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Ab initio friction forces on the nanoscale: A density functional theory study of fcc Cu(111)
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While there are a number of models that tackle the problem of calculating friction forces on the atomic level,
providing a completely parameter-free approach remains a challenge. Here we present a quasistatic model to
obtain an approximation to the nanofrictional response of dry, wearless systems based on quantum-mechanical
all-electron calculations. We propose a mechanism to allow dissipative sliding, which relies on atomic relaxations.
We define two different ways of calculating the mean nanofriction force, both leading to an exponential friction-
versus-load behavior for all sliding directions. Since our approach does not impose any limits on the lengths and
directions of the sliding paths, we investigate arbitrary sliding directions for an fcc Cu(111) interface and detect
two periodic paths that form the upper and lower bound of nanofriction. For long aperiodic paths, the friction
force converges to a value in between these limits. For low loads, we retrieve the Derjaguin generalization of
the Amontons-Coulomb kinetic friction law, which appears to be valid all the way down to the nanoscale. We
observe a nonvanishing Derjaguin offset even for atomically flat surfaces in dry contact.
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I. INTRODUCTION

In the 17th and 18th century, Amontons and Coulomb
formulated the basic laws of friction, which state that the
macroscopic friction force is independent of the apparent
contact area and varies linearly with the external load at
moderate constant sliding velocities [1,2]. These friction laws
were extended further by Derjaguin for adhesive surfaces,
so that a nonvanishing friction force can occur even for
zero load [3]. Although generally very successful, deviations
from this classical behavior have sometimes been observed
on the nanoscale depending on the sliding conditions. If the
contacting surfaces are aligned incommensurately, friction can
be reduced by several orders of magnitude, and structural
superlubricity may occur [4–8], although this phenomenon
is suspected to be unstable at least for graphene flakes on
graphite [9,10]. It has also been proposed that the drastic
reduction of frictional forces may not stem from incommensu-
rability but from thermal effects and the low effective mass of
the nanocontact [11,12]. The inclusion of third bodies between
incommensurate contacts hinders structural superlubricity and
leads to a linear behavior of friction on load [13,14], which
is also recovered from thermodynamic considerations [15].
Other studies report a greater than linear [16] or sublinear de-
pendence of the friction force on load [17–19], where the latter
is consistent with classic Hertzian contact mechanics [20].
Even more complex dependencies of the friction force on the
load have also been reported [21,22]. A more general overview
on friction simulations on the nanoscale may be found in two
recent reviews [23,24]. Friction forces can also depend on the
sliding direction, as shown in experiments on rather complex
geometries [25,26], and recently by Weymouth et al. for a
single atom asperity [27].

While the conventional method of choice for simulating
atomic scale friction is classical molecular dynamics (MD), see
Ref. [23] and references therein, ab initio density functional
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theory (DFT) approaches [28,29] have become more common
during recent years [30–37]. This is due to advantages in
accuracy and the increasing power of computers, which keep
the simulation time manageable. In classical MD simulations,
energy becomes dissipated to a heat bath via a thermostat, a
method that is in principle also possible for DFT calculations.
As simulation times for ab initio MD are very short, and
thermostating is difficult due to a rapid heating of the
electronic system, it is desirable to formulate a different way
to describe dissipative sliding and to predict coefficients of
friction within DFT. This may be done by computing potential
energy landscapes and fitting the resulting energy barriers
to mechanical models, for example the well-known Prandtl-
Tomlinson model [38,39]. Another approach was suggested
by Zhong and Tománek, who, in their “maximum-friction
microscope” model, assume a complete dissipation of the
potential energy into phonons and electronic excitations for
each slip [40,41].

Considering all these different concepts and methods, we
attempt to formulate the problem of dry sliding friction on
the basis of parameter-free (ab initio) calculations, which rely
only on the quantum-mechanical interactions of the sliding
bodies. Toward that end, we propose energy dissipation via
the relaxations in the sliding materials themselves as calculated
ab initio. We will show that the concept allows us to analyze
arbitrary sliding directions and sliding paths up to μm scale in
length with a single initial set of DFT calculations. This permits
us to gain insight into the different behavior of periodic and
aperiodic (defined below) sliding directions by bridging four
orders of magnitude in length scale.

II. METHODS

As a prototype system to study our nanofriction model,
we consider two atomically flat slabs of fcc(111) copper in
dry contact, represented by a 1 × 1 hexagonal unit cell (see
Fig. 1). Both slabs are described by two rigid Cu layers (gray
spheres) representing the transition to Cu bulk followed by a
tribologically active zone consisting of four Cu layers (red
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FIG. 1. (Color online) Sketch of the simulation cell containing
12 Cu atoms, tripled in the x and y directions for clarity. The top slab
is displaced vertically to simulate several load conditions and in the
x and y direction to collect data on energies and forces. Red atoms
are allowed to relax, while gray atoms are kept rigid at their bulklike
positions. The gap at the interface is included for visual clarity and
is of course not present under load when the slabs are compressed
beyond their equilibrium distance.

spheres) that are allowed to relax in three dimensions. In
preliminary calculations, the addition of another free layer was
found to not significantly change the resulting geometries even
at the positions with the highest stresses. External loads are
imposed by keeping the rigid layers at a given distance smaller
than the equilibrium one. The full simulation box consists of
12 atoms using a bulk lattice constant a = 3.634 Å determined
from DFT equilibration, cf. in experiments a = 3.615 Å [42].
Due to the inherent periodicity of our supercell, a vacuum layer
of about 15 Å is included on top of the upper slab to decouple
the periodically repeated simulation cell in the z direction.
This 12-layer-thick arrangement is comparable to a number of
previous studies using ab initio methods [30–32,34,36,43–47],
and it is sufficiently thick to approximate the elastic properties
of copper while retaining computational efficiency.

To investigate nanofrictional forces for sliding paths of
different lengths and directions, we apply a quasistatic grid
approach, which means that the unit cell is sampled by
choosing points on a regular grid for which the energies
and forces are calculated (see Fig. 2). In addition to the
advantage of being a parameter-free method, this concept
ensures that the sliding direction can be chosen arbitrarily
without recalculating energies and forces. The same holds for
the length of the sliding path, which can easily be extended to
∼1 μm, four orders of magnitude larger than the dimensions
of the unit cell. To calculate the energies and forces for each
lateral position, a 10 × 10 grid is constructed in the x-y plane,
resulting in a spacing of ∼0.25 Å between the grid points.
A cubic spline interpolation is applied to refine this grid by
a factor of 10 and create smooth energy and force surfaces.
To simulate the usual experimental setup, we perform our
scans keeping the load at a constant value, which implies
that the distance of the slabs needs to adapt. Toward that
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FIG. 2. (Color online) Energy landscape of a constant load scan
for two fcc Cu(111) slabs displaced relative to each other. In addition,
two periodic sliding paths with 0◦ (red) and 30◦ (blue) are shown.
The angles are defined with respect to the Cartesian x direction. The
arrows a1 and a2 are two basis vectors of the rhombohedral unit cell.
The x direction dissects the plane spanned by a1 and a2 and points into
the [ 1 1 1 ] direction. The y direction points into the [ 1 1 0 ] direction
and is in the plane spanned by a1 and a2 and orthogonal to the x axis.

end, the distance between the slabs is varied in six steps for
each of the 100 grid points, recording the respective volume
V and the total energy of the relaxed cell ER , which are
fitted to a second-order polynomial. The uniaxial pressure
on the cell can now be evaluated by calculating the first
derivative of ER with respect to V at each lateral position,
namely p = −∂ER / ∂V . The corresponding loading force
L is then obtained by multiplying the pressure with the
cross-section area A of the unit cell, L = pA. Choosing a load
(given derivative of the energy versus volume functions), we
recalculate the respective energies and forces at each of the 100
grid points and obtain energy surfaces at that given constant
load. Evidently, that means that the distance between the slabs
has to be adjusted accordingly. Employing this process, which
was also used in a very similar way by Cahangirov et al. [34],
we construct quantum-mechanical energy and force maps for
the quasistatic sliding system, both with and without relaxation
of atoms.

It has to be pointed out that this model is not intended
to simulate a macroscopic copper on copper system, which
would feature multiple grains, oxidation, impurities, and other
imperfections. The aim is rather to study a model for dissipative
sliding under idealized and controlled conditions. We believe
that the modeled system and the computational method are
ideally suited for this endeavor for the following reasons:
(i) Commensurate sliding of a Cu(111) tip on Cu(111) was
previously found to exhibit wearless atomic stick-slip motion,
both in molecular-dynamics simulations [48,49] and experi-
ments in ultrahigh vacuum [50]. This is in contrast to results
for Cu(100) on Cu(100), where both plastic deformations and
wear play an important role [48,51]. (ii) Garvey et al. showed
in a recent series of papers on KCl sliding on Fe(100) that
the investigation of shearing interfaces and the prediction
of friction coefficients for such systems require very high
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accuracy in the calculated energies [30–32]. The Vienna
Ab-Initio Simulation Package VASP [52–55] applied to the
copper system seems to be ideally suited for our study. The
projector augmented wave (PAW) code [56,57] is much more
accurate than, for example, embedded-atom potentials, but it
is not as computationally expensive as the highly accurate full-
potential linearized augmented plane-wave (FLAPW) method,
which is needed sometimes for systems in which the local
bonding environment changes significantly [30]. We found
that, while the considered system is small enough that the
large number of calculations needed for the construction of
accurate energy surfaces for various loads is still feasible,
it is also realistic enough to work as a proof of concept
for the proposed scheme to calculate friction forces on the
nanoscale.

One of the main goals of this work is to examine the
differences in nanofriction for different sliding directions,
especially the differences between periodic and quasiaperiodic
sliding paths. For all sliding directions, we start in an energy
minimum configuration corresponding to perfect fcc stacking.
Different paths are distinguished by their angle with respect
to the x axis; see Fig. 2. When a sliding path exits at a unit
cell boundary, the underlying lattice periodicity demands that
it reenters on the opposite side. In Fig. 2, we show two periodic
paths with 0◦ and 30◦, respectively. The first (red path) in Fig. 2
dissects the unit cell once along the Cartesian x axis before
returning to its starting point, whereas the second one (blue
path) in Fig. 2 cuts the unit cell twice. As can be seen from
Fig. 2, the energy variations along these two paths are distinctly
different, representing two extremal cases. In addition to
these periodic paths, we also consider 10 quasiaperiodic ones,
namely for −33◦, −29◦, −15◦, −10◦, 3◦, 5◦, 10◦, 21.13◦, 45◦,
and 50◦. (The animated gif file in the supplementary material
provides an example of an aperiodic sliding path in contrast
to the periodic ones [58].) We note that due to the inevitable
representation of irrational numbers by rational fractions in
a computer, these paths are essentially also periodic, however
with very long periods. The forces acting on the upper slab have
a parallel (friction) and an in-plane perpendicular (reaction)
component with respect to the direction of the path. Since our
model allows for both positive and negative contributions to
the friction force, we use the convention that friction forces
pointing against the sliding direction for a given sliding path
are counted as positive.

As already mentioned, all energies and forces are calculated
with the DFT package VASP using the PAW method with an
energy cutoff of 341.5 eV. For the exchange and correlation
potential, the generalized gradient approximation (GGA) in
the version devised by Perdew, Burke, and Ernzerhof (PBE) is
applied [59]. As the strong chemical bonds in copper are well
described with PBE and our results rely on the calculation
of total energies, there is no need to explicitly consider van
der Waals forces or meta-GGA. The Brillouin zone sampling
is performed on a �-centered 24 × 24 × 1 k-grid ensuring a
total energy convergence better than 1 meV per simulation
cell. Atomic relaxations were converged to 0.1 meV in total
energy, with each electronic calculation being converged to
0.01 meV.

A central feature in the description of friction is to allow
dissipative sliding. In principle, any modeling that involves

smooth continuous energy surfaces, such as we get from our
grid approach when using only the fully relaxed system, means
that one moves on a conservative energy landscape, resulting
in energy-neutral displacements and frictionless sliding. An
earlier ab initio attempt to tackle this problem was developed
by Zhong and Tománek et al. [40,41], who studied the
stick-slip motion of single-atom tips over graphite. In contrast
to their approach, and in order to describe the portion of
energy lost into heat, we propose the following mechanism.
Along each path we identify the local minima and maxima on
the energy curve of the unrelaxed system. We assume static
sliding without relaxations until a maximum in the energy
is encountered, which in our model is representative of the
“stick” phase of stick-slip sliding. At this point, we allow the
built up strain to be released by relaxing the tribologically
active zone (the first part of the “slip” phase). The resulting
energy difference is now assumed to be dissipated into the bulk
crystal via phononic excitations and is ultimately lost as heat.
Although the method is quasistatic, the resulting frictional
forces can be predicted sufficiently well if the amount of
energy that is lost during sliding is estimated correctly. The
relaxed energy surface is also corrugated, thus the movement
to the next minimum may result in small gains or losses in
energy, leading to small negative or positive friction forces
along this portion of the path. This is the second part of
the “slip” phase. When the next minimum in the unrelaxed
surface is encountered, the cycle is repeated until the desired
path length is reached. If the local minimum of the unrelaxed
energy curve is not at the same energy as the relaxed curve, an
appropriate portion of the released energy from the last slip is
used to bring the system back to the unrelaxed sliding position.
With this method, we avoid the use of springs to model the
elasticity of the system, which is instead included implicitly
in the relaxations. The process is visualized in Fig. 3.

The use of unrelaxed energy curves, where the two bodies
slide over each other statically, only adjusting their vertical
distance to keep the load constant, is of course a rather crude
assumption. However, for the two periodic sliding directions
at 0◦ and 30◦, we also carried out more realistic shearing
calculations that support our approach. In these calculations,
we use the same unit cell and drag the uppermost two (fixed)
layers in small (∼0.1 Å) steps along the chosen sliding
direction while holding the two bottommost layers still. At
each step the eight free layers in the middle are allowed
to relax, and, in contrast to the quasistatic approach, these
relaxed positions are the starting configuration for the next
step. This method is only computationally practical for short
path lengths and becomes extremely time-consuming for long
aperiodic paths. The vertical distance between the two fixed
regions of the slab was kept constant during these calculations
and at the equilibrium distance of the nonsheared slab, i.e.,
corresponding roughly to zero load. The results for the 0◦ path
are shown in Fig. 4.

In the beginning, the energy of the sheared slabs follows the
relaxed energy curve from our proposed quasistatic model, but
it starts to deviate in the vicinity of its first maximum at about
l = 1 Å. The sheared system is not fully relaxing into the total
energy minimum but is still pinned in the potential well of
the starting position, a common feature in stick-slip sliding.
The slip is initiated only at the end of the period, where the
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FIG. 3. (Color online) Illustration of the energy dissipation
model along a 50◦ sliding path. The solid (cyan) line gives the energy
for the unrelaxed slabs, with the open (black) circles denoting local
minima and maxima. The dashed (magenta) line shows the energy for
the relaxed slabs, with open (black) triangles marking the positions
of the extrema of the unrelaxed slabs. The dotted (black) line is a
schematic route for the calculation of the energy differences between
the open circles and triangles; see Eq. (2).

built-up stain energy of Eshear(0◦) = 207 meV is dissipated
and the system slips into the next minimum. This energy
is actually underestimated by ∼25% within our proposed
quasistatic friction model at Eqs(0◦) = 156 meV, although we
include contributions of the unrelaxed energy curve [see Fig. 3
and Eq. (2)]. In contrast, applying the model by Zhong and
Tománek [40,41] to the relaxed energy curve underestimates
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FIG. 4. (Color online) A comparison between our friction model
and a shearing simulation for the periodic 0◦ sliding path at zero
load. The entire period is shown. The solid (cyan) line and the dashed
(magenta) line give the unrelaxed and relaxed energy curves for the
quasistatic model, as seen also in Fig. 3. The black circles are fully
relaxed data points of the shearing calculation.
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FIG. 5. (Color online) A comparison between our friction model
and a shearing simulation for the periodic 30◦ sliding path at zero load.
Two periods of the quasistatic model are shown. The solid (cyan) line
and the dashed (magenta) line give the unrelaxed and relaxed energy
curves for the quasistatic model, as seen also in Fig. 3. The black
circles are fully relaxed data points of the shearing calculation, which
shows periodic behavior after the first slip with a considerably shorter
period than the quasistatic calculation.

the dissipated energy during shearing by more than 80% at
EZT(0◦) = 38 meV.

For the 30◦ (see Fig. 5) sliding direction the situation is
different, as the shearing appears to become periodic only after
the first slip with a much shorter period than in our quasistatic
model. Three small slips of roughly equal size happen during
a sliding distance of ∼4.2 Å (from l ∼ 2.0 Å to l ∼ 6.2 Å in
Fig. 5), which is comparable to one period in our quasistatic
model of ∼4.4 Å, where one small and one large slip occur.
While the predicted slipping process is different, the energetics
are in excellent agreement, with Eqs(30◦) = 286 meV being
lost per period in our model and Eshear(30◦) = 287 meV
dissipated in three slips during shearing. Using the model of
Zhong and Tománek underestimates the energy severely again
at EZT(30◦) = 104 meV.

This good agreement of our quasistatic results with the
shearing calculations adds a convincing argument in favor of
our model and justifies the seemingly ad hoc application of
unrelaxed energy surfaces. As the periodic paths that were
tested in this way turn out to bound the friction force from
below and above (see Sec. III), it is reasonable to assume that
the method will also yield plausible results for aperiodic paths
for which the shearing calculations become extremely time-
consuming. The shearing was carried out at constant distance
and not constant load, which would allow to adjust the distance
between the slabs. This would decrease the pinning and lower
the energy barrier, bringing Eshear even closer to the values
obtained with our quasistatic model. We want to mention that
our energies are calculated at 0 K; finite temperature would of
course reduce the effective potential corrugation so that a slip
process could occur earlier, but this is equally true for both the
quasistatic and the shear model.
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We also want to point out that the particular stick-slip
process seen in the shearing calculations is not directly
reproduced by our proposed quasistatic model (see Figs. 4
and 5). While the period lengths of the stick-slip cycle are in
good agreement for the 0◦ direction, they differ for the 30◦
sliding path. Furthermore, the positions of the slip instabilities
in the shearing calculations are also not reproduced by our
quasistatic model, which allocates the slip points to the maxima
of the unrelaxed energy curve. Thus, our approach is not to
describe the “true” physical dynamics of the sliding system,
but rather to provide a tool to arrive at much better estimates
for the dissipated energy than that resulting from the model by
Zhong and Tománek [40,41], and this at considerably reduced
computational effort compared to shearing calculations.

For the data containing the relaxed and the unrelaxed energy
curves as well as the positions of the minima and maxima, we
propose two distinctively different ways to calculate the mean
friction force denoted by F (1) and F (2). To calculate F (1),
we determine the Hellmann-Feynman forces acting on the
individual atoms in our ab initio calculation [60]. We perform
an arithmetic average of all force components of the upper slab
parallel to the sliding direction following the path described
above, e.g., as indicated in Fig. 3 by the dotted line. The
contributions of the unrelaxed and the relaxed forces to F (1)

are marked by the superscripts U and R, while NU and NR

are the total numbers of sampling points on the unrelaxed and
relaxed energy curves, yielding

F (1) = 1

NU

NU∑
i=1

FU
i + 1

NR

NR∑
j=1

FR
j . (1)

In contrast, F (2) is defined via the sum over the gains and losses
of energy along the sliding path divided by the path length l,

F (2) = 1

l

⎡
⎣Nmax∑

i ′=1

(
EU

i ′ − ER
i ′
) −

Nmin∑
j ′=2

(
EU

j ′ − ER
j ′
)

−
Nmax∑
i ′=1

Nmax∑
j ′=2

(
ER

i ′ − ER
j ′
)⎤⎦ . (2)

The index i ′ iterates over all maxima in the unrelaxed energy
curve, and j ′ covers the minima while the energies are denoted
by EU (unrelaxed) and ER (relaxed). Nmin (Nmax) is the
number of minima (maxima) encountered along the chosen
sliding path such that Nmax = Nmin − 1, as we always start
and terminate our path in a minimum of the unrelaxed energy
curve for both approaches.

III. RESULTS AND DISCUSSION

With the methods described above, we calculate the
friction-versus-load behavior of fcc Cu(111). All averages are
collected on paths of 1 μm length to get reliable values for
the constitutive system parameters and to make sure that in
the case of quasiaperiodic paths, the whole unit cell becomes
sampled. For both definitions of the mean friction force, F (1)

and F (2), we observe an exponential friction law along all path
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FIG. 6. (Color online) Semilogarithmic plot of the friction force
F (1) vs load L for the slip plane of fcc Cu(111). Both periodic
paths 0◦ (red circles) and 30◦ (blue crosses) are shown alongside the
quasiaperiodic 10◦ path (green squares), which serves as a prototype
for all other quasiaperiodic paths. The dashed black lines are linear
fits.

directions, see Fig. 6, given by

F (L) = F0 exp

(
μ

F0
L

)
. (3)

This result can be traced back to the exponential form for the
binding energy in transition metals, e.g., as given by Petti-
for [61]. In a very general way, the energy of bond breaking
follows the universal binding-energy relation (UBER), which
also shows an exponential dependence on distance [62], which
in our case depends linearly on load.

The form of the exponent in Eq. (3) incorporates the
coefficient of friction (COF) μ. Expanding Eq. (3) in a Taylor
series around L = 0, we retrieve a kinetic friction law of
Derjaguin form [3,22]: linear in load L plus the Derjaguin
offset F0,

F (L) = F0 + μL + O(L2). (4)

This behavior is well known in lubricated systems in which
the offset F0 is attributed to adhesion resulting from the
lubricant; see, e.g., Refs. [21,22]. In our dry system, the
strength of the adhesion, which for frictional purposes acts
like an internal load L0, can be estimated by simply lowering
one slab down onto the other and registering the forces on the
surface atoms. The resulting internal load L0 is the maximum
in this force curve depending on the lateral positions of the
slabs. It ranges between 0.8 and 1 nN, which is of the same
order of magnitude as the maximum applied external loads.
Of course the approximation of the exponential law with this
linear expansion is only valid in the low load regime. For
averaged values of all aperiodic paths, the relative error reaches
10% at a load of 90 pN, which corresponds to a pressure of
1.6 GPa and should be regarded as the utmost limit for the
Taylor expansion. This low load regime is discussed in more
detail later in the paper.

While all quasiaperiodic paths investigated for sufficiently
long paths converge to the same friction force, there is a clear
difference with respect to periodic ones, see Figs. 6 and 7.
As expected, the 30◦ path exhibits the largest friction as for
each period it traverses the global maximum of the unrelaxed
energy surface created by the on-top position of the contact
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FIG. 7. (Color online) Plot of the mean friction force F (1) vs
the path length l for a load L = 183 pN. Both periodic paths
0◦ (red circles) and 30◦ (blue crosses) are shown alongside three
quasiaperiodic ones (green diamonds for −10◦, green triangles for
3◦, and green squares for 10◦). Dashed lines are plotted to guide the
eye.

atoms. This is in contrast to the 0◦ path, which shows the least
friction force at zero load and also the slowest increase with
rising load.

As the energy loss for the 0◦ path at zero load is
underestimated by about 25% within our quasistatic model
compared to the shearing calculations, the difference between
the aperiodic and the 0◦ paths might actually be smaller
than predicted. However, even if F0(0◦) is underestimated by
our approach, when this discrepancy stays approximately the
same over the whole range of loads, the predicted coefficients
of friction remain identical. Nevertheless, the existence of a
“hard” sliding direction at 30◦, as predicted by our quasistatic
model, is supported by the shearing calculations.

In Fig. 7, the reason why long paths are required (∼1 μm)
becomes apparent. While the friction force for the 0◦ path
(red circles) shows essentially no dependence on the length
of the path, for the 30◦ one (blue crosses) the friction force
oscillates in the beginning before converging to a constant
value. This is due to the fact that the summation in Eqs. (1)
and (2) terminates at the last minimum encountered. For 0◦
this happens always after a full period, while along the 30◦
direction one has two minima per period (fcc and the hcp
position), so that the total friction force average depends on the
termination of the summation. It is obvious that with increasing
path length, the influence of the termination point becomes
less and less important for the calculation of the average. In
the quasiaperiodic case, where a short path length would only
sample fractions of the energy landscape, it is evident that the
friction force only converges for sufficiently long paths.
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FIG. 8. (Color online) Friction forces F (1) (green circles) and
F (2) (green crosses) vs load L for fcc Cu(111) slabs sliding along a
10◦ path. The inset (black crosses) shows the difference F (2) − F (1).
At low to medium loads, the difference is constant and corresponds
to the disparity of the friction at zero load F0.

Both F (1) and F (2) lead to an exponential friction law,
however the calculated values of the Derjaguin offset F0 and
the COF μ, while showing the same trend, differ slightly (see
Table I). However, this is not surprising given the two different
approaches; see Eqs. (1) and (2). Plotting both friction forces
versus load curves for a given sliding path, one finds that F (1)

and F (2) do agree well in the low to medium load regime, while
for loads larger than L = 150 pN higher deviations occur, as
seen in Fig. 8. We attribute this discrepancy to the increasing
influence of the reaction forces for large loads that are not
considered in the calculation of F (1), but they play a role in the
dissipation mechanism and hence enter implicitly in F (2).

The largest load considered in our simulations is 367 pN.

Given the cross-section area of the unit cell 5.7 Å
2
, this is

equivalent to a static pressure of 6.4 GPa, which is well
beyond any realistic technological applications. Thus, it is
important to analyze the low load regime of up to 90 pN
(1.6 GPa) separately. In this range, the exponential law
can be approximated reasonably well by a linear relation
Flin(L) = F0 + μlinL so that the COF μlin is given by the
slope; see Table I. It should be noted that the μlin obtained
in this manner are systematically larger than the values of μ,
since the slope of a linear fit to a segment of an exponential
function is always steeper than the tangent of the function
at the beginning of the segment. Since the ultimate tensile
strength for annealed copper is approximately 160 MPa [63],
a uniaxial pressure of more than 1.6 GPa will already deform
the sample. However, it remains computationally feasible to

TABLE I. Derjaguin-offset values F0 and coefficients of friction μ corresponding to the friction forces F (1) and F (2), see Eqs. (1)–(3). The
constitutive system parameters for the aperiodic directions are given by the average over all examined quasiaperiodic paths. Experimental data
for nanocrystalline (a) and annealed (b) copper are taken from Ref. [64].

F
(1)
0 (pN) F

(2)
0 (pN) μ(1) μ(2) μ

(1)
lin μ

(2)
lin μexp

0◦ 127 101 0.74 0.60 1.06 0.87
30◦ 159 109 1.03 0.91 1.45 1.46
aperiodic 157 ± 4.4 121 ± 2.7 0.94 ± 0.06 0.88 ± 0.05 1.33 ± 0.14 1.25 ± 0.04 0.78,a 0.92b
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study extremely high loads because the periodic boundary
conditions imposed on our simulations restrict the horizontal
movement of the atoms, and the fcc (111) symmetry of the
sample is preserved at all times.

Depending on direction and method, we obtain a COF
between 0.6 and 1.46, which is one order of magnitude
larger compared to the MD study by Sørensen et al. [48].
This large difference can be explained at least in part by the
small contact size in Sørensen’s work, which leads to slips
mediated by a dislocation mechanism, which is suppressed
in our model due to the periodic boundary conditions. Zhang
et al. [64] experimentally determined the friction coefficient
for dry copper to be μnc

exp = 0.78 (nanocrystalline sample) and
μan

exp = 0.92 (annealed sample). These values were found in
the zero wear regime for a load of ∼5 N . The obtained COFs
in the low load regime agree fairly well with our values for
aperiodic sliding (μ(1) = 0.94 ± 0.06, μ(2) = 0.88 ± 0.05).

IV. CONCLUSION

We present an approach to construct nanofriction versus
load curves from total energy landscapes generated by DFT
calculations. The method is parameter-free as no external
input is needed to compute the friction force since internal
relaxations of the system are assumed to dissipate the energy.
We are able to study very long sliding paths, and we find that
the friction force on the nanoscale converges for all aperiodic
paths to a value between the limits set by two paths along high-
symmetry directions (Fig. 7). Comparisons with more realistic
but computationally more demanding shearing calculations,
which were carried out for the limiting cases of low and high
friction, show that, while the exact dynamics of the sliding
system are not reproduced well, the estimation of the energy
loss is significantly improved compared to other methods. We
define two distinct ways to estimate the mean friction force
which both lead to comparable results and yield an exponential
friction law that in the low load regime can be expanded to a

linear relation of Derjaguin form. These two methods serve
primarily as an internal test of consistency of our model;
however, since total energies can be calculated with a higher
accuracy than forces, we would give preference to F (2) [as
given by Eq. (2)]. The exponential increase of friction with
applied load is comparable to the experimental findings of
Gosvami et al. [16], where a strong increase of friction at
high loads was found for Au(111) and Cu(100). A similar
behavior is found in Fig. 12 of Ref. [23] by performing classical
MD simulations. However, both groups attribute this strong
increase in friction to the onset of wear at high loads, which
is not considered in our work. We show that we can obtain a
good linear dependence of the friction force on the load in the
low load regime (which is still under a high internal load due
to adhesion) reminiscent of the Amontons-Coulomb law and
also often found on the nanoscale [13–15]. The calculated
coefficients of friction fit well to the measured values in
macroscopic experiments, but there remains the possibility
of a coincidental agreement that would require further studies,
both theoretically and experimentally, to be ruled out.
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205428 (2013).
[48] M. R. Sørensen, K. W. Jacobsen, and P. Stoltze, Phys. Rev. B

53, 2101 (1996).
[49] A. Martini, Y. Dong, D. Perez, and A. Voter, Tribol. Lett. 36, 63

(2009).
[50] R. Bennewitz, T. Gyalog, M. Guggisberg, M. Bammerlin,

E. Meyer, and H.-J. Güntherodt, Phys. Rev. B 60, R11301
(1999).

[51] J. Nieminen, A. Sutton, and J. Pethica, Acta Metall. Mater. 40,
2503 (1992).

[52] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[53] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[54] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[55] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
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