we are in fact
studying what happens to a system’s topological properties
under a rearrangement of eigenvalues and eigenstates on the
crystal momentum BZ. We shall see in the following sections
that this rearrangement does not affect the system’s strong
topological properties (i.e., boundary shape-independent edge
modes described by 2D invariants), but gives rise to differences
which turn out to be weak topological properties (i.e., boundary
shape-dependent edge modes described by 1D invariants).

IV. TOPOLOGICAL STATES IN 3-BAND CASES

In this section we study the effect of the CS in 3-band cases
by setting V = π/3 in U ′

DKL and b = 2π/3 in U ′
KHL. We first

report our numerical data from both models before analyzing
their symmetries in order to gain insight.

A. Numerical results and discussions

Taking periodic BCs along x and y and writing the
Floquet operators in the standard form of Eq. (24) and
numerically diagonalizing the 3 × 3 matrices [U ′

DKL(k̄x,ky)]
and [U ′

KHL(k̄x,ky)] across the entire (k̄x,ky) BZ, we obtain 3
quasienergy bands for both models. These quasienergy bands
are known to possess nonzero Chern numbers [1,6,47] defined
by

Cn = i

2π

∮
dk · 〈ψn(k̄x,ky)|∇k|ψn(k̄x,ky)〉, (26)

where we have denoted the eigenstates of [U ′
DKL(k̄x,ky)] and

[U ′
KHL(k̄x,ky)] generically as |ψn(k̄x,ky)〉, n = 1,2,3 is the

band index, and k ≡ (k̄x,ky). These Chern numbers will be
used for the study of bulk-boundary correspondence in both
models. The Chern numbers are defined only under periodic
BCs and are thus referred to as bulk invariants, as opposed to
the numbers of topological edge modes which are invariants
defined under open BCs.

The authors of Ref. [1] previously studied the KHL model
(referred to there as a kicked quantum Hall system) under
open BCs along x (i.e., the edges are parallel to the y axis).
As the starting point for our discussion, we reproduce some
of their results in Figs. 1(a), 1(c), and 1(e) [38]. As pointed
out by these authors, under certain parameter choices [see
Figs. 1(c) and 1(e)], ACP modes appear within certain gaps.
To be precise, ACP modes are defined as chiral modes on the
same edge within the same quasienergy gap having opposite
chirality. These modes are of interest because when present,
there is no known way of using bulk topological invariants
to predict the actual number of chiral edge modes (see below
for details). The ACP modes pointed out by Ref. [1] thus
reveal a gap in the current understanding of bulk-boundary
correspondence. We note that similar ACP modes have also
been numerically demonstrated in a static spinless system in
a weak topological phase [30]. For the usual strong static
topological systems in class A (i.e., integer quantum Hall
insulators), however, such ACP modes do not occur.
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FIG. 1. (Color online) The QE spectra for the kicked Harper lattice model at b = 2π/3, J = 2π/3 under open BCs along x (y) with
R = π,2π,3π are displayed in panels (a), (c), (e) [(b), (d), (f)], respectively. The Chern number bulk-boundary correspondence rule is obeyed
regardless of choice of boundary. However, a comparison betwen (c) [(e)] and (d) [(f)] reveals that the number of ACP modes changes with
boundary. Chern numbers of bulk bands are indicated on the right side of each figure panel. Black (blue) lines in the spectrum gaps represent
edges state on the left, whereas gray (green) lines in the spectrum gaps represent edge states on the right. Here and in all other figures, variables
are plotted in dimensionless units.

To make the significance of the ACP modes clear to a
wide audience, let us briefly review here the current state
of knowledge for systems with bands of nonzero Chern
numbers. We note that by “systems,” we refer to both
static and driven systems whose Hamiltonians and effective
Hamiltonians respectively are found in class A [76], and by
“bands,” we refer to both energy and quasienergy bands.
It is known [73,74] that in such systems, taking open BCs
along one direction and keeping periodic BCs along the other
(perpendicular) direction (i.e., a cylinder geometry), for any
band n, the net chirality of edge modes (i.e., the total count
of chiral modes signed according to their chirality) on each
boundary in the gap above it subtracted by the same in the gap
below it must be equal to the band’s Chern number calculated
under periodic BCs. The Chern number of a band is thus the
difference in net chirality of the edge states in the gaps above
and below it.

In the static case (assuming no ACP modes are present),
energies are bounded from below (i.e., no energies exist below
the lowest bulk band), and given all the bands’ Chern numbers,
one may deduce the exact number of chiral edge states within
each gap. In driven systems, due to the fact that quasienergy
is only defined modulo 2π , knowing all the bands’ Chern
numbers still leaves one unable to determine the number of
edge modes, as pointed out in Ref. [15]. In a dramatic example,
these authors showed that a system whose bands all possess
zero Chern number is still able to host topological chiral edge
modes. To remedy this ambiguity, they formulated a bulk
winding number invariant that uniquely determines the net
chirality of edge states in each gap. In the absence of ACP
modes, this winding number uniquely determines the number
of chiral edge modes within each quasienergy gap. However,
when ACP modes are present, the winding number still fails to
tell us the actual number of chiral quasienergy modes present.
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FIG. 2. (Color online) The QE spectra for the double kicked lattice model at V = π/3, J2 = 2π/3 under open boundary conditions along
x (y) for J1 = π,2π,3π are displayed in panels (a), (c), (e) [(b), (d), (f)], respectively. The Chern number bulk-boundary correspondence rule
is obeyed regardless of choice of boundary. Panels (b), (d), and (f) are identical to those of the previous figure because the two models under
open BCs along y are still related by a unitary transformation. The edge states are plotted in the same fashion as in Fig. 1.

At the time of writing, there is no known way to determine the
actual number of modes from a bulk invariant whenever ACP
modes are present. We note that in the static case, ACP modes
have only been numerically observed (see Fig. 3 of Ref. [30])
when the bulk bands all have Chern numbers equal to zero. In
the kicked Hall system of Ref. [1] and in the DKL model (see
below), however, the ACP modes occur even though the bands
have nonzero Chern numbers. This suggests that the situation
for driven systems may be quite different from that in static
systems.

Moving beyond the numerical data of Ref. [1], we compute
the quasienergy spectra of the KHL model under open BCs
along y as shown in Figs. 1(b), 1(d), and 1(f). A comparison
of Figs. 1(a), 1(c), 1(e) with 1(b), 1(d), 1(f), respectively,
then shows that while the Chern number bulk-boundary
correspondence rule still holds true under open BCs along
y, the ACP modes do not always persist. More specifically,
the ACP modes are present along the open boundaries along y

when J = 2π/3, R = 2π [see Fig. 1(d)], but are absent when
R is increased to 3π [see Fig. 1(f)]. This is in contrast to taking

open BCs along x which results in the ACP appearing along
the x boundaries for both cases [see Figs. 1(c) and 1(e)]. This
dependence on boundary choice suggests that the ACP modes
are a weak topological effect. Our finding here is similar to
that in Ref. [30] of weak topological ACP modes in a static
2D system, with the difference being that here we are dealing
with a driven system.

We have also numerically computed similar quasienergy
spectra under open BCs for the DKL model in Fig. 2. Here,
we have chosen parameters so that the 1-1 correspondence
[47] between the DKL’s eigenstates and the eigenstates of
the KHL for the parameter choices in Fig. 1 applies. We
see again that the Chern number rule holds true regardless
of boundary. The ACP modes fail to appear under open
BCs along x [see Figs. 2(a), 2(c), 2(e)] but can appear in
some instance under open BCs along y [see Fig. 2(d)]. We
note that for the parameter choices in Figs. 2(b), 2(d), 2(f)
and 1(b), 1(d), 1(f), respectively, the DKL and KHL models are
related by parameter mapping plus a unitary transformation,
thus causing their spectra to be identical. This should not be
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taken to mean that the DKL and KHL are actually the same
system, for they are clearly quite different physically. We have
calculated the quasienergy spectra of both models over a range
of the (R,J,J1,J2) parameters and found that the ACP modes,
once present, do not disappear unless a band touching occurs.
This numerically suggests that these modes are of a topological
nature.

B. Symmetry analysis

Having presented our numerical data on the two models,
we proceed to analytically study the symmetries of the Floquet
operators. We build on the work of Ref. [1] and discuss
the symmetry conditions related to the ACP modes in both
systems. When open BCs are taken along x, the Floquet
operators may be written as

U ′ =
∑
ky

[U ′(ky)] ⊗ |ky〉〈ky |, (27)

where U ′ refers generically to Floquet operators of either
system and when necessary to distinguish which one we are
referring to, we shall include appropriate subscripts. Here,
[U ′(ky)] is a square matrix of dimension Lx × Lx . We define
similar notation when open BCs are taken along y, in which
case the Floquet operators are written again generically as

U ′ =
∑
k̄x

[U ′(k̄x)] ⊗ |k̄x〉〈k̄x |, (28)

with [U ′(k̄x)] now being a matrix of dimension 3Ly × 3Ly .
With the above notation in place, we proceed with our

analysis. It may be shown that under open BCs along x and
periodic BCs along y, the KHL model obeys

�KH

∑
ky

[U ′
KHL(ky)] ⊗ |ky〉〈ky |�KH

=
∑
ky

[U ′
KHL(ky − π )]−1 ⊗ |ky − π〉〈ky − π |, (29)

whereas the DKL model obeys

�DK

∑
ky

[U ′
DKL(ky)] ⊗ |ky〉〈ky |�DK

=
∑
ky

[U ′
DKL(ky)]−1 ⊗ |ky〉〈ky |. (30)

Taking open BCs along y and periodic BCs along x, the KHL
model obeys

�KH

∑
k̄x

[U ′
KHL(k̄x)] ⊗ |k̄x〉〈k̄x |�KH

=
∑
k̄x

[U ′
KHL(k̄x − π )]−1 ⊗ |k̄x − π〉〈k̄x − π |, (31)

and the DKL model obeys

�DK

∑
k̄x

[U ′
DKL(k̄x)] ⊗ |k̄x〉〈k̄x |�DK

=
∑
k̄x

[U ′
DKL(k̄x − π )]−1 ⊗ |k̄x − π〉〈k̄x − π |. (32)

To summarize the above four relations, let k be a generic
crystal momentum variable and refer to either k̄x or ky when
appropriate. We then see two different types of CS here. First,
we have Eq. (30) where the CS operator transforms each
momentum-space Floquet operator at k into its own inverse.
We call this a type I CS. Second, we have Eqs. (29), (31), and
(32) where the CS operator transforms each momentum-space
Floquet operator at k into the inverse of the momentum-space
Floquet operator at k − π . We call this a type II CS.

A comparison of Eqs. (29)–(32) and Figs. 1 and 2 reveals
that whenever ACP modes are present in either model, the
CS is always of type II. As noted in Ref. [1], the type II CS
requires that for any eigenstate with arbitrary quasienergy ω

at ky (k̄x), there must also exist an eigenstate with quasienergy
−ω at ky − π (k̄x − π ), which then implies that chiral modes
crossing the gap at ±π must come in pairs. However, this is not
yet enough to guarantee that the ACP modes, once present, are
indeed topological (i.e., that they cannot be eliminated unless
a band touching occurs). This is because it could conceivably
happen that as the system parameters are tuned, the ACP modes
could develop a crossing which subsequently opens a gap,
giving rise to an avoided crossing of edge modes [77]. Our
numerics in Figs. 1(d) and 2(d) show that this does not in fact
happen. Namely, the quasienergies of the ACP modes cross
without opening a gap. In our numerics, we have verified over
a range of parameters that this crossing is always preserved so
long as no band touching occurs in the gap, thus confirming
that the ACP modes are topological. We note that the fact that
the ACP modes never open a gap hints at the existence of some
underlying symmetry.

Moving on, we consider the type I CS obeyed by the DKL
model under open BCs along x. The type I CS implies a
reflection symmetry of the spectrum about the ω = 0 axis, so
that the chiral modes, if present in the ±π gap, must come in
pairs with a crossing at ω = ±π . We have performed a large
number of numerical simulations which show that this does
not result in ACP modes because the “would-be ACP modes”
always repel one another at ω = ±π , as seen for instance
in Figs. 2(c) and 2(e) where they turn back and rejoin the
bulk rather than crossing the gap. It appears that, unlike the
situation in Figs. 1(d) and 2(d), crossings at ±π are impossible
and generically lead to avoided crossings. Hence, our numerics
suggest that whether the system possesses type I or type II CS
plays an important role in determining the presence of the ACP
modes. We remark that these symmetry-based considerations
here are only relevant to those ACP modes in the ±π gap and
do not apply to the modes in the middle gaps of Fig. 1(e).

We also note that, as mentioned at the end of Sec. III B, the
3-band KHL and DKL models are related by a rearrangement
of their eigenstates on the (k̄x,ky) BZ. The above results show
that the ACP modes are destroyed by such rearrangement,
whereas the usual chiral modes described by the Chern
numbers are not. This appears to be another clue which
might be useful for better understanding the conditions for
the existence of ACP modes in future.

Summarizing our main contributions in this section, we
have shown numerically that ACP modes first observed in
the KHL model in Ref. [1] may also be found in several
other situations. We have shown that these modes depend
on the choice of boundary, suggesting that they are a weak
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topological effect [30]. We have also discussed how the ACP
modes appear to be related to a particular form of (type II)
CS operator. Our results suggest that the ACP modes may be
ubiquitous in Floquet operators obeying type II CS. Lastly, we
have also shown that the ACP modes are not robust against a
rearrangement of eigenstates on the crystal momentum BZ, an
insight which may be useful for an improved understanding of
these modes in future.

V. TOPOLOGICAL STATES IN 2-BAND CASES

We move on now to the 2-band spectra corresponding to
cases where V = π/2 in Eq. (11) and b = π in Eq. (18),
respectively. In the first subsection, we study analytically the
models’ CS operators in the bulk by assuming periodic BCs
along both x and y. This bulk analysis predicts that the 2-band
DKL should possess topological 0 and π edge modes, but
only at open boundaries taken along the x direction, whereas
the 2-band KHL should not possess any topological edge
modes along any open boundaries. This sensitivity to choice of
edge orientation in the DKL model is characteristic of a WTI
phase. In the second subsection, we evaluate the 1D invariants
associated with the 0 and π modes in the DKL model in various
parameter regimes. The main interesting observation to arise
out of this is the existence of a large number of edge modes
under certain parameter choices.

A. Analysis of chiral symmetry in 2-band models

Making use of Eq. (23), the Floquet operators can be written
in momentum space, taking the form

U =
∑
k̄x ,ky

e−iHeff (k̄x ,ky ) ⊗ |k̄x〉〈k̄x | ⊗ |ky〉〈ky |, (33)

where

Heff(k̄x,ky) = h(k̄x,ky) · σ (34)

is a 2 × 2 effective Hamiltonian describing transitions within
the reciprocal sublattice index degree of freedom. Within
each particular (k̄x,ky) subspace, (H ′)1,1 [(H ′)2,2] describes
transitions from the A (B) sublattice back onto itself, while
(H ′)1,2 [(H ′)2,1] describes transitions from the B (A) sublattice
onto the A (B) sublattice.

Next, using Eq. (23) again, we write the two bulk CS
operators in the same momentum representation, beginning
with the DKL model. The DKL model’s CS operator given in
Eq. (13) reads as

�DK =
∑
k̄x ,ky

e−i π
2 ei π

2 σz ⊗ |k̄x〉〈k̄x | ⊗ |ky〉〈ky |. (35)

Within each (k̄x,ky) subspace, we observe that the CS operator
has the form of a rotation of Pauli vectors by an angle of π

about the z axis (with an unimportant phase factor attached).
Considering the DKL Floquet operator U ′

DKL written in the
form of Eq. (33), the former observation then necessarily
implies that the z component of the h′(k̄x,ky) vector must
be zero for all values of (k̄x,ky). This implication is confirmed

when we write out U ′
DKL in momentum space, which reads as

U ′
DKL =

∑
k̄x ,ky

e−iH ′
eff (k̄x ,ky ) ⊗ |k̄x〉〈k̄x | ⊗ |ky〉〈ky |, (36)

where

H ′
eff(k̄x,ky) = h′(k̄x,ky) · σ, (37)

and the explicit form of h′(k̄x,ky) is given by

h′(k̄x,ky) = E(k̄x,ky)n′(k̄x,ky),

E(k̄x,ky) = cos−1[cos(P ) cos(Q)],

n′(k̄x,ky) = [n′
x(k̄x,ky),n′

y(k̄x,ky),0],

n′
x(k̄x,ky) = cos

(
k̄x

2

)
sin(P ) cos(Q) − sin

(
k̄x

2

)
sin(Q)

sin[E(k̄x,ky)]
, (38)

n′
y(k̄x,ky) = − sin

(
k̄x

2

)
sin(P ) cos(Q) − cos

(
k̄x

2

)
sin(Q)

sin[E(k̄x,ky)]
,

P ≡ J2 cos

(
k̄x

2

)
,

Q ≡ J1 cos

(
ky + k̄x

2

)
.

For each fixed k̄x (ky) value, we have an effective 1D Floquet
system (but we stress that the DKL is physically a bona fide
2D system) whose h′ vector we can track as ky (k̄x) is scanned
across the BZ. Because this vector always lies in one plane
for all values of k̄x and ky , it is possible to define topological
winding numbers counting the number of circles h′(k̄x,ky)
traces around the origin as k̄x (ky) is tuned from −π to π . A
very similar situation occurs in graphene [39,40]. It is clear that
h′′(k̄x,ky) corresponding to the Floquet operator in the second
symmetric time frame U ′′

DKL also lies entirely in the x-y plane
since it shares the same CS operator (see Appendix B for
the explicit form of U ′′

DKL in momentum space) and a similar
winding number may be defined as well.

These winding numbers are related with the number of
topologically protected 0 and π quasienergy edge modes in
1D lattices [13,14]. Here, in our 2D DKL model, the winding
number as k̄x (ky) is tuned from −π to π is associated with
the number of 0 and π modes which occur along an open
boundary along x (y) within each ky (k̄x) subspace. The
occurrence of nonzero winding numbers generally means that
edge modes will be present (see Sec. V B for further details
and the actual values of these winding numbers). We note
that the DKL model is described not by one winding number
but by an entire ensemble of them. Each k̄x (ky) at which no
band touching takes place hosts a single winding number. As
we shall see later, the 2-band DKL model possesses nonzero
winding numbers and thus displays weak Floquet topological
insulating phases where 0 and π quasienergy modes are found
only along some edges but not others.

Next, we analyze the KHL in the bulk. The KHL’s CS
operator in Eq. (19) in the (k̄x,ky) representation reads as

�KHL =
∑
k̄x ,ky

e−i π
2 ei π

2 σz ⊗ |k̄x〉〈k̄x | ⊗ |ky − π〉〈ky |. (39)
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FIG. 3. The QE spectra for the DKL (KHL) model for V = π/2, J1 = J2 = 0.5π [b = π , R = J = 0.5π ] under open BCs along x and y

are shown in panels (a) and (b) [(c) and (d)], respectively. No topological edge modes appear in the case of the KHL, as expected by its lack of
topological winding numbers. Topologically protected 0 modes appear in the case of the DKL but only for open BCs along x. The reason for
this is explained later in the text.

The CS operator clearly does not conserve ky . It is thus
impossible to show using this CS operator that we can fix one
crystal momentum and obtain an effective 1D Floquet operator
with corresponding h vector that lies purely in one plane.
There are thus no well-defined topological winding numbers
in the 2-band KHL. This nonexistence of well-defined winding
numbers in the 2-band KHL is consistent with our numerical
observation (see below) that it does not host any topological
edge modes. The DKL model, on the other hand, may or may
not possess such edge modes, depending on the values of its
winding numbers. We will evaluate these numbers in the next
subsection, but for now we show in Fig. 3 a typical example of
the spectra in both models under open BCs along x and y. We
see that, as expected, the DKL possesses 0 quasienergy edge
modes while the KHL does not. We defer the introduction and
calculation of the winding numbers associated with the DKL
edge modes to the following subsection, because these winding
numbers are defined with respect to the bulk (i.e., under
periodic BCs). For now, we wish to discuss how under open
BCs, the CS operator of the DKL also provides a mechanism
for topological protection of the edge modes, whereas that of
the KHL does not. This coexistence of protected edge modes
defined under open BCs with topologically invariant winding
numbers defined under periodic BCs is a typical example of
the bulk-boundary correspondence principle.

We consider the spectra of both models under open BCs
along x. In the case of the DKL, the CS operator �DK

transforms U ′
DKL(ky) into U

′†
DKL(ky). On the other hand, in

the case of the KHL, the different CS operator �KH transforms
U ′

KHL(ky) into U
′†
KHL(ky − π ). Because of this, so long as CS is

maintained in the DKL model, if there exists an eigenstate
with quasienergy ω at some ky , there must also exist an
eigenstate with quasienergy −ω at the same ky . For ω = 0 (or
π ) quasienergies, these quasienergies could correspond to one
and the same eigenstate (note that π and −π are the same in
the quasienergy BZ). This allows us to explain the topological
protection in the DKL model in the following intuitive but
nonrigorous manner. If at some ky there is a single eigenstate
with quasienergy ω = 0 (π ) within a gap, this state is not
allowed to move away from 0 (π ) quasienergy under any
CS-preserving perturbation [9] for the simple reason that a
single state cannot suddenly split into two under continuous
change of parameters. This constitutes a topological protection
of single 0 and π quasienergy edge states in the DKL model.
This argument is however unable to explain whether or not
multiple 0 (or π ) modes may be simultaneously protected, as
we can always imagine say a pair of 0 modes simultaneously
moving away from 0 in opposite directions, thus preserving
the chiral symmetry of the spectrum. It turns out that multiple
modes may indeed be simultaneously protected in the DKL
model. A proof of this is provided in Appendix A based on
a very similar analysis in Ref. [9]. The situation is rather
different for the U ′

KHL spectrum. In this case, if there exists
an eigenstate with quasienergy ω at some ky , then the CS
condition only requires that there must also exist an eigenstate
with quasienergy −ω at ky − π . Because the chiral symmetry
partner lies at a different value of ky , it is thus guaranteed to be a
distinct eigenstate, so our previous “thought scenario” arguing
how a single state cannot split into two no longer applies.
Hence, the presence of CS here does not offer a mechanism
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towards a topological protection of states with quasienergies
0 or π . We note that the difference in edge state behavior
between the two models ultimately stems from the fact that
�KH has less translational symmetry than the KHL Floquet
operator, whereas �DK has the same translational symmetry as
the DKL Floquet operator (i.e., periodic along y over every 1
lattice site).

Taking into account the above statements and the results
of the previous section [cf. Eqs. (29)–(32)], we make the
following observation. The existence of a CS operator with
less translational symmetry than its Floquet operator gives
rise to the ACP modes in 3-band cases, whereas in 2-band
cases, this causes the Floquet operator to be topologically
trivial. Conversely, the existence of a CS operator with the
same translational symmetry as its Floquet operator does not
allow for the existence of ACP modes in 3-band cases, but
it allows for the existence of topologically protected 0 and π

quasienergy edge modes in 2-band cases.

B. Topological invariants for the bulk spectrum of DKL

We discussed the topological protection of the edge modes
of the 2-band DKL in the context of open BCs in the previous
subsection. Here, we show that under periodic BCs, this
corresponds to the existence of nonzero winding numbers,
as expected based on the bulk-boundary correspondence
principle. We do not characterize the 2-band models in terms
of Chern numbers like we did for the 3-band cases due to the
following two reasons. First, the 2-band Floquet spectra always
have band-touching points, making it impossible to define each
band’s individual Chern number. Second, though adding new
terms to the Floquet operators to open up a gap should be
possible, it is unclear whether there exist such gap-opening
terms which will not break the intriguing eigenstate mapping
between the two models.

Since we will make use of results from the theory in
Refs. [13,14], we now recap them briefly. Assume we are
given a 1D driven system described by a 2-band effective
Hamiltonian [cf. Eq. (33)] corresponding to its Floquet
operator which possesses CS. Corresponding to the two
symmetric time frames, one then obtains vectors h′(k) and
h′′(k) in the same sense as Eq. (34), albeit in 1D, where k here
refers to a generic 1D crystal momentum. The vectors h′(k)
and h′′(k) possess winding numbers ν ′ and ν ′′, respectively,
which count the number of times each vector encircles the
origin as k is scanned across one period of the Brillouin zone.
References [13,14] showed that under open BCs, there exist at
each boundary precisely ν0 (νπ ) topologically protected 0 (π )
quasienergy modes, which are related to the aforementioned
bulk winding numbers via [14]

ν0 = (ν ′ + ν ′′)/2 (40)

and

νπ = (ν ′ − ν ′′)/2. (41)

We now apply the above to our 2D 2-band DKL model.
We have found through extensive numerical simulations that
for open BCs along y, the DKL model does not host any edge
modes. Consistent with this finding, the associated winding
numbers ν ′(k̄x) and ν ′′(k̄x) for all k̄x are always zero, so that ν0
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FIG. 4. (Color online) Phase transition lines of the DKL model
in the (J1,J2) space for ky = π/2. Gap closures at ω = 0 (π ) are
marked with a blue-dashed (green-dashed) line. The (ν0,νπ ) numbers
signifying the number of 0 and π modes respectively at each edge
(under open boundary conditions) are indicated within each region of
the parameter space. Note that the number of edge modes seems to
increase without bound when we fix J1 (J2) at 0.5π and increase J2

(J1).

and νπ are necessarily always zero as well. There are thus no
topological edge states under open BCs along y. The same is
not true for open BCs along x as the winding numbers ν ′(k̄y)
and ν ′′(k̄y) take nonzero values and our numerics indicate the
existence of 0 and π quasienergy modes. Hence, the 2-band
DKL is indeed a weak Floquet topological insulator. We
present in Fig. 4 the values of (ν0,νπ ) at ky = π/2 over a large
range of (J1,J2) values of the DKL model. The topological
phase diagrams for all other ky 	= 0,π can be easily obtained
and are similar to Fig. 4, differing only by some shifts of
the transition lines. The phase diagram is seen to possess a
wide variety of different topological phases. In particular, for
fixed J1 = π/2 (but any 0 < J1 < π will also suffice), as we
increase the value of J2, we will pass through alternate gap
closures at ω = 0 and ω = π . With each of these closures,
ν ′′ increases by 1 while ν ′ alternates between −1 and 0. This
pattern seems to carry on ad infinitum, meaning that the number
of ω = 0 and ω = π topologically protected edge modes at
each boundary with the vacuum, given by ν0 = (ν ′ + ν ′′)/2
and νπ = (ν ′ − ν ′′)/2, respectively, will become very large
as J2 becomes large. A similar situation happens if we fix
J2 = π/2 and increase J1.

An especially interesting feature is that, as we can see from
Fig. 4, the phase transition lines do not occupy the parameter
space densely along the J1 = 0.5π (J2 = 0.5π ) line no matter
how large J2 (J1) becomes, unlike in the regions in the upper
right corner of Fig. 4 where the phase transition lines become
increasingly dense as both J1 and J2 increase to large values.
This means that even if the actual J1 and J2 values in an
experiment are shifted due to reasonably small imperfections,
the system does not undergo a phase transition and the 0 and
π modes will thus persist. The model may thus be very well
suited for realizing a large number of topologically protected
edge modes, which might be useful for quantum information
applications [18,48].

De-specializing away from the ky = 0.5π case, we consider
in Fig. 5 the quasienergy spectrum under open BCs along x
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FIG. 5. The QE spectra for the DKL model as a function of ky at V = π/2, J1 = 0.5π , and (a) J2 = 1.5π , (b) J2 = 2.5π , (c) J2 = 3.5π ,
(d) J2 = 4.5π . We see a proliferation of Dirac-like points at ω = 0 and ω = ±π as J2 increases.

over the whole ky BZ as J2 increases with J1 fixed at 0.5π

(note also the π quasienergy edge modes together with the 0
quasienergy edge modes). First, we see that the topological 0
and π modes are present over an increasingly large interval of
the BZ as J2 increases. This shows that the winding numbers
at all ky (and not just those at 0.5π ) generally increase as J2

increases along the J1 = 0.5π line in parameter space. We also
note that an increasing number of quasienergy Dirac cones as
J1 increases. Consider what happens when a phase transition
line of the form J2 = (2m + 1)π,m ∈ Z is crossed. When J2 =
(2m + 1)π , a new cone forms at ky = ±0.5π,ω = π . As J2

increases further, the two cones do not vanish. Instead, each
one splits into two and moves off to either side. Hence, we now
have four more cones than we did before crossing the phase
transition line. A similar sequence of events occurs when a
J2 = 2mπ,m ∈ Z line is crossed. New Dirac cones occur at
ky = ±0.5π,ω = 0 when J2 = 2mπ and split off into two
upon further increase of J2, again resulting in the presence of
four more Dirac-like points than before the phase transition
line was crossed. Hence, as J2 is increased along the line
J1 = 0.5π , the number of Dirac cones increases rapidly. Since
the DKL Floquet operator’s quasienergy spectrum corresponds
to the energy spectrum of an associated effective Hamiltonian
Heff via Eq. (7), this proliferation of Dirac cones may be useful
for simulating Hamiltonians with a tunable number of Dirac
cones, a subject of considerable theoretical and experimental
interest [49–54]. We note from Eq. (2) that all one needs to do in
order to effectively increase J1 or J2 in U ′

DKL is to increase the
two time intervals during which J (t) 	= 0, an experimentally
rather straightforward task.

In Refs. [51–53], the appearance of new Dirac cones was
due to increasing either the hopping strength or hopping range
in a static Hamiltonian. We point out that by increasing J1

and J2 here, we are effectively simulating a static Hamiltonian
with long-range hopping [18]. To see this, note the effective
Hamiltonian is defined via

UDKL ≡ e−iĤeff . (42)

The Floquet operator is given by the concatenation of four
exponential operators as seen in Eq. (4). Each exponential
operator does not commute with the exponential operator on
either side of it. Hence, in order to obtain Ĥeff, one must apply
the Baker-Campbell-Hausdorff (BCH) formula to each pair of
adjacent exponential operators repeatedly until we finally are
left with only one exponential operator. Now, by making use of
the BCH formula, we see that given three arbitrary operators
X̂,Ŷ , and Ẑ related via

e−iẐ ≡ e−ic1X̂e−ic2Ŷ , (43)

where c1,c2 are c-numbers, the operator Ẑ is given by

Ẑ = c1X̂ + c2Ŷ − ic1c2

2
[X̂,Ŷ ] − c1c2

12
[c1X̂

− c2Ŷ ,[X̂,Ŷ ]] + · · · . (44)

Due to the infinite series of nested commutators of X̂ and Ŷ ,
we see that Ẑ may contain terms of longer-range hopping than
those present in both X̂ and Ŷ individually. The larger the
values of c1 and c2, the more nested commutator terms will
play a significant role in Ẑ. Applying this in the context of the
problem at hand, we conclude that Ĥeff will contain longer-
range hopping terms beyond the nearest-neighbor hopping
terms seen in Eq. (1). Larger values of J1 and J2 will then
lead to longer-range hopping in Ĥeff. As we saw earlier, the
Floquet operator of the DKL model possesses CS regardless
of the values of J1 and J2. Hence, by increasing these
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values, we are able to simulate an effective chiral symmetric
Hamiltonian with very long-range hopping. As mentioned
earlier, increasing J1 and J2 is achieved simply by prolonging
the “hopping” part of the period.

Summarizing this section, we have found that, despite
the existence of a mapping between the DKL and KHL
models, they possess different topological behavior in the
two-band cases as well. Namely, the DKL possesses weak
Floquet topological edge states but the KHL does not. These
results reinforce the observation from the three-band cases
investigated in Sec. IV. That is, a rearrangement of eigenstates
in the crystal momentum BZ can create or destroy weak
topological effects. We have also found that the 2-band DKL
is able to host a large number of topological modes while at
the same time generating a large number of Dirac cones in a
manner which is experimentally appealing.

VI. CONCLUSION

We have studied two chiral symmetric driven 2D quantum
systems and demonstrated theoretically that they host weak
topological edge states. In the 3-band cases, we found in both
models that anomalous counterpropagating (ACP) chiral edge
modes exist only along certain boundaries and persist over a
wide parameter range, thus suggesting that these are a weak
topological effect. If this is the case, there ought to exist a
weak topological invariant associated with their existence. At
the time of writing, such an invariant has yet to be discovered.
Our results suggest that a crucial ingredient for the topological
protection of these ACP modes is the existence of a chiral
symmetry (CS) operator which maps each Floquet operator in
momentum space at crystal momentum k onto its inverse at
k − π [1], where k here denotes a generic crystal momentum
variable and the system is studied in a cylinder geometry,
meaning that periodic BCs taken along one direction and open
BCs along the other.

In the 2-band cases, the situation is somewhat reversed.
The existence of a CS operator transforming each momentum-
space Floquet operator at k into the inverse of that at k − π

does not protect the existence of edge modes. Instead, the
existence of a CS operator mapping each Floquet operator at
k onto its inverse at the same k is required to topologically
protect edge modes. We have also found that an arbitrarily
large number of topological 0 and π quasienergy edge modes
may be generated by simply increasing the duration of the
hopping stages within each time period of the 2-band DKL
Hamiltonian. These modes could be useful for future quantum
information applications [48]. Finally, we also showed that this
gives rise to a proliferation of Dirac cones in the quasienergy
spectrum, a finding which may be useful for simulating static
chiral-symmetric Hamiltonians with many Dirac cones.

We have also emphasized that the Floquet eigenstates
of the two dynamical models studied in this work have an
interesting correspondence and hence differ (up to a unitary
transformation) in their arrangement on the BZ. Both our
3-band and 2-band results (as prototypical representatives
of the even-band and odd-band cases) indicate that weak
topological effects depend not just on the nature of the set
of eigenstates associated with a physical system, but also on
the arrangement of these states on the BZ.

For possible experimental realizations of our findings here,
we note that photonic setups are increasingly establishing
themselves as a versatile setup for simulating topological
quantum phases [12,78]. Another possible avenue to consider
would be optical lattice setups [79–81]. We note that the
authors of Ref. [1] suggest that the 3-band KHL model may
possibly be realized by making use of artificial magnetic field
techniques [82] or by introducing complex tunneling ampli-
tudes via shaking an optical lattice [83]. They suggest that the
anomalous counterpropagating modes may be identified using
the momentum-resolved photoemission spectroscopy method
of Ref. [84] which extracts a spectral function which in turn
yields information on the number of states present for each
energy and each momentum.

On the computational side, it is straightforward to extend
our consideration to cases with more bands. We have carried
out calculations for cases with many Floquet bands and these
suggest that the observations made in this work regarding the
difference between DKL and KHL still hold. That is, if the
number of bands is even, then there exist many edge modes
with 0 or π quasienergy values in the former model (DKL)
but not in the latter (KHL); and if the number of bands is
odd, there exist ACP chiral edge modes only in cases where
the CS is of type II mentioned under Eqs. (29)–(32). The
DKL model for multiple-band cases also shows both flat 0
quasienergy modes as well as chiral modes, similar to those
seen in the static context of Ref. [85]. Throughout this work,
we have also viewed the system in a strictly stroboscopic
manner. To be more precise, one may instead view the system
continuously in time [86,87], which is beyond the scope of
this work. Our stroboscopic treatment here should however be
a fairly accurate representation of the physics, as our Floquet
operators are both local in nature and do not transmit wave
packets over infinite distances within each period. Our results
indicate that our observation here that the particular form of CS
operator has a huge impact on the edge states is quite general.
In future, it would be also interesting to study the implications
of the particular form of other symmetry operators besides
CS operators, such as time-reversal or particle-hole symmetry
operators.

APPENDIX A: ON THE PROPERTIES OF CS
OPERATORS OF DKL AND KHL

We provide some mathematical details regarding the topo-
logical protection of the edge modes with 0 and π quasienergy
values in the 2-band DKL model under open BCs along x.
We denote the 2-band DKL Floquet operator under this BC
simply as U ′

DKL(ky) for brevity. On the 0 and π quasienergy
subspaces, �DK and U ′

DKL(ky) commute. This is easily seen

as follows. First, U ′
DKL(ky)�DK = �DKU

′†
DKL(ky) due to the CS

condition. Since any 0 or π quasienergy eigenstate of U ′
DKL(ky)

is also an eigenstate of U
′†
DKL(ky) with the same eigenvalue,

�DK and U ′
DKL(ky) thus commute within the ω = 0 and π

subspaces. The commutation enables us to choose the 0 and
π quasienergy states to be common eigenstates of �DK and
U ′

DKL(ky). Note that because (�DK)2 = 1x , its only possible
eigenvalues are ±1. This allows us to define two sublattices
[13] denoted A and B, with projectors 	A = (1 + �DK)/2 and
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	B = (1 − �DK)/2, respectively [i.e., sublattice A (B) consists
of all the even (odd) sites]. Each 0 or π quasienergy state then
resides entirely on one lattice only. We denote such eigenstates
as |ψ (α)

ω,j 〉, where ω = 0,π , α ≡ A,B, and j is an index to label
different states in the event that we have multiple eigenstates
with the same quasienergy and same sublattice index α.

Now, assume that at some ky , we happen to have a number of
0 and π quasienergy states. Suppose we perturb the system in a
way which preserves the chiral symmetry of Eq. (17). We may
regard this increase as adding a CS-preserving perturbation
to the original Ĥ ′

eff(ky), defined by U ′
DKL(ky) ≡ e−iĤ ′

eff(ky ). We
denote this perturbation as Ĥp. By definition of preservation of
CS, it must be true that the anticommutator {�DK,Ĥp} vanishes.
Following Ref. [9], we consider the following anticommutator
matrix element, 〈

ψ
(α)
ω,j

∣∣{�DK,Ĥp}∣∣ψ (α′)
ω,j ′

〉 = 0. (A1)

This tells us that, within the 0 and π quasienergy subspaces,
respectively, a CS-preserving perturbation Ĥp can only mix
edge states living on different sublattices. This implies that the
difference between the number of 0 modes on the A and B

sublattices must remain unchanged so long as the quasienergy
gap remains open [9]. Since varying ky by a small amount in
U ′

DKL(ky) may be regarded as a CS-preserving perturbation,
we expect to see 0 and π quasienergy states persist over a
range of ky values so long as no gap-closing occurs. This is
indeed seen in Figs. 3(a) and 5.

We remind the reader that the above analysis does not apply
to the 2-band KHL model because the starting point of the

analysis, which is the presence of CS in its Floquet operator
U ′

KHL(ky) under open BCs along x, does not hold. This is the
reason for the big difference in edge states between the 2-band
DKL and KHL.

APPENDIX B: EXPLICIT FORMS OF U ′′
DKL(ky) IN THE

2-BAND CASE

The Floquet operator U ′′
DKL(ky) in k̄x representation and its

effective Hamiltonian are written out below:

U ′′
DKL(ky) ≡

∑
k̄x

e−i
∑

k̄x
H ′′

eff (k̄x ,ky )⊗|k̄x 〉〈k̄x |, (B1)

where

H ′′
eff(k̄x,ky) = h′′(k̄x,ky) · σ,

h′′(k̄x,ky) = E(k̄x,ky)n′′(k̄x,ky),

n′′(k̄x,ky) = [n′′
x(k̄x,ky),n′′

y(k̄x,ky),0],

n′′
x(k̄x,ky) = cos

(
k̄x

2

)
cos(P ) sin(Q) + sin

(
k̄x

2

)
sin(P )

sin[E(k̄x,ky)]
,

n′′
y(k̄x,ky) = − sin

(
k̄x

2

)
cos(P ) sin(Q) + cos

(
k̄x

2

)
sin(P )

sin[E(k̄x,ky)]
,

(B2)

and E(k̄x,ky),P ,Q are as they were defined previously.
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