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Magnetic field spectral crossings of Luttinger holes in quantum wells
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We develop an analytic approach to two-dimensional (2D) holes in a magnetic field that allows us to gain insight
into physics of measuring the parameters of holes, such as cyclotron resonance, Shubnikov-de Haas effect and spin
resonance. We derive hole energies, cyclotron masses, and the g factors in the semiclassical regime analytically,
as well as analyze numerical results outside the semiclassical range of parameters, qualitatively explaining the
experimentally observed magnetic field dependence of the cyclotron mass. In the semiclassical regime with large
Landau level indices, and for size quantization energy much bigger than the cyclotron energy, the cyclotron mass
coincides with the in-plane effective mass, calculated in the absence of a magnetic field. The hole g factor in a
magnetic field perpendicular to the 2D plane is defined not only by the constant of direct coupling of the angular
momentum of the holes to the magnetic field, but also by the Luttinger constants defining the effective masses
of holes. We find that the g factor for quasi-2D holes with heavy mass in the [001] growth direction in GaAs
quantum well is g = 4.05 in the semiclasssical regime. Outside the semiclassical range of parameters, holes
behave as a species completely different from electrons. Spectra for size- and magnetic-field-quantized holes are
nonequidistant, not fanlike, and exhibit multiple crossings, including crossing in the ground level. We calculate
the effect of Dresselhaus terms, which transform some of the crossings into anticrossings, and the effects of
the anisotropy of the Luttinger Hamiltonian on the 2D hole spectra. Dresselhaus terms of different symmetries
are taken into account, and a regularization procedure is developed for the k3

z Dresselhaus terms. Control of the
nonequidistant levels and crossing structure by the magnetic field can be used to control the Landau level mixing
in hole systems, and thereby control hole-hole interactions in the magnetic field.
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I. INTRODUCTION

In recent years, investigation of physical phenomena
associated with symmetry and topology lead to remarkable
developments in condensed matter and atomic physics, and
several of these phenomena are due to the exquisite properties
of spin-orbit interactions. Among the most interesting effects
are realizations of Majorana fermions in solid state and
atomic systems [1,2], realization of spin-orbit Bose-Einstein
condensates [3], transport in topological insulators [4,5], long
spin coherence in quantum bit systems [6,7], and spin-orbit
interference effects [8]. One of the intriguing systems with
extraordinarily strong spin-orbit interactions is valence band
charge carriers (holes) in III-V, II-VI, and silicon and germa-
nium structures, where many of these topological, coherence,
and interference phenomena can manifest themselves.

The valence-band spectrum, with its remarkable spin-3/2
heavy and light branch structure, are known to lead to many
spectacular phenomena in semiconductor physics since the
1950’s, when understanding the hole spectrum had been a
triumph of theory of symmetry of crystals. Low-dimensional
holes have been investigated since the 1970’s, and many
signature phenomena, such as the quantum Hall effect [9],
Shubnikov-de Haas oscillations [10,11], magnetic focus-
ing [12], metal-insulator transition [13], weak localization
and antilocalization in electric transport [14,15], and various
resonance and optical phenomena [16] have been studied.
Despite considerable effort, detailed understanding of hole
systems remains a challenge. Many questions that for the world
of conduction electrons in two dimensions (2D) have been
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long resolved, such as effective masses of charge carriers and
their spin splitting in a magnetic field, still pose problems and
remain controversial when it comes to 2D charge carrier holes.

Having in mind the long-term goal of finding new topologi-
cal and correlated phenomena in charge carrier hole and related
systems, it is important to understand in what conditions we
can think of holes as reminiscent of electrons, and when holes
behave as a completely different species. Although a certain
understanding that holes are different exists already, we will
show here that the reality is much more dramatic than realized
to date. Specifically, we will investigate the spectrum of 2D
hole systems in perpendicular magnetic fields, and, besides
numerical study, will develop a fully analytic approach to 2D
holes in a magnetic field that will allow us to gain insight
into the physics of measuring the parameters of holes, such
as cyclotron resonance, Shubnikov-de Haas effect and spin
transport spectroscopy or spin resonance.

Understanding spectroscopic experiments in two-
dimensional hole structures, and the parameters extracted
from those experiments, is important for the following reasons.
First, the two-dimensional systems themselves can potentially
be used for making experimental settings, in which new
topological objects such as, e.g., Majorana fermions would
manifest themselves. Properties of some of these settings may
directly be related to values of effective two-dimensional g

factors, masses, and effective spin-orbit constants. A problem
arises: which values of the parameters of 2D hole gas, and
which regimes of experiments that measure these parameters
should be the basis of modeling these new topological objects.
Second, two-dimensional systems serve as a starting point
for many theoretical considerations of 1D and 0D objects,
quantum dots and wires, which in turn can be used to design
systems with quantum bits and various spintronic devices.
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The problem is, what are the parameters that should be used in
those models, and how are they related to parameters obtained
from spectroscopic measurements in 2D structures. We will
see that simplified models of 2D hole systems [17–26] have
to be adjusted in order to capture the true nature of holes.
Third, our understanding of particle interactions, and the
possibilities to control these interactions is often based on an
understanding of single-particle properties. It is therefore of
utmost importance to be able to extract ingredients for models
of interactions from spectroscopic experiments.

The most important spectroscopic data are the energy
level splitting, the resulting cyclotron mass, the resulting
g factor characterizing spin splitting, and additional, e.g.,
spin-orbit, spectral constants. Several researchers have used
numerical simulations of 3D holes to obtain quasi-2D hole
spectra, see, e.g., Refs. [27–31]. However, the results of these
simulations, although quite illuminating, often fail to explain
experimental data even qualitatively [31]. An example of the
most obvious and important question that arises is how the
cyclotron mass is related to the effective 2D “band” mass?
Our analytical consideration presented in this paper points
to the solution of this and similar questions. We will show
that the cyclotron mass in the semiclassical regime is exactly
the in-plane band mass. We will also demonstrate why in
most cases the cyclotron mass is continuous and does not
change when the integer part of the number of filled hole
levels changes in magnetic field. Furthermore, our numerical
approach allows us to shed light on what spin levels are coupled
by ac magnetic field in various regimes. We will derive an
analytical expression, besides numerical calculation, for the g

factor of holes. Contrary to a wide-spread belief [32], the g

factor of 2D holes in a magnetic field in the growth direction is
not defined exclusively by a constant that couples the angular
momentum of the hole to the magnetic field, but also depends
on constants describing the orbital motion.

How does one approach the problem of holes in two
dimensions? The celebrated �8 valence band Luttinger Hamil-
tonian [33] near the center of the Brillouine zone � in bulk
crystals is given by

HL = �
2

2m0

⎡
⎣ (

γ1 + 5

2
γ2

)
k̂

2
I − 2γ2

∑
i

k̂2
i J

2
i

− 4γ3

∑
i>j

k̂i k̂j JiJj

⎤
⎦ , (1)

where k is the wave vector, m0 is the free electron mass, γ1, γ2,
and γ3 are Luttinger constants describing the hole spectrum,
i,j = x,y,z are principal axes of the underlying semiconduc-
tor system with x||[100], Ji are the 3/2 angular momentum
matrices, and I is the identity matrix. We will consider
quantum wells in semiconductor structures quantized in the
z direction, i.e., grown along crystalographic direction [001].

Why is there a significant difference between 2D electrons
and holes? While for bulk charge carriers the answer is trans-
parent, simplified models in the 2D case treat 2D holes almost
identically to 2D electrons. For conduction electrons with the
Hamiltonian He = �

2

2me
k̂2, where me is the effective electron

mass, the transition to the effective electron Hamiltonian in

two dimensions follows simple steps. First, one finds the wave
functions of the size quantized levels in the direction of quanti-
zation, e.g., ψ(z) = √

2/π cos πz/L for the ground level in an
infinite rectangular quantum well of width L with boundaries
−L/2 and L/2, and then projects the Hamiltonian integrating
over z direction. If the electron Hamiltonian contains, e.g., the
Dresselhaus term Hso = �/2

∑
i σipi(p2

i+1 − p2
i+2), then the

common procedure for obtaining the effective 2D electron
Hamiltonian is to discard the terms linear in kz, because
〈kz〉 = 0, where 〈〉 denotes integrating over z, and retain
terms independent of z and quadratic in kz, using the identity
〈k2

z 〉 = (π/L)2 for the ground quantization level. Numerous
studies of the past decade or so follow the same prescription in
order to obtain the 2D effective hole Hamiltonian from the bulk
Hamiltonian (1), dropping terms containing 〈kz〉 and keeping
terms independent of kz and terms with k2

z . The simple resulting
picture in the leading approximation is the ground-state hole
Hamiltonian H = �

2

2mW
k̂2, where mW = m0/(γ1 + γ2) is the

2D hole mass in such an approach [32]. That is, 2D holes are
treated very similarly to 2D electrons. However, this approach,
valid for electrons, turns out to be incorrect in the case of
holes. The crucial feature of the hole Hamiltonian (1) are terms
linear in kz and linear in the in-plane momentum. As we now
illustrate, these terms contribute critically to the effective mass.
Their inclusion is also crucial to the evaluation of the other
parameters of 2D holes. Furthermore, what makes the situation
nontrivial is that calculating the hole parameters within the
framework of perturbation theory, it is necessary to take into
account an infinite number of contributing terms. Indeed, the
off-diagonal operators, e.g., {JxJz}kxkz have nonzero matrix
elements between simplified basis functions describing differ-
ent levels of size quantization, ψh1 = cos πx/L(1,0,0,0) and
ψl2 = cos 2πx/L(0,1,0,0), with 〈h1|{JxJz}kxkz|l2〉 ∝ kx/L,
where |h1〉 is the ground state in the z direction with heavy
mass and |l2〉 is the first excited state for holes in the z

direction with light mass. The second order perturbation cor-
rection to energy δE = |〈h1|{JxJz}kxkz|l2〉|2/(Eh1 − El2) is
proportional to the in-plane k2 and does not contain L, because
the energy separation is Eh1 − El2 ∝ (1/L2). Therefore such a
second-order contribution to the effective mass is as important
as the first-order mW itself. Moreover, such an off-diagonal
operator has nonzero matrix elements between the h1 state
and |l4〉,|l6〉, . . . ,|l(even)〉 states, such that all second order
“corrections” have the same order of magnitude, and finding
the effective mass requires the summation of an infinite number
of terms, which are parametrically the same.

To obtain correct results for the parameters of 2D holes in
the Luttinger model (1), instead of the simplified approach, we
advance a nonperturbative solution to the problem. Energies
of 2D holes in a nonperturbative approach were in fact found
as early as 1970 by Nedoresov [34]. The essence of such a
nonperturbative approach for holes is taking into account of the
mutual transformation of heavy and light holes upon reflection
from the walls of the quantum well [35,36], see Fig. 1.
Explicit expressions for the wave functions in the absence
of the magnetic field were found in Ref. [35] where interband
optical transitions were studied. In the wave functions, instead
of a single standing wave in quantization direction, as is
the case for electrons and simplified treatment of holes, two
standing waves, one for z-direction heavy holes and one for

195410-2



MAGNETIC FIELD SPECTRAL CROSSINGS OF . . . PHYSICAL REVIEW B 90, 195410 (2014)

Z 1 

2 3 

FIG. 1. (Color online) Schematic representation of the transfor-
mation of heavy holes (1) into heavy holes (2) and light holes (3)
upon reflection from the quantum well interface.

z-direction light holes generally characterize every component
of the wave-function spinors. Recently, one of the authors
of the present article used the nonperturbative approach for
calculating hole spin decoherence times in quantum dots at
zero magnetic field [37].

The nonperturbative approach is central to our present study
of 2D holes in a perpendicular magnetic field. We will see that
the magnetic field spectra and wave functions of the holes
reveal new features arising from mutual transformations of
heavy and light carriers and strong spin-orbit effects. The
key difference of holes from electrons is as follows: while
electrons are characterized by a Landau “fan” of levels, each
level being spin split due to the Zeeman effect, arising from
the in-plane Hamiltonian in a magnetic field HB

e = �
2(k −

eA/�c)2/2me + gμσ · B, the spectra of holes in a magnetic
field generally cannot be described by a procedure that starts
with the in-plane Hamiltonian and a full three-dimensional
treatment is required. We shall see that for low-lying levels,
there is no Landau fan for Luttinger holes and there are multiple
crossings of levels as seen in Fig. 2, left panel. In the right
panel, we show the traditional electron Landau fan spectrum
with a small spin splitting of Landau levels characteristic of
electrons in GaAs. Our analytical approach will demonstrate
that only in a very narrow region of parameters, for high
Landau indices and hole in-plane energies much smaller then
the energy of size quantization of the holes, do holes resemble
electrons. Their semiclassical spectra are obtained via a similar
procedure to that for electrons, but the cyclotron and effective
mass and the g factor are strongly influenced by mutual

transformation of heavy and light holes in reflection from the
quantum well walls.

Our ultimate goal is to consider the hole-hole interactions,
but in order to put a reasonable limit to the size of this
paper, we will devote a separate paper to interaction effects.
Both the Hartree and exchange terms are important in a
treatment of the hole-hole interactions, and we will treat
them on equal footing. The scope of the present paper is
restricted to the single-particle spin-orbit phenomena. The
electron-phonon interactions, which are known to modify
the quasiparticle spectra near the crossing of Landau levels
belonging to a different size-quantization subbands, and used
to probe many-body gaps in electron magnetic spectra [38,39],
are also beyond the scope of the present work.

The paper is organized as follows. The Luttinger Hamilto-
nian and its general solution in a magnetic field perpendicular
to the plane of the 2D hole gas are introduced in Sec. II,
the semiclassical approximation is described in Sec. III,
semiclassical spectra and numerically calculated spectra are
presented in Sec. IV. Particular attention is paid to the
effective mass in Sec. V, and to the Landè factor in Sec. VI.
We analyze the effects of Dresselhaus interactions, arising
from the absence of a center of spatial inversion in bulk
materials and the effects of anisotropy of 2D hole spectra in
Sec. VII. In Sec. VIII, we simulate the pattern of Shubnikov-de
Haas oscillations. Evaluation of certain integrals, questions of
boundary conditions and regularization of the k3

z Dresselhaus
spin-orbit interactions are relegated to the appendices.

II. HAMILTONIAN AND WAVE FUNCTIONS FOR
QUASI-TWO-DIMENSIONAL HOLES

The single-particle problem of valence band electrons in a
III-V, II-VI, or Si-Ge system semiconductor in the presence of
magnetic field is described by the Hamiltonian [33]

Ĥ0 = �
2

2m0

[(
γ1 + 5

2
γ2

)
k̂2I − 2γ2

(
k̂2
xJ

2
x + k̂2

yJ
2
y + k̂2

z J
2
z

)
− 4γ3({k̂x,k̂y}{Jx,Jy} + {k̂y,k̂z}{Jy,Jz} + {k̂z,k̂x}{Jz,Jx})]

+ e�

m0c

[
κJ · B + q0

(
J 3

x Bx + J 3
y By + J 3

z Bz

)]
. (2)

0 5 10 15
0

5

10

B T

E
m
eV

0 5 10 15
0

10

20

30

B T

E
m
eV

FIG. 2. (Color online) Comparison of the electron and hole spectra in a magnetic field. (Left) Fragment of the energy spectrum of GaAs
holes with n � 3 in a quantum well of 250 Å for the two lowest size quantization levels of z-direction heavy holes, and one size quantization
level of z-direction light holes; only the Luttinger Hamiltonian terms are included. (Right) Electron Landau levels with small Zeeman splitting
in GaAs.
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Throughout the paper, we will primarily express variables
in dimensionless units: x, y, and z are the coordinates divided
by the magnetic length (	 =

√
�c
eB

), energies will be expressed
in terms of the bare cyclotron energy �ωc = �eB

m0c
, where m0

is the bare electron mass, and the wave-vectors magnitude
is made dimensionless by multiplying it with the magnetic
length. Then the operators k̂i are

k̂i = −i∂i + e	Ai

�c
, i = x,y,z, (3)

where �A is the vector potential. They satisfy the commutation
relationship [k̂x,k̂y] = i. Writing down Eq. (2) in a magnetic
field with only symmetric combinations of {k̂i ,k̂j } and {Ji,Jj },
we skip the product of antisymmetric combinations of [k̂i ,k̂j ]
and [Ji,Jj ] = iJkεijk , where εijk is the unit antisymmetric
tensor, arising from the zero magnetic field Luttinger Hamil-
tonian (1). Doing this, we follow the tradition [33] to account
for such antisymmetric combinations in Eq. (2) through
the term proportional to the constant κ , which therefore
already describes not only the direct Zeeman effect, but also
an additional contribution arising from the orbital motion.
However, we will see that even the remaining symmetric
orbital terms that couple the orbital angular momentum and
momentum in Eq. (2) result in spin splitting of the hole states
in a magnetic field.

The system of interest is the 2D hole gas in a GaAs/AlGaAs
quantum well in the presence of a magnetic field �B = −Bẑ,
ẑ is a unit vector perpendicular to the plane of the well. We
find the energy spectrum by solving the Schrödinger equation
H0 = E with the boundary conditions (x,y, − w) =
(x,y,w) = 0, where w = L/(2	), and use the Landau gauge
�A = (0, − Bx,0).

We shall make use of the bosonic operators [40]:

â† = k̂x − ik̂y√
2

, â = k̂x + ik̂y√
2

(4)

satisfying the commutation relation [â,â†] = 1. They act as
lowering and rising operators on wave functions of free
electrons in a magnetic field:

âun,ky
(x) = √

nun−1,ky
(x), (5)

â†un,ky
(x) = √

n + 1un+1,ky
(x), (6)

with

un,ky
(x) = in√

2nn!π
1
2

e− (x−ky )2

2 Hn(x − ky), (7)

where Hn is the nth order Hermitte polynomial. In terms of
these operators, the Luttinger Hamiltonian is

Ĥ =
[(

γ1 + 5γ2

2

)
I − γ2{J+,J−}

](
â†â + 1

2

)

+
[(

γ1

2
+ 5γ2

4

)
I − γ2J

2
z

]
k̂2
z − κJz − q0J

3
z

−
√

2γ3k̂z(â
†{J+,Jz} + â{J−,Jz})

− γ2 + γ3

4
[(â†)2J 2

+ + â2J 2
−]

− γ2 − γ3

4
[(â†)2J 2

− + â2J 2
+], (8)

where J± = Jx ± iJy . The first term contributes to the cy-
clotron motion, the second describes the z-direction motion,
the next two are Zeeman-like terms, all of these resembling
the corresponding features in electron systems. The fourth and
fifth terms are nondiagonal terms describing coupling between
spin and orbital motion. The fourth term couples the in-plane
motion with motion in the direction of the quantization axis z,
and, besides that, couples holes with light and heavy masses
in the z direction. This is the term that results in mutual
transformation of heavy and light holes upon reflection from
the walls of the quantum well. As we have discussed in
Introduction, this term results in a contribution to the kinetic
energy of the same order of magnitude as the first term in (7),
and essentially requires a nonpertubative treatment. We will
also show that in a magnetic field the fourth term results in a
sizable Zeemann splitting of holes. The fifth term couples the
in-plane motion of holes with heavy mass in the z direction
with angular momentum ±3/2 with the in-plane motion of the
z-direction light holes with opposite sign angular momentum
projection, ∓1/2. The last term in Hamiltonian (7) contributes
to the warping of the hole spectra. This term vanishes if
γ2 = γ3. In what follows, we will be able to treat the first five
terms “exactly” and the last term will be taken into account via
(degenerate) perturbation theory. However, interesting enough,
the fourth term in (8), which we use in analytical calculations,
still contains the constant γ3, and that will allow us to capture
most of important anisotropic features, associated with the
coupling of longitudinal and transverse motion in [001] grown
quantum wells even before accounting for the last term. The
only approximation used in our analytical approach is the form
of the fifth term for the coupling of in-plane motion of different
species of holes that contains the combination of constants
γ2 + γ3 and the corresponding operator instead of the actual
combination of operators, the rest of which is included in the
small γ2 − γ3 term. In the axial approximation, which has
been used by researchers to simplify numerical simulations of
holes in a magnetic field [31,41], the last term is neglected.
In this work, the axial approximation allows us to capture a
significant part of the effects of anisotropy analytically, and
numerical simulations account for the γ2 − γ3 term.

The eigenfunctions in the axial approximation are presented
in the following form:

{α}(x,y,z) =

⎛
⎜⎜⎜⎜⎝

ζ
{α}
0 (z)un,ky

(x)

ζ
{α}
1 (z)un−1,ky

(x)

ζ
{α}
2 (z)un−2,ky

(x)

ζ
{α}
3 (z)un−3,ky

(x)

⎞
⎟⎟⎟⎟⎠ eikyy, (9)

where ζ
{α}
i (z)’s are the envelope functions that have to be

determined. Here, {α} denotes the set of quantum numbers that
uniquely define the states: Landau level index n describing
in-plane orbital motion, subband index describing spatial
quantization along z direction, and parity symmetry with
respect to reflection about the center-well plane, or spin. For
the cases in which n < 3, the coefficients of negative index
functions must be set to be zero. Then the Schrödinger equation
with the general Hamiltonian (8) transforms effectively into
an eigenfunction problem for the envelope functions,

ĤzZ {α}(z) = E{α}Z {α}(z), (10)
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where

Ĥz =

⎛
⎜⎜⎜⎜⎜⎝

k̂2
z

2mz
h

+ P1 + Z1 �1k̂z A1 0

�1k̂z
k̂2
z

2mz
l

+ P2 + Z2 0 A2

A1 0 k̂2
z

2mz
l

+ P2 − Z2 �2k̂z

0 A2 �2k̂z
k̂2
z

2mz
h

+ P1 − Z1

⎞
⎟⎟⎟⎟⎟⎠, (11)

P1 = (γ1 + γ2)(n − 1), P2 = (γ1 − γ2)(n − 1), mz
h =

(γ1 − 2γ2)−1, mz
l = (γ1 + 2γ2)−1, A1 = − γ2+γ3

2

√
3n(n − 1),

A2 = − γ2+γ3

2

√
3(n − 1)(n − 2), �1 = −γ3

√
6n, �2 =

γ3
√

6(n − 2), Z1 = 3(γ1+γ2)
2 − 3κ

2 − 27q0

8 , Z2 = γ1−γ2

2 − κ
2 −

q0

8 , and

Z{α} =

⎛
⎜⎜⎜⎜⎝

ζ
{α}
0 (z)

ζ
{α}
1 (z)

ζ
{α}
2 (z)

ζ
{α}
3 (z)

⎞
⎟⎟⎟⎟⎠. (12)

Solutions of Eq. (11) can be easily found. To see this, we
present the envelope functions ζ (z) in the following form:

ζ
{α}
i (z) =

∑
qz

λ
{α}
qz,i

e−iqzz. (13)

For every eigenvalue E, there are eight wave vectors qz that
solve the secular equation involving Hz. In general, wave
vectors qz can be complex. It is easy to observe that if qz

is a solution of (11) then −qz is also a solution, with

λ
{α;p=1}
−qz,i

= (−1)iλ{α;p=1}
qz,i

, (14)

λ
{α;p=−1}
−qz,i

= (−1)i+1λ
{α;p=−1}
qz,i

. (15)

This property allows for classification of states according to
their parity with respect to reflection about the center plane of
the quantum well z = 0 as even in the case (14) and odd in the
case (15).

The imposition of the boundary conditions {α}(x,y,w) =
{α}(x,y, − w) = 0 leads to another set of equations for the
parameters λ:

8∑
j=1

λ
{α}
qj ,i

eiqj w = 0,

8∑
j=1

λ
{α}
qj ,i

e−iqj w = 0. (16)

Equations (11) and (16) fully determine the spectrum. Using
the parity property of Eqs. (14) and (15), we write a general
form of the wave function as

n,ky ,p(x,y,z)=
4∑

j=1

⎛
⎜⎜⎜⎝

λ
n,p

qj ,0
(eiqj z + pe−iqj z)un,ky

(x)
λ

n,p

qj ,1
(eiqj z − pe−iqj z)un−1,ky

(x)
λ

n,p

qj ,2
(eiqj z + pe−iqj z)un−2,ky

(x)
λ

n,p

qj ,3
(eiqj z − pe−iqj z)un−3,ky

(x)

⎞
⎟⎟⎟⎠ eikyy .

(17)

We see indeed from Eq. (17) that there are no states
characterized by a single standing wave in the z direction,
except the case of n = 0. All other states contain two standing
waves corresponding to holes with light and heavy masses in

the zdirection. This is the consequence of reflection of holes off
the boundaries of the quantum well under oblique incidence,
Fig. 1. Heavy holes are transformed into a combination of
heavy and light holes, and light holes are transformed into
a combination of light and heavy holes, so that there are no
longer “pure” states [42]. This is a very important difference
from the electronic spectra, where a single standing wave
characterizes the zdirection of motion perpendicular to the 2D
plane. The importance of Eq. (17) is that it takes into account
the mutual transformation of carriers with heavy and light
masses in the zdirection nonperturbatively, in the presence of
a quantizing magnetic field.

III. SEMICLASSICAL SOLUTION

The Shrödinger equation for holes in a magnetic field is
generally an infinite dimensional system of matrix equations.
A general solution of this equation can only be found
numerically. However, in the “semiclassical” limit, which will
be precisely defined below, an analytical approach is possible.
The Hamiltonian matrix can be divided into “time-symmetric”
and “time-antisymmetric” parts [43]. In the space of 4 × 4
matrices, the time-reversal symmetric basis set is made of the
identity matrix I , matices J 2

i , and {Ji,J±1}, while the matrices
Ji , {Ji,J

2
i+1 − J 2

i+2}, J 3
i , and 1

2 (JxJyJz + JzJyJx) make the
time-reversal antisymmetric counterpart.

The time-reversal symmetric part of the Hamiltonian matrix
is

Hs=

⎛
⎜⎜⎜⎜⎜⎝

k̂2
z

2mz
h

+ P1 −�sk̂z As 0

−�sk̂z
k̂2
z

2mz
l

+ P2 0 As

As 0 k̂2
z

2mz
l

+ P2 �sk̂z

0 As �sk̂z
k̂2
z

2mz
h

+ P1

⎞
⎟⎟⎟⎟⎟⎠,

(18)

where As = (A1 + A2)/2 and �s = (�2 − �1)/2.
The antisymmetric part is

Ha =

⎛
⎜⎜⎜⎝

Z1 �ak̂z Aa 0

�ak̂z Z2 0 −Aa

Aa 0 −Z2 �ak̂z

0 −Aa �ak̂z −Z1

⎞
⎟⎟⎟⎠, (19)

where Aa = (A1 − A2)/2 and �a = (�1 + �2)/2.
We now observe that in the semiclassical limit (n � 1)

matrix elements of the operator Hs describing the in-plane
motion of holes are n times bigger than the matrix elements
of the operator Ha . This fact allows one to treat the latter as a
perturbation of the former.
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A. Solution of the symmetric problem

We first analyze the Schrödinger equation generated by the
symmetric part Hs of the Hamiltonian (18). We notice that
each eigenenergy is realized by four values of the wave vector
qz which will be denoted by ±qh and ±ql . We will call them

heavy- and light-hole wave vectors, although, when warping
of the energy surface is considered, it can happen that all qz

correspond to the bulk heavy hole band. Wave numbers ql

and qh are such that |ql|〈|qh|. Formally, the dependence of
eigenvalues of the Hamiltonian (18) on qz wave vectors can be
written as

E
n,±
0 (qz) = γ1

(
q2

z

2
+ n − 1

)
± 1

4

√
3
[
(γ2 + γ3)2(n − 1) + 8γ 2

3 q2
z

]
(
√

n + √
n − 2)2 + 16γ 2

2

(
q2

z − n + 1
)2

. (20)

In Eq. (20), the ± signs correspond to bulk heavy (−) and light (+) hole bands.
The eigenvectors of the Schrödinger equation will be determined by the Hopfield method [35,44], in which the z-envelope

functions are expressed using the following basis set of eigenvectors of Hs :⎛
⎜⎝

�sqh

bh

0
−As

⎞
⎟⎠ e−iqhz,

⎛
⎜⎝

−As

0
bh

−�sqh

⎞
⎟⎠ e−iqhz,

⎛
⎜⎝

�sql

bl

0
−As

⎞
⎟⎠ e−iqlz,

⎛
⎜⎝

−As

0
bl

−�sql

⎞
⎟⎠ e−iqlz. (21)

Four more vectors are obtained by replacing qh by −qh and ql by −ql . In these expressions, bh = q2
h

2mz
h

+ P1 − E, bl = q2
h

2mz
h

+ P1 −
E. The z-envelope functions are linear combinations of these vectors that correspond to standing wave solutions and are fully
determined by imposing the boundary conditions. First, the boundary conditions are imposed on the 1/2 and −1/2 components
resulting in the even eigenfunctions

Zn,ky ,1
0 (z) = Ne

⎛
⎜⎜⎜⎜⎜⎜⎝

−As

[
cos(qhz) − bh

bl

cos(qhw)
cos(qlw) cos(qlz)

]
+ αe�s

[
qh cos(qhz) − ql

bh

bl

sin(qhw)
sin(qlw) cos(qlz)

]
iαebh

[
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]

bh

[
cos(qhz) − cos(qhw)

cos(qlw) cos(qlz)
]

−i�s

[
qh sin(qhz) − ql

bh

bl

cos(qhw)
cos(qlw) sin(qlz)

]
− iαeAs

[
sin(qhz) − bh

bl

sin(qhw)
sin(qlw) sin(qlz)

]

⎞
⎟⎟⎟⎟⎟⎟⎠

, (22)

and the odd eigenfunctions

Zn,ky ,−1
0 (z) = No

⎛
⎜⎜⎜⎜⎝

−iAs

[
sin(qhz) − bh

bl

sin(qhw)
sin(qlw) sin(qlz)

] + iαo�s

[
qh sin(qhz) − ql

bh

bl

cos(qhw)
cos(qlw) sin(qlz)

]
αobh

[
cos(qhz) − cos(qhw)

cos(qlw) cos(qlz)
]

ibh

[
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]

−�s

[
qh cos(qhz) − ql

bh

bl

sin(qhw)
sin(qlw) cos(qlz)

] − αoAs

[
cos(qhz) − bh

bl

cos(qhw)
cos(qlw) cos(qlz)

]

⎞
⎟⎟⎟⎟⎠ . (23)

The wave vectors ql and qh and constants αe and αo will be calculated using the remaining boundary conditions on ±3/2
components, while the normalization conditions will provide Ne and No.

From the boundary conditions invoked for 3/2 and −3/2 spin components of the eigenvectors it follows that

τ 2 −
[

bl

bh

A2
s

�2
s q

2
h

(
1 − bh

bl

)2

+ bl

bh

+ bhq
2
l

blq
2
h

]
τ + q2

l

q2
h

= 0, (24)

where

τ = ql tan(qhw)

qh tan(qlw)
. (25)

Equations (24) and (25) together with the dependence of the energy on the qz wave vectors of Eq. (20) determine qh and ql

and thereby the energy spectrum. In the presence of a magnetic field, qh and ql depend on its value and on the Landau index
n describing the in-plane motion of the holes, due to Luttinger spin-orbit coupling. Also from the boundary conditions we
determine the α’s:

αe = As

�sqh

bl − bh

bl − bhτ
, (26)

αo = �sqh

As

bhτ − bl

bl − bh

. (27)
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The evaluation of the normalization constants Ne and No is straightforward. Introducing the notation

cc ≡ 1

w

∫ w

−w

dz

∣∣∣∣ cos(qhz) − cos(qhw)

cos(qlw)
cos(qlz)

∣∣∣∣
2

= sinhc(2
mqhw) + sinc(2�eqhw)

− 2�e

(
cos(qhw)

cos(qlw)
{sinc[(q∗

h − ql)w] + sinc[(q∗
h + ql)w]}

)
+

∣∣∣∣cos(qhw)

cos(qlw)

∣∣∣∣
2

[sinhc(2
mqlw) + sinc(2�eqlw)], (28)

cs ≡ 1

w

∫ w

−w

dz

∣∣∣∣sin(qhz) − sin(qhw)

sin(qlw)
sin(qlz)

∣∣∣∣
2

= sinhc (2
mqhw) − sinc(2�eqhw) − 2�e

{
sin(qhw)

sin(qlw)

{
sinc

[(
q∗

h − ql

)
w

] − sinc
[(

q∗
h + ql

)
w

]}}

+
∣∣∣∣ sin(qhw)

sin(qlw)

∣∣∣∣
2

[sinhc (2
mqlw) − sinc(2�eqlw)] , (29)

η ≡ 1 +
∣∣∣∣ bl − bhτ

As(τ − 1)

∣∣∣∣
2

+ cs

cc

∣∣∣∣ bl − bh

�sqh(τ − 1)

∣∣∣∣
2[

1 +
∣∣∣∣As

bh

∣∣∣∣
2∣∣∣∣1 +

(
�sqh

As

)2
bl − bhτ

bl − bh

∣∣∣∣
2]

, (30)

we find that the wave functions of the time-symmetric Hamiltonian are given by


n,ky,1
0 (x,y,z) = 1√

wccη
eikyy

⎛
⎜⎜⎜⎜⎜⎜⎝

[
cos(qhz) − cos(qhw)

cos(qlw) cos(qlz)
]
un(x)

i bl−bh

�sqh(τ−1)

[
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]
un−1(x)

bl−bhτ

As (τ−1)

[
cos(qhz) − cos(qhw)

cos(qlw) cos(qlz)
]
un−2(x)

−i bl−bh

�sqh(τ−1)
As

bh

[
1 + (

�sqh

As

)2 bl−bhτ

bl−bh

][
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]
un−3(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (31)

and


n,ky,−1
0 (x,y,z) = 1√

wccη
eikyy

⎛
⎜⎜⎜⎜⎜⎜⎝

i bl−bh

�sqh(τ−1)
As

bh

[
1 + (

�sqh

As

)2 bl−bhτ

bl−bh

][
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]
un(x)

bl−bhτ

As (τ−1)

[
cos(qhz) − cos(qhw)

cos(qlw) cos(qlz)
]
un−1(x)

−i bl−bh

�sqh(τ−1)

[
sin(qhz) − sin(qhw)

sin(qlw) sin(qlz)
]
un−2(x)[

cos(qhz) − cos(qhw)
cos(qlw) cos(qlz)

]
un−3(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

These wave functions largely represent the effect of mutual transformation of the states characterized by the z components of
the wave vectors describing heavy and light holes, as the physical picture of Fig. 1 suggests. However, despite that the symmetric
Hamiltonian Hs includes the effects of spin-orbit interactions and the effects of an external magnetic field, by its construction, it
still gives states that are Kramers-degenerate. Removal of the Kramers degeneracy takes place due to the time-reversal asymmetric
part Ha , which gives the Zeemann splitting of hole states.

B. Antisymmetric Hamiltonian and removal of Kramers degeneracy

In the semiclassical approximation, the antisymmetric Hamiltonian Ha is considered as a perturbation. The z-envelope
functions given by Eqs. (31) and (32) satisfy〈

Zn,ky ,1
0 (z)

∣∣Ha

∣∣Zn,ky ,1
0 (z)

〉 = −〈
Zn,ky ,−1

0 (z)
∣∣Ha

∣∣Zn,ky ,−1
0 (z)

〉
, (33)

and as a consequence the (perturbed) energies of the even and odd states can be written as En
e = En

0 + �E and En
o = En

0 − �E,
where

�E = 2�a

�sccη
�e

{
cτ

[
bl − bh

τ − 1
− bl − bh

bh

b∗
l − b∗

hτ
∗

|τ − 1|2 − 1

bh

(
�sqh

As

)2∣∣∣∣bl − bhτ

τ − 1

∣∣∣∣
2]}

+ cs

ccη

∣∣∣∣ bl − bh

�sqh(τ − 1)

∣∣∣∣
2{

Z2 + 2AaAs�e

[
1

bh

+
(

�sqh

As

)2
bl − bhτ

bh(bl − bh)

]
− Z1

A2
s

|bh|2
∣∣∣∣1 +

(
�sqh

As

)2
bl − bhτ

bl − bh

∣∣∣∣
2}

+ 1

η

[
Z1 + 2

Aa

As

�e

(
bl − bhτ

τ − 1

)
− Z2

A2
s

∣∣∣∣bl − bhτ

τ − 1

∣∣∣∣
2]

, (34)
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with

cτ ≡ 1

w

∫ w

−w

dz

[
cos(q∗

hz) − cos(q∗
hw)

cos(q∗
l w)

cos(q∗
l z)

][
cos(qhz) − τ

cos(qhw)

cos(qlw)
cos(qlz)

]

= sinhc(2
mqhw) + sinc(2�eqhw) − τ
cos(qhw)

cos(qlw)
{sinc[(q∗

h − ql)w] + sinc[(q∗
h + ql)w]}

− cos(q∗
hw)

cos(q∗
l w)

{sinc[(qh − q∗
l )w] + sinc[(qh + q∗

l )w]} + τ

∣∣∣∣cos(qhw)

cos(qlw)

∣∣∣∣
2

[sinhc(2
mqlw) + sinc(2�eqlw)]. (35)

There is no change in the wave functions at first order in perturbation theory as 〈(Zn,ky ,1
0 (z))|Ha|Zn,ky ,−1

0 (z)〉 = 0.

C. Analytic solution in semiclassical approximation

Even when the semiclassical approximation is used, the
calculations are rather complex due to the strong coupling
between the z-direction motion and the cyclotron degrees of
freedom. Generally, the transcendental Eqs. (24) and (25)
cannot be solved analytically. However, an approximate
solution with high accuracy is possible, if the energy associated
with motion in the z direction, i.e., the size quantization
energy is much larger than the cyclotron in-plane energy,
q2

z � n � 1. That is the case of strong size quantization, when
the quantum well width is much smaller than the magnetic
length, e.g., w  1. This gives a small parameter for the
perturbative expansion, so that the wave vector is expanded
in a series of dimensionless w as

qz = pπr

2w
+ wδ, (36)

where r is an integer and qz can be either the heavy or light hole
z-direction wave number. Obviously, the first term in Eq. (36)
(zeroth-order approximation) gives a wave number similar to
that describing electrons in an infinite rectangular quantum
well. However, the eigenstates of Hs contain both light and
heavy wave numbers, though only one of them is close to
usual πr/(2w), and both depend on the magnetic field and the
Landau level index.

The coefficient δ, which describes the dependence of the
wave numbers on the Landau level index, is calculated as
follows. The energy given by Eq. (20) can be expanded when
q2

z � n � 1 for heavy and light holes as

En
h ≈ q2

z

2mz
h

+
(

γ1 + γ2 − 3γ 2
3

γ2

)
(n − 1), (37)

En
l ≈ q2

z

2mz
l

+
(

γ1 − γ2 + 3γ 2
3

γ2

)
(n − 1). (38)

We emphasize that the terms containing qz here have a hidden
contribution to the cyclotron energy of the holes in two
dimensions because of the qz’s dependence on the magnetic
field and Landau level index. Using these expressions for
energy and the expansion of the qz wave vector from Eq. (36),
one can solve Eq. (24) and obtain the equation for the quantity τ

of a given state. The expansion for τ in powers of w can also be
obtained by replacing the wave vectors in Eq. (25). Comparing
the leading order terms in w of these two expressions for τ ,
we find the coefficient δ. The details of this procedure are
explained in Appendix A. The resulting expression for the

wave numbers is given by

δ = 6(−1)r+1n

r2π2

γ 2
3

γ 2
2

√(
γ1 + 2γ2

γ1 − 2γ2

)s

×
{

tan

[
rπ

2

√(
γ1 − 2γ2

γ1 + 2γ2

)s]}(−1)r

(39)

where s=1 corresponds to heavy holes and s= − 1 to light
holes.

In the zeroth-order approximation, the eigenvec-
tors of Eq. (31) become the up and down spinors
T (unζ0(z),0,0,0) and T (0,0,0,un−3ζ3(z)) for heavy-hole bands
and T (0,un−1ζ1(z),0,0) and T (0,0,un−2ζ2(z),0) for light-hole
bands. We will see that the in-plane (cyclotron) masses
characterizing these states coincide with Nedorezov effective
masses [34] in zero magnetic field, which are the correct
in-plane effective masses accounting for the effects of the
mutual transformation of heavy and light holes.

IV. ENERGY SPECTRA: NUMERICAL RESULTS

In the general case, and most notably for low lying levels,
the antisymmetric part Ha is comparable to the symmetric part
Hs , and a perturbative procedure does not work. This regime
is examined through a numerical solution of the Schrödinger
equation with the Luttinger Hamiltonian (8) in a quantum well
which we now discuss. The first three subbands of the energy
spectrum (the two lowest heavy hole and the lowest light hole
band) are presented in Fig. 3. We see indeed that the spectra
do not have a fanlike shape characteristic of electron systems.
The levels bend and cross as the magnetic field increases. As a
consequence, the Landau level number n does not describe the
ordering of levels. We observe that there is a large energy
separation between symmetric and antisymmetric states, a
clear signature of a gigantic intrinsic SO coupling. As we shall
see in Sec. VII, some crossings could become anticrossings in
the presence of Dresselhaus spin-orbit coupling. We will also
show elsewhere [45] that some of the crossings could become
anticrossings due to hole-hole interactions.

We find that the ground state of the holes is characterized
by a crossing between the 0-even parity and 3-odd parity state,
the former being the ground state at relatively small fields,
while the latter taking over at large fields. Level crossings
are of critical importance, especially since novel fractional
quantum Hall states with even denominator have been shown
to appear at such crossings in recent experiments [46,47]. We
note that experimental observation of Landau levels for holes in
photoluminescence measurements also reveals crossings [48].

195410-8



MAGNETIC FIELD SPECTRAL CROSSINGS OF . . . PHYSICAL REVIEW B 90, 195410 (2014)

n 0
n 1
n 2
n 3
n 4

symmetric
antisymmetric

hh1

hh2

lh1

L 250
0 5 10 15
0

5

10

15

20

B T

E
m
eV

n 0
n 1
n 2
n 3
n 4

symmetric
antisymmetric

hh1

hh2

lh1

L 100
0 5 10 15
0

25

50

75

B T

E
m
eV

FIG. 3. (Color online) Energy spectrum of GaAs holes with n � 3 in a quantum well of 250 Å (left) and 100 Å (right).

For excited states, one interesting feature that we observe is
almost a degeneracy between the second z-direction heavy hole
state and the first z-direction light hole state at small magnetic
fields. This effect occurs because the z-direction effective
mass of light holes 1/(γ1 + 2γ2) = 0.091 is roughly four times
smaller than the mass of heavy holes 1/(γ1 − 2γ2) = 0.38. As
the magnetic field increases, these states strongly hybridize.
This makes the range of applicability of the semiclassical
approximation even narrower.

A comparison between the numerical and semiclassical
solutions shows a very good agreement for large Lan-
dau level indices, as expected. Such comparisons are pre-
sented for n = 10 and 20 in the lowest three subbands in
Figs. 4–6. The semiclassical solution takes into account the
time-antisymmetric perturbation, however, both the numerical
and semiclassical solutions are in the axial approximation for
this section, i.e., the last term in Eq. (8) is excluded. We observe
that the comparison shows the semiclassical approximation to
work better for n = 20 as one expects for the semiclassical
theory. The shape of these curves includes a linear regime at
a small magnetic field and large n (also the magnetic length
should be much larger than the width of the quantum well).
For large n here, the hole energy spectrum shows a fanlike
diagram and no crossings, making the hole spectrum resemble
the electronic spectra in a magnetic field. At larger magnetic
fields (or small n), the energy curves for holes bend. These are
the range of fields where crossings occur.

The ordering of the levels and the corresponding resonant
transitions that are used to measure hole parameters in the
perturbative semiclassical regime are shown in Fig. 7. Only in
this regime can holes be described in a way similar to electrons.
However, as we shall discuss in the next section, experiments
are conducted largely outside of this range of magnetic fields.

V. CYCLOTRON MASS

Numerous experiments study the effective mass of holes in
GaAs based heterostructures, including recent works [31,49–
51]. The experiments detect the microwave magnetoplasma
resonance. Unlike electron systems, the data for holes show
two distinct sets of masses, with values depending on the
magnetic field, well width, and hole density. The physical
picture is totally different from the case of the electron liquid
in GaAs that exhibits one cyclotron mass.

Theoretically the cyclotron mass can be defined, in terms of
quantized energy levels, as the inverse of the energy distance
between the highest (partially) occupied Landau level and the
lowest empty (or highest filled LL) whose indices differ by
1 and have the same parity, as follows from the cyclotron
resonance theory [52]. Absorption of radiation (its electric
field component) is due to transitions between these levels.
Accordingly, in quantum cyclotron resonance,

mp = ± 1

En±1,p − En,p
. (40)
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FIG. 4. (Color online) Comparison between the numerically evaluated spectrum and the semiclassical values of the lowest heavy hole band
for n = 10 and 20. The quantum well width is 250 Å (left) and 100 Å (right).
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FIG. 5. (Color online) Comparison between the numerically evaluated spectrum and the semiclassical values of the second heavy-hole
band for n = 10 and 20. The quantum well width is 250 Å (left) and 100 Å (right).

It is well known that even for the electron spectrum,
besides cyclotron transitions and electron spin resonance
transitions (the latter due to the magnetic field component of
the radiation), there are also electric-field induced combined
resonance transitions [53]. However, all these transitions can
be distinguished based on the intensity of the lines and the
polarization of the radiation, and it is reasonable to assume that
it is indeed the effective mass that is measured by the energy of
the principal cyclotron transition (40). Our theoretical analysis
of the hole spectra shows that the traditional meaning of
effective mass is preserved only if the in-plane motion can
be clearly separated from the other degrees of freedom, that
is, spin and/or coupling to transverse motion. Such separation
occurs in the semiclassical regime at qzλ � 1. Using Eqs. (36)
and (39), the parity independent effective mass of holes is

m‖ =
(

γ1 + sγ2 − s
3γ 2

3

γ2

)
− 3(−1)r

r2π2

γ 2
3

γ 2
2

√(
γ 2

1 − 4γ 2
2

)s

×
{

tan

[
rπ

2

√(
γ1 − 2γ2

γ1 + 2γ2

)s]}(−1)r

, (41)

where s = 1 corresponds to heavy holes and s = −1 to light
holes, and r labels the subbands. This semiclassic value is,
as expected, precisely the result obtained in the absence of
magnetic field by Nedorezov [34,54], and constitutes the
in-plane effective mass of holes. The effective mass for
holes with heavy (light) mass in the z direction in Eq. (41)

contains the contribution in round brackets, which, for γ3 = γ2,
coincides with the bulk heavy (light) hole mass in the axial
approximation. Our procedure treats nonperturbatively the
γ3 term in Eq. (8), which describes coupling of heavy and
light holes and coupling of z direction and in-plane motion,
thereby allowing us largely to take into account the effects of
anisotropy. The last term in the expression for the cyclotron
mass (41) is the contribution from the size quantization that
depends on the size quantization level quantum number but is
independent of the well width [54]. In a magnetic field, this
cyclotron mass is independent of the well width in the range
of applicability of Eq. (41), λqz,λ/w � 1, in much the same
way as the expression for the effective mass in zero field is
independent of the well width at qz � kin-plane.

Interpreting cyclotron resonances outside the regime
λqz,λ/w � 1, n � 1 is a challenging task, because they
depend of the actual details of the experimental setting.
Unlike the electron case, the spectra are not fanlike, and the
separation between levels changes with both well width and
magnetic field. As the Fermi level goes through various levels
with different Landau indices, the cyclotron mass seemingly
changes its value. However, as we shall see, the observed
cyclotron mass is defined by the absorption of energy, and as
a result of several transitions contributing to the signal, abrupt
changes in cyclotron mass may occur only at crossings. We also
note that, in general, the cyclotron mass for holes is not equal
to the effective mass (band mass). While for metals this fact is
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FIG. 6. (Color online) Comparison between the numerically evaluated spectrum and the semiclassical values of the lowest light hole band
for n = 10 and 20. The quantum well width is 250 Å (left) and 100 Å (right).
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FIG. 7. Energy spectrum in the semiclassical limit for the lowest
band of heavy holes. The dotted lines represent the levels obtained
from the time-symmetric Hamiltonian of Eq. (18), dashed lines
represent the even states, solid lines are the odd states. The arrows
represent the cyclotron and spin resonance transitions measuring the
cyclotron mass and effective g factor, respectively.

related to the topology of Fermi surfaces, for semiconductors
with a low density of charge carriers, the situation is unusual.

Let us consider first the range of magnetic fields, in which
there are no level crossing. A cyclotron resonance can occur
for a transition between nth partially occupied level and
the n + 1 or n − 1 level with the same parity. As levels
are not equidistant, these are two different resonances. Our
calculations indicate that they are close to each other and
hence inseparable given the experimental accuracy and energy
level broadening. When the two resonant lines are present, the
“measured” cyclotron frequency is a weighted average of the
individual ones, the weights being the intensities of the lines. If
n is partially filled, the intensity of the n → (n + 1) transition
is proportional to the number of holes on the nth level (i.e., to
the fractional part of filling factor, ν∗), while the intensity of the
(n − 1) → n transition is proportional to the number of empty
states on the nth level (1 − ν∗). As a consequence, the effective
mass is continuous in changes in the integer part of the filling
factor. To see this, let us consider, for example, the level n with
odd parity, which is partially filled and is located between
the levels p and p + 1, both of even parity. The possible
cyclotron transitions are then (n,odd) → (n + 1,odd) and
(n − 1,odd) → (n,odd) and (p,even) → (p + 1,even). As the
level n-odd is filling up, the intensity of the lines corresponding
to the transition (n − 1,odd) → (n,odd) decreases, eventually

becoming zero when the level n is completely filled. The
transition (n,odd) → (n + 1,odd) becomes stronger as the
level (n,odd) is being filled up, eventually becoming the
only allowed transition between even states when the level
is filled. Such “measured” frequency, becomes closer to
the one corresponding to (n,odd) → (n + 1,odd) when the
level (n,odd) is gradually filled up. Thus in this case there
is no discontinuity in the odd state mass. The argument
is the same for the even state mass. However, there exist
discontinuities in the cyclotron mass from level crossings in
the hole spectrum. This analysis explains the experimental
observations in Ref. [31].

Calculated cyclotron masses for the set of magnetic quan-
tized levels from the lowest heavy-hole subband are plotted in
Figs. 8 and 9. Numerical calculations of the cyclotron mass
were performed assuming that the quantum well of GaAs is
embedded in Al0.24GaAs0.76 substrate, and the finite height of
the quantum well (valence band offset) was taken into account.
We have also assumed that the charge carriers originate from
a single doping layer resulting in an electric field of 103V/cm
across the well (circles). We are not interested here in a
self-consistent calculation of the whole heterostructure, and
will consider both Hartree and exchange hole interactions
elsewhere [45], and take this value of the electric field for
the sake of illustration irrespective of the density of holes.
Squares in the figures represent the values of the cyclotron
masses for the infinite rectangular well. It is immediately seen
that the masses of the symmetric (red lines) and antisymmetric
states (blue ones) are different. This is due to the bending of
levels, that effectively acts as level repulsion between states
with the same n. This sends odd levels to lower energies and
smaller separations, while the symmetric even states are higher
levels. This effect is more pronounced in wider wells. Higher
concentration of holes leads to higher Landau indices for the
partially filled level, making w2n > 1, thus taking the system
away from the q2

z � n range of the semiclassical regime
and resulting in higher cyclotron masses. The differences of
the actual masses from their semiclassical values are further
enhanced by the finite height of the well and the electric
field. In sufficiently high electric field, one can expect rather
large effective masses obtained in triangular quantum wells of
structures with a single heteroboundary [27,29].

In order to get a better understanding of wide variations in
the values of cyclotron mass, details of the data for the 250 Å
wide quantum well with higher density of holes is presented
in Fig. 10. There are six ranges of field, in which cyclotron
mass shows a linear behavior, and there are discontinuities
between these regions. At the left of the graph (region I), the
filling factor is between 8 and 9, the partially filled level is
characterized by n = 7, and it has odd parity. The highest
occupied state with even parity in this range is characterized by
n = 3. The symmetry-allowed cyclotron resonance transitions
are (7, odd) → (8, odd), (6, odd) → (7, odd), and (3, even)
→ (4, even). The transition (6, odd) → (7, odd) becomes
stronger with the increase of field while the transition (7, odd)
→ (8, odd) becomes weaker and is zero once the filling factor
equals 8 . When magnetic field increases further, the filling
factor is between 7 and 8 in the range II. The important feature
is that at the boundary between I and II, levels 3 even and 7
odd cross. As a consequence, the partially filled level is 7 odd,
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FIG. 8. (Color online) Cyclotron mass for the hole spectrum with crossings. The hole density is 2 × 1010 cm−2. The red lines (solid
symbols) represent the cyclotron mass corresponding to even parity states, while the blue lines (empty symbols) represent the mass describing
odd states. Circles represent the cyclotron mass for a finite barrier well in an electric field of 103 V/cm, squares represent the cyclotron mass
in an infinite rectangular quantum well. (Right) 250-Å well and (left) 100-Å well. The black line represents the semiclassical limit.

and the highest even state is characterized by n = 2, so that
the only allowed transition is (2, even) → (3, even) . Because
the levels are not equidistant, the transition with the biggest
amplitude between odd parity levels at the boundary with
region I is (7, odd) → (8, odd). The only allowed transition
between even parity levels is (2, even)→ (3, even). Both even
and odd transitions disappear at the crossing when change
in the value of magnetic field brings the system from range
I into range II or from range II to range I, correspondingly.
Therefore masses for both even and odd parity levels exhibit
discontinuities. In region III, the filling factor is between 6
and 7 and the partially filled levels is n = 6 with odd parity
while the highest even state is with n = 2. There is no change
in effective mass here. In the region IV, the filling factor is
between 5 and 6, the partially filled level is n = 2 with even
parity and the highest filled odd state is n = 5. The boundary
with region V corresponds to a crossing of 2-even and 6-odd,
the later becoming the highest (partially) filled state. Both even
and odd masses change. The filling factor becomes smaller
than 5 in region VI and no discontinuity in effective mass
occurs at the boundaries between these regions, because no
crossings are present. These facts are summarized in Table I.

While discussing the cyclotron mass for holes, it is impor-
tant to mention that as has been long appreciated [27,55], due to
mixing of light and heavy carriers, the Kohn theorem [56], as-
serting that charge carrier interactions do not alter the cyclotron
frequency, is no longer valid. In fact, a large effective rs ≈
3.5 opens up the possibility that many-body corrections are
significant. The masses we have calculated are generally in the
range of values of masses observed experimentally. However,
several experiments show considerably bigger masses in cer-
tain ranges of magnetic field [9,31,50,51,57,58]. In the single-
particle picture, the only possible explanation of the ground
state 2D hole mass exceeding 0.15m0 is related to holes being
subject to a magnetic field away from the semiclassical regime.
If the analysis of experiments indicates that the ground state
mass of the holes exceeds the value 0.15m0 for the range of
parameters corresponding to the semiclassical regime, the only
possible explanation would be interaction effects. At this stage,
we restrict our consideration to the single-particle picture.

VI. EFFECTIVE LANDÉ FACTOR

One of the most important questions in the hole spectra is
spin splitting in the hole states, and the Landé or g factor.
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FIG. 9. (Color online) Cyclotron mass for the hole spectrum with crossings. The hole density is 1011 cm−2. The red lines (solid symbols)
represent the cyclotron mass corresponding to even states while the blue lines (empty symbols) represent the mass describing odd states.
Circles represent the cyclotron mass for a finite barrier well in an electric field of 103 V/cm, squares represent the cyclotron mass in an infinite
rectangular quantum well. (Right) 250-Å well and (left) 100-Å well. The black line represents the semiclassical limit.
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FIG. 10. (Color online) Detail of the cyclotron mass dependence
on magnetic field for a hole density of 1011 cm−2 in a 250-Å-wide
infinite rectangular quantum well. Red line (solid symbols) is even
states and blue line (empty symbols) is odd states.

Over the past decade, numerous studies were devoted to
possible application of hole systems to spintronic devices and
quantum bits with strongly suppressed spin decoherence. The
problem of the effective Landé factor in 2D hole systems
has been investigated both theoretically and experimentally.
Experimental research was carried out using optical methods
like hot magnetophotoluminescence [57,59–61], quantum beat
spectroscopy [62], hole burning [63], spin-flip Raman scat-
tering [64], and reflectance difference spectroscopy [65,66].
Also, conductivity measurements in quasi-1D systems were
employed to determine the gfactors [67–69] of GaAs-based
2D hole gases. Hole systems studied over the years include
2D hole gases in both symmetric double heterostructures and
inversion layers in single heterojunctions, with differerent
dopants and crystallographic orientations. Despite extensive
attention, there is no systematic general understanding of
spin splitting for 2D holes, and no agreement regarding
experimental values of spin splitting in various systems.

Most surprisingly, the situation is even more daring in the
theoretical understanding of the gfactor in hole systems. From
a naive point of view, the coefficients of the Zeeman terms in
the Luttinger Hamiltonian of Eq. (2), which directly couple
angular momentum to magnetic field are often considered as
defining the gfactor [32,70]. Coupling of the magnetic field to
the cube of angular momentum is weak, and such consideration
leads to g∗ = 7.2 for heavy holes defined by coupling of field to
angular momentum. As we shall see, this definition of g∗ is not
related to any actual splitting of hole levels in two dimensions

and is just one of the contributions to the Zeeman splitting of
levels. The physics behind this story is that even if the constant
κ were zero, due to the angular momentum-kinetic momentum
interaction, orbital motion in a magnetic field leads to spin
precession and Zeeman splitting on its own. This picture, for
example, is the origin of the phenomenon of spin separation
in magnetic focusing [12].

In order to achieve systematic understanding of the g factor
in a 2D hole gas we will begin with the controversy of
a definition of the g factor for 3D holes and in electronic
systems with spin-orbit interactions. We first remark that our
concern here is the band structure value of spin splitting of
single-particle states. It is this value that is an important starting
point for the consideration of many-body effects, such as, e.g.,
skyrmion spin textures. However, we will not treat many-body
effects, such as exchange enhancement of g factor [71] in
the present paper. The single-particle value for the g factor
is clearly defined in systems without spin-orbit interactions,
where it is indeed determined by the constant of direct coupling
of the magnetic field to the spin operator. In systems with
spin-orbit interactions, including hole systems, several of the
proposed theories of the g factor attempt to take into account
the idea that the orbital motion of carriers in the presence of
magnetic field results in spin splitting of band states due to the
coupling of orbital degrees of freedom to spin. For 3D holes,
nearly 50 years ago, Bir and Pikus [43] proposed the following
solution to the g factor problem. They used the same separation
of the 3D hole Hamiltonian into symmetric and antisymmetric
parts that we use here for 2D holes. The levels defined by the
symmetric part En are Kramers degenerate. For large n, the
asymmetric part of the Hamiltonian is treated as a perturbation
splitting the doubly degenerate level En into two spin sublevels
En,+ and En,−, so that g = (En,+ − En,−)/μB. The resulting
Bir-Pikus g factor is defined by both the orbital constants
defining hole mass, following the notion that spin-orbit
coupling in the presence of a magnetic field causes the orbital
motion to contribute to the g factor, and by constants of the
direct coupling of the magnetic field to the spin operator. Later,
Perel [72] applied an alternative and completely different
Keller-Rubinov method for the semiclassical quantization of
matrix Hamiltonians [73,74] to the treatment of Luttinger
holes and confirmed the results for the g factor by Pikus
and Bir.

We are now going to demonstrate that the spin splitting
found by Bir and Pikus and Perel, while defining the
spectroscopic splitting of hole levels that can be measured in
transitions induced by an ac electric field (so-called combined

TABLE I. Allowed cyclotron transitions for holes in an infinite rectangular well in a magnetic field 0.5 < B < 0.9 T. The regions are those
plotted in Fig. 10. ↑ indicates an increase in a transition intensity with B, while ↓ indicates its decrease. A transition with decreasing intensity
vanishes when [ν] changes.

Region [ν] Partially filled level Highest level with opposite parity Allowed cyclotron transitions

I 8 7 odd 3 even 7 odd → 8 odd ↓, 6 odd → 7 odd ↑, 3 even → 4 even
II 7 7 odd 2 even 7 odd → 8 odd ↓, 6 odd → 7 odd ↑, 2 even → 3 even
III 6 6 odd 2 even 6 odd → 7 odd ↓, 5 odd → 6 odd ↑, 2 even → 3 even
IV 5 2 even 6 odd 2 even → 3 even ↓, 1 even → 2 even ↑, 6 odd → 7 odd
V 5 6 odd 1 even 6 odd → 7 odd ↓, 5 odd → 6 odd ↑, 1 even → 2 even
VI 4 5 odd 1 even 5 odd → 6 odd ↓, 4 odd → 5 odd ↑, 1 even → 2 even

195410-13



G. E. SIMION AND Y. B. LYANDA-GELLER PHYSICAL REVIEW B 90, 195410 (2014)

resonance [53]), is not a true spin splitting that is relevant
to hole spin resonance induced by an ac magnetic field,
conductance spectroscopy of spin levels, and quantum bits.
In order to do this and to establish the definition of the true g

factor, we first revisit an analysis of the problem of the g factor
in a simple model, which is actually important on its own: the
g factor for electrons subject to Rashba interactions.

A. What is g factor in the presence of spin-orbit interactions:
electrons with Rashba coupling

2D electrons in the presence of Rashba SO coupling
in a perpendicular magnetic field are described by the

Hamiltonian [53,75]

HeR = �eB

c

(
1
m

(
a†a + 1

2

) + g

4m0
iαR	a†

−iαR	a 1
m

(
a†a + 1

2

) − g

4m0

)
.

(42)

Its n � 1 eigenvalues are

En
e,± = �ωc

[
n ±

√(
gm

4m0
+ 1

2

)2

+ α2
R	2m2n

]
(43)

and eigenfunctions are the following spinors mixing up and
down states with two Landau indices n and n − 1:

ψn
e,+ =

√√√√1

2
+ g/m0 + 2/m

2
√

(g/m0 + 2/m)2 + 16α2
R	2n

(
un

2iαR	

g/m0+2/m+
√

(g/m0+2/m)2+16αR	2n
un−1

)
(44)

ψn
e,− =

√√√√1

2
+ g/m0 + 2/m

2
√

(g/m0 + 2/m)2 + 16α2
R	2n

( −2iαR	

g/m0+2/m+
√

(g/m0+2/m)2+16αR	2n
un
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)
. (45)

The n = 0 case is special:

E0 = �ωc

2
+ gμB

2
, (46)

ψ0
e =

(
u0

0

)
. (47)

Note that we assume g < 0. Now, according to the prescrip-
tion for finding the gfactor at large n in Refs. [43,72], we should
assume that the g factor defines the spin splitting of states with
the same n, g = (En

− − En
+)μB. It is worth noticing that an ac

electric field leads to transitions between such levels. However,
this is not a true g factor. To see this, it is instructive to consider
the limit of vanishing Rashba coupling, αR → 0, in which the
above eigenvalues are En

± = �ωc(n ± 1
2 ± gm

4m0
) corresponding

to pure up and down spinors: ψn
− = ( 0

un−1
) and ψn

+ = (un

0 ). Now,
three issues are obvious. First, when the Rashba constant
is zero, the g factor must be given by a constant (g) and
not by gsp = (En

e,+ − En
e,−)/μB = m0/m − g. Second, the

spatial dependence of the spinors ψn
± is different for Landau

indices different by one, and therefore these states are not
time-reversed pairs. Third, as a consequence of the latter
property, the matrix element for coupling with an ac magnetic
field, which is in the leading order, say, defined by the Pauli
matrix σx , simply vanishes and does not lead to electron spin
resonance transitions. Clearly, the appropriate time reversed
pairs at zero Rashba coupling are states with E0 = E0

+
and E1

−, E1
+ and E2

−, . . . ,E
(n)
+ and E

(n+1)
− , where n � 0 are

integers, and then the corresponding g factor is, of course,
−g. Turning Rashba coupling back on, we see that the states
E

(n)
+ and E

(n+1)
− are no longer exactly time reversed, and

there are small components of the spinors with distinct spatial
dependencies in addition to time-reversed components in the
leading order. However, the amplitude of transitions caused by
an ac magnetic field between such states is much stronger than
the amplitude of spin resonance transitions between the states

E
(n)
± with the same n, even when the full structure of spinors is

taken into account for the latter pair of states. Thus it is natural
to associate the g factor with energy separation between E

(n)
+

and E
(n+1)
− . In the presence of Rashba coupling,

g(n) = 2m0

m
−

√(
g

2
+ m0

m

)2

+ 4α2
R	2m2

0n

−
√(

g

2
+ m0

m

)2

+ 4α2
R	2m2

0(n + 1). (48)

Hence even for electrons, in the presence of spin-orbit
interactions, spin splitting depends not only on g but also on
orbital constants, such as the electron mass m and spin-orbit
constant αR , as well as on the Landau index n and on the
magnitude of the magnetic field. We reiterate that the physical
meaning of such a dependence is that in the presence of
spin-orbit coupling, orbital motion in a magnetic field results
in spin splitting, or, in classical terms, results in additional
spin precession. In the limit of strong Rashba coupling,
spin splitting is formally determined by orbital constants,
g∗ = 2(En+1

− − En
+) = 2m0/m − 2αR	m0(

√
n + 1 + √

n). In
this case, for high n, the ordering of levels can change, and the
g factor defined this way can change sign.

Finally, in this section, we would like to emphasize, that
this case of Rashba spectrum is a perfect illustration of the
necessity to exercise caution in considering spin-orbit inter-
actions and the definitions of g factors and effective masses.
Indeed, at large gm

4m0
+ 1

2 , and sufficiently small n, expansion
of the energy (43) can lead to a definition of spin-dependent
effective mass and spin-dependent cyclotron frequency:

ω±
c = ωc

(
1 ± α2

R	2m2

gm

2m0
+ 1

)
. (49)

The resolution of this dilemma is simply that in this range of
parameters, it is somewhat meaningless to separate spin and
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cyclotron splitting. For the Luttinger spectra, we encounter
a such story for low-lying states outside the semiclassical
regime.

B. g factor of 2D Luttinger holes

Having understood the g factor in the case of simple
spin-orbit interactions in the previous section, we now define
the g factor of Luttinger holes. For low-lying hole levels,
the distinction between cyclotron and spin splitting is not
meaningful, so we address the semiclassical case n � 1.
We have already defined doubly degenerate levels Enp with
even and odd eigenfunctions with respect to reflection about
the z = 0 plane, and their splitting due to Ha into two spin
sublevels En,+ and En,−. In the leading approximation, at high
n, the average value of Jz in these states is ±3/2 for heavy holes
and ±1/2 for light holes. However, in much the same way as
the case for electrons in the previous section, in the leading
order, the spatial dependence of the corresponding, odd and
even heavy-hole wave functions is not the same, as it should be
for time-reversed states. This spatial dependence is described
by oscillator functions with Landau indices n and n − 3 for any
given n; that is, ψn,+ ∝ (un,0,0,0) and ψn,− ∝ (0,0,0,un−3).
Thus, even if the spin operator describing transitions in an ac
magnetic field couples odd and even spinors in the spin sector,
the overlap of even and odd wave functions in the leading order
is zero, because oscillator functions with Landau indices n and
n − 3 are orthogonal:

∫
dxT (un,0,0,0)J 3

x (0,0,0,un−3) = 0.
We reiterate here again that spectroscopic splitting between
states n,+ and n,− can manifest in other types of transitions,
such as combined resonance in an ac electric field. However,
the corresponding splitting will not show up in pure spin
resonance, and it is not appropriate to call it a g factor.
Furthermore, direct evaluation shows that the corresponding
constant for heavy holes is giant, exceeding ∼40. For this
reason, such splitting would be very difficult to access in
conductance spectroscopy in quantum point contacts in a 2D
hole gas. Thus the true g factor cannot be found using the
procedures proposed in Refs. [43,72].

To find the true g factor, we consider a splitting between
the states shown in Fig. 7. In the leading approximation
for states with heavy mass in the zdirection, these are the
time-reversed states ψn,+ and ψn+3,−. Indeed, their leading
order spinor structure is as follows: ψn,+ ∝ (un,0,0,0) and
ψn+3,− ∝ (0,0,0,un), i.e., their spatial dependencies are iden-
tical. Therefore we define the gfactor for holes with heavy
mass in the zdirection as

g∗
h = 2(En,− − En−3,+). (50)

For light holes, in the leading approximation, the time-reversed
pair states are ψn,− and ψn−1,+. The gfactor for holes with light
mass in the zdirection is given by

g∗
l = 2(En,− − En−1,+). (51)

We remark that when a magnetic field is in-plane and affects
only the spin [76] with no orbital effects, the time-reversed pair
states are formed from degenerate levels, and the definition of
the g factor is straightforward.

We now present analytical results for the g factor of the
2D Luttinger holes in [001] grown quantum wells. Of primary
interest for experiment is the g factor for the set of states associ-

ated with the ground state of heavy holes in the z direction. We
therefore present here analytic results for this case. It is gen-
erally possible to find analytical results for high-n z-direction
light-hole levels. For GaAs, however, there are some subtleties
involved associated with the small separation between excited
z-direction heavy-hole series of levels and similar light-hole
states. We therefore address these states, as well as all low-
lying states for z-direction heavy and light holes numerically.

The magnitude of the g factor for z-direction heavy holes in
the semiclassical approximation is found from Eq. (34) using
the wave vectors from Eq. (39) and the limits of small w

and large n, in much the same way as in the computation of
the in-plane effective mass. After tedious, but straightforward
calculations, the effective g factor for the ground series of
states with heavy-hole mass in the z direction is given by

g∗ = 6κ + 27

2
q0 − 3γ 2

3

γ2
+

3γ 2
3

√
γ 2

1 − 4γ 2
2

πγ 2
2

× cot

(
π

2

√
γ1 − 2γ2

γ1 + 2γ2

)
. (52)

This is our central result for the g factor. The g factor has
contributions from orbital constants, and terms due to the size
quantization besides the purely Zeeman coupling constants κ

and q. The size quantization terms are independent of the well
width provided that condition λqz,λ/w � 1 holds, in much
the same way as for the effective masses defined by Eq. (41).
Choosing the values of the Luttinger parameters for GaAs
γ1 = 6.8,γ2 = 2.1,γ3 = 2.9,κ = 1.2, and q0 = 0.04, we find
the effective g factor to be g = 4.05.

The semiclassical expression for the energy of the lowest
subband of z-direction heavy holes that combines the cyclotron
contribution defined by Eq. (41), and the Zeeman energy
Eq. (52) is

En,p = (γ1 − 2γ2)π2

4w2
+

[
γ1 + γ2 − 3γ 2

3

γ2
+ 3γ 2

3

π2γ 2
2

×
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γ 2
1 − 4γ 2

2 cot

(
π

2

√
γ1 − 2γ2

γ1 + 2γ2

)]

× (n − 4p + 1) − 2

(
γ1 + γ2 − 3κ − 27

4
q0

)
p

(p = ±1). (53)

Numerical evaluation of the spin splitting for all states,
including high Landau indices but small size quantization
energies, and low lying states, is based on the same definition
of the g factor as for the semiclassical range of parameters. We
plot in Fig. 11 the effective Landé factor for a 250 and 100 Å
and for hole densities of 2 × 1010 and 1011 cm−2. It is clear
that the g factor values for holes in the narrow well are closer
to the semiclassical limit of Eq. (52) that corresponds to the
black line than the one for the wider well. This is due to the
fact that with an increase in w, the coupling between spin and
orbital motion increases, making the system deviate more from
the semiclassical regime. We notice also, that the deviation is
larger for a bigger density of holes. This can be explained by
the larger index n of the partially filled level, which makes
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FIG. 11. (Color online) Effective Landé factor for crossing spectrum. The red lines (solid symbols) - well width of 100 Å, blue lines (open
symbols) - well width of 250 Å. In the left panel the density is 2 × 1010 cm−2 and in the right panel the density is 1011 cm−2.

w2n larger, making analytical approximations that account for
mixture of transverse and in-plane motion less viable.

Interpreting the spectra in terms of g factors is challenging
because of the not fanlike, nonequidistant orbital spectra,
which show numerous spectral crossings. The locations of
the crossings depend on the potential profile of the quantum
well in a given experimental setting.

Direct measurement of the effective Landé factor is
achieved by spin magnetic resonance experiments with an
oscillating in-plane magnetic field applied. The resonant peak
appears at the frequency defined by the Zeeman energy. In
the presence of an in-plane field B‖(x̂ cos ωt + ŷ sin ωt) the
Hamiltonian is given by

H‖ = B‖
B

[(
κJx + q0J

3
x

)
cos ωt + (

κJy + q0J
3
y

)
sin ωt

]
. (54)

Both the Ji and J 3
i terms of this perturbation connect levels

with index n to states with indices n ± 1. The J 3
i term also

connects states with n ± 3. As we discussed, the g − factor
is meaningful only in the semiclassical limit, and we estimate
the effect of such an in-plane field only for large n and
a sufficiently narrow quantum well. For holes with heavy
mass in the z direction, the 3/2 component of the even wave
function in this limit is much larger than the other three while
for the odd state only the −3/2 component is relevant. As a
consequence the ratio of the matrix elements of the in plane
perturbation between n and n − 1 and the matrix element
between n and n − 3 is given by

∣∣∣∣Vn,n−1

Vn,n−3

∣∣∣∣
2

≈
κ2γ 4

3 csc4
(

π
2

√
γ1−2γ2

γ1+2γ2

)
4q2

0n4γ 2
2 (γ2 + γ3)2

[
3 − cos

(
π

√
γ1 − 2γ2

γ1 + 2γ2

)

− 2(γ1 − γ2)

πγ2

√
γ1 − 2γ2

γ1 + 2γ2

× sin

(
π

√
γ1 − 2γ2

γ1 + 2γ2

)]2

≈ 0.52

n4
. (55)

We observe that the J 3
x term leads to a much stronger

transition than the Jx term. The spin resonance for the ground
hole series of levels will determine the actual spacing between
n odd and n − 3 even, the “time-reversed” pair states in

agreement with our definition of the g factor. We note that
if the experiment involves series of levels with light-hole mass
in the z direction, then spin resonance transitions connect the
“time-reversed pair” states (n odd and n − 1 even).

VII. ROLE OF ANISOTROPIC TERMS AND ADDITIONAL
SPIN-ORBIT INTERACTIONS

A. Dresselhaus spin-orbit interaction

Besides the Luttinger Hamiltonian angular-momentum and
momentum interactions described by Eq. (1), symmetry allows
additional spin-orbit interactions associated with the lack of in-
version symmetry or the asymmetry of the potential confining
holes to two dimensions. Most notable are the Dresselhaus
terms [77] due to the lack of inversion symmetry. These
terms are most relevant to the case of double heterostructures
with symmetric confinement, in which asymmetry induced
by one-sided doping or external gate, and the corresponding
Rashba-like terms are rather weak. For electrons, the Rashba
and Dresselhaus terms are important for avoided crossings of
the Landau levels belonging to a different size quantization
subbands [78]. In a simplified treatment of 2D holes, it has
been found that these low symmetry spin-orbit terms are
capable of inducing spectral crossings and anticrossings in
a magnetic field hole spectra in quantum dots [18]. As we
have seen, such crossings, however, already arise due to the
Luttinger interactions of Eq. (1). The question then is, what is
the combined effect of all of these spin-orbit terms, and how,
e.g., Dresselhaus interactions affect the Luttinger spectra of
holes in a magnetic field.

Dresselhaus terms for holes at zero magnetic field have
been discussed in Refs. [42,79]. It is convenient to write down
the Hamiltonian describing these terms as

HD = γvJ · κ + δγv

[
13

8
J · κ − 1

2

∑
i

J 3
i κi

− 1

2

∑
i

Vi{ki,(k
2 − k2

i /3)}
]
, (56)

where

Vz = {
Jz,J

2
x − J 2

y

}
, (57)

κz = {
kz,k

2
x − k2

y

}
, (58)
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and Vx(y), and κx(y) are defined using cyclic permutations
of indices. The Dresselhaus constants for GaAs are γv =
−39 eV Å3 and δγv = −35 eV Å3. In the presence of magnetic
field, kx and ky are replaced with their operator expressions (4).

The symmetry of Dresselhaus interactions for holes is richer
than that for electrons. Coupling for bulk electrons includes
only terms containing κi , and such terms do not lead to linear in
k coupling for z-direction heavy holes in [001] grown quantum
wells. However, other Dresselhaus terms for bulk holes, such
as, e.g., the Vi term gives rise to linear coupling in momentum
for z-direction heavy holes [42].

In a magnetic field, Dresselhaus terms mix states with
opposite parity and level indices n that differ by 2, 4, and 6,
introducing additional splitting between even and odd states.
This is because of the structure of the spinors of the odd
and even states, and due to the linear and cubic in the wave
vector contributions to the Dresselhaus spin-orbit coupling for
holes in 2D, which couple oscillator functions with indices
differing by one and three, correspondingly. Some of the
crossings exhibited by the spectra of Luttinger holes described
by Eq. (1) are transformed into anticrossings by Dresselhaus
coupling, if the Dresselhaus interaction matrix element be-
tween states that cross is nonzero. In this case, the Dresselhaus
interaction lifts the degeneracy. The Dresselhaus terms have
a similar effect in electronic systems or in the simplified
picture of hole spectra [80]. However, some of the crossings
of Luttinger holes, most notably the crossing in the ground
hole state, are not related to and remain unaffected by
Dresselhaus interactions. The nonzero matrix elements of
the Dresselhaus Hamiltonian (56) between states of an in-
finite rectangular quantum well [Eq. (17)] are presented in
Appendix C.

Considering the role of Dresselhaus interactions in Eq. (56)
that contain the operator k3

z , a nontrivial problem arises in
regularization. Recent work [81] suggests that the difficulties
posed by this problem are unsurmountable and develops a
scheme within the frame of a 14-band model in order to avoid
this problem. We resolve this problem directly, and present our
solution in Appendix B. Numerical results of the hole spectra
in the presence of Dresselhaus terms are shown below. These
results also take into account the effect of the nonaxial terms
of Eq. (8).

B. Nonaxial terms

The last term of Eq. (8) has not yet been included
in our analytical consideration. However, to a significant
extent, the effects of anisotropy are included in our analytical
consideration. In particular, most important are terms coupling
z direction and in-plane motion, which are defined by the
Luttinger constant γ3 in our analytical approach. What is
treated approximately in our analytical consideration is the
effect of admixture of z-direction heavy-hole states with
angular momentum projection 3/2 (−3/2) with z-direction
light holes with angular momentum projection −1/2 (1/2),
for which only the part proportional to the combination of
the Luttinger constants γ2 + γ3 is included. The remaining
term proportional to γ2 − γ3, is not expected to result in
any dramatic effect, and it is reasonable to treat this term
as a perturbation for degenerate levels. The corresponding
Hamiltonian is

HN = −γ2 − γ3

4
[(â†)2J 2

− + â2J 2
+], (59)

and its nonzero matrix elements between the states of an
infinite rectangular quantum well with the same parity and
Landau indices differing by 4 are given in Appendix D. This is
a result of the structure of the spinors making matrix elements
nonzero if 3/2 and −1/2 components of the initial and final
spinors (or their −3/2 and 1/2 components) are characterized
by oscillator functions with indices differing by two. For GaAs,
numerical results demonstrate that the effect of γ2 − γ3 term
is sufficiently small indeed, at least in the range of sufficiently
small magnetic fields of interest here.

C. Energy spectra of holes in the presence of Dresselhaus
and nonaxial terms

The results for the lowest five in-plane levels of the
z-direction ground-state heavy holes series are presented in
Fig. 12 for 250 Å (left) and 100 Å (right). We observe that
the effects of the Dresselhaus and nonaxial terms are small at
small magnetic fields and increase with the field.

As seen in the left panel of Fig. 13, the effects of the
Dresselhaus and nonaxial terms are important for the second
z-direction heavy-hole states for small Landau indices. This is
due to the effective mass being negative [Eq. (41)] and levels

FIG. 12. (Color online) The spectra of holes in the presence of the Dresselhaus SO interaction and nonaxial terms (solid lines) compared
to spectra obtained in their absence (dotted lines). The lowest five Landau levels of the lowest z-direction heavy hole state are plotted for a well
width of 250 Å (left) and 100 Å (right).
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FIG. 13. (Color online) The spectra of holes in the presence of the Dresselhaus SO interaction and nonaxial term (solid line) compared to
spectra obtained in their absence (dotted line) for the second z-direction heavy-hole state (left) and the first z-direction light-hole state (right)
for 100-Å quantum well.

filling in reverse order. The effects on the z-direction light-hole
state is small for small magnetic field as seen in the right panel
of Fig. 13.

The hole spectrum at intermediate magnetic fields is
presented in Fig. 14. We observe the there are numerous
crossings and anticrossings. Some of the degeneracies leading
to crossings have been lifted by the Dresselhaus and axial
terms, but many crossings remain.

D. Effective mass and Landè factor in the presence of
Dresselhaus and nonaxial term

To understand the problem, we focus our attention
on a region near the crossings. After Dresselhaus terms
and nonaxial effects are considered, the wave function
becomes a linear combination of Landau level states∑

n cn(un,un−1,un−2,un−3). If only one coefficient c is sig-
nificant, it is clear that the cyclotron resonance will not differ
much from the case without perturbation. However, due to
the numerous crossings in the spectra and relatively small
separation between levels, wave functions have more than one
sizable coefficient c. As an example, ψ = −0.66|9,odd〉 +
0.35|9,even〉 + 0.64|5,even〉, near the crossing of 9odd and
5even (coupled by Dresselhaus interactions). The 9-even
state comes into play due to the nonaxial term coupling it
to the 5-even state. From this level |9,odd〉, |9,even〉, and
|5,even〉 would show cyclotron transition lines to all states
containing |10,odd〉, |10,even〉, |6,even〉, |8,odd〉, |8,even〉,

FIG. 14. (Color online) The energy spectra in the presence of
the Dresselhaus and nonaxial terms show numerous crossings (red
circles) and anticrossing (blue circles). The width of the well is 100 Å.

and |4,even〉. There are many such levels separated by differing
energies. Therefore the measured cyclotron mass is a weighted
average of all transition frequencies, which has little physical
significance for any stand-alone pair of levels. The same story
takes place in the spin resonance and measurement of g factors.
Results for cyclotron mass and gfactors, in the regions that are
not strongly influenced by the level crossings are shown in
Figs. 15 and 16.

As we have discussed above in Secs. V and VI, introducing
notions of effective masses and gfactors for nonequidistant
levels, in the presence of spectral crossings and peculiar order
of level filling is sometimes ambiguous, as orbital and spin
motion are completely entangled, especially for low-lying
levels. In the semiclassical range of parameters, these problems
do not arise, and the Luttinger hole system resembles the
electron gas. This region is limited to small magnetic field
and large n. However, in this range, due to the Dresselhaus
terms, there are spin-orbit effects that are similar to the
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FIG. 15. (Color online) The cyclotron mass for the lowest band
of the z-direction heavy holes in the presence of the Dresselhaus SO
interaction and nonaxial terms. The hole density is 2 × 1010 cm−2.
The red lines (solid symbols) represent the cyclotron masses
corresponding to even states while the blue lines (empty symbols)
represent the ones corresponding to odd states. Circles represent the
cyclotron mass in the presence of the Dresselhaus and nonaxial terms
while squares represent cyclotron mass in their absence. The black
line represents the semiclassical limit. (Inset) Cyclotron masses for
these states at hole density 1011 cm−2.
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FIG. 16. (Color online) The effective Landé factor for the lowest
band of the z-direction heavy holes in the presence of the Dresselhaus
and nonaxial terms (red line - solid symbols) and without them (blue
lines - empty symbols). The hole density is 2 × 1010 and the well
width is 100 Å. The black line represents the semiclassical limit.
(Inset) g factor for a 100-Å well with 1011 cm−2 holes, effect of the
Dresselhaus and nonaxial terms included.

effects of Dresselhaus or Rashba terms for electrons in the
semiclassical range, Sec. VI A. Analyzing experimental data
in this range of parameters can provide information about
Dresselhaus and similar effects for holes. For low-lying levels
and states outside the semiclassical range, the effects of the
Rashba and Dresselhaus terms are tangled with the Luttinger
spin-orbit effects. The way to attempt to separate the role
of various terms for such states could only be based on
symmetry considerations, because Dresselhaus and Rashba
terms, nonaxial terms, and principal Luttinger terms couple
different states and result in different crossing/anticrossing
effects because of their different symmetry.

VIII. SHUBNIKOV-DE HAAS OSCILLATIONS

In electronic systems, Shubnikov-de Haas oscillations,
which are oscillations of the longitudinal conductivity σxx

as the classically strong perpendicular magnetic field Bz

is varied, have been extensively used in investigating the
density of states of semiconductor structures, and peculiarities
of electron spectra, such as the splitting of valley spectra
and spin-orbit subbands in the presence of Dresselhaus and
Rashba interactions. Shubnikov-de Haas oscillations have also
been observed in numerous experiments in 2D hole systems,
and it is important to understand what kind of effects can
manifest themselves in experimental data. For example, if
Shubnikov-de Haas oscillations in a hole system exhibit a
beating pattern, would this be a consequence of Dresselhaus
or Rashba spin-orbit interactions? Here we show that even in
the absence of these interactions, crossings (or anticrossings)
in the spectra of the 2D Luttinger holes lead to such patterns.

We take into account only hole states belonging to the
Landau series of the first size quantized level of holes whose
mass in the z direction is the heavy-hole mass. For the
calculation of conductivity in the presence of a magnetic field,
we use the symmetric gauge A = (By/2, − Bx/2,0), and the
in-plane components of the wave function with oscillator index
n is given by

un,X = 1√
L

1√
2nn!

√
π

e− (x−X)2+i(x−2X)y
2 Hn(x − X). (60)

For simplicity, we will assume that mobility of holes is
defined by their short-range interactions with impurities with
density ρ randomly distributed in the quantum well. At
w  1, the probability of spin(parity)-flip scattering of holes
is negligible, and we take the impurity scattering matrix
element vss ′ (r) = V δ(r − ri)δss ′ , where ri is the position of
the impurity and and s and s ′ are the 3/2-spin components.
To calculate the conductivity, we will extend to hole sys-
tems the procedure for 2D electrons from [82], treating the
impurity scattering perturbatively. The Dyson’s equation for
the hole Green function G(E) = (E − H )−1 reads Gs,s1

n,p (E) =
G(0)

n,p + G(0)
n,p

∑
s ′ �s,s ′

n,pGs ′,s1
n,p (E), where � is the self-energy

and G(0)
n,p = (E − En,p)−1 is the Green function in the absence

of impurities, with p labeling the parity of state. In the
self-consistent Born approximation the self-energy is given by

�s,s1
n,p (E) = ρ

∑
i

∑
n′,X′,p′

s ′,s ′
1

∫
dri

∫
dr

∫
dr′Zn,p∗

s (z)u∗
n+s,X(x,y)vss ′ (r − ri)Zn′,p′∗

s ′ (z)un′+s ′,X′ (x,y)

×Zn′,p′∗
s ′

1
(z′)u∗

n′+s ′
1,X

′(x ′,y ′)vs ′
1s1 (r′ − r′

i)Zn,p
s1

(z)un+s1,X(x ′,y ′)Gs ′,s ′
1

n′,p′ (E), (61)

where Zn′,p′∗
s ′ is defined by Eqs. (10) and (12). The Landau level broadening ϒnp is calculated using the above formula for

energies close to En,p as �ss
n,p = 1

4ϒN,pGn,p(E). The density of states is

D(E) = 1

2π

∑
n,p

√
1 −

(
E − En,p

ϒn,p

)2

. (62)

For short-range scatterers, the relaxation time is related to the level broadening as τf = 2�
2ωc/(πϒ2).

We calculate the conductivity by using the Kubo formula

σxx = −ie2

πL2

∑
n,X

〈ψn,p|X
mG(E)[X,H ]
mG(E)|ψn,p〉. (63)
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A perturbative expansion using the self-consistent Born approximation gives

σxx = e2

π2�

∑
n,p

∫
dE

(
−∂fF (T )

∂E

) (
ϒxx

n,p

ϒn,p

)2
[

1 −
(

E − En.p

ϒn,p

)2
]

, (64)

where T is the temperature, fF is the Fermi function and(
ϒxx

n,p

)2 = ρ
∑

s,s1,s′,s1′

∑
i

∑
n′X′p′

∫
dri

∫
dr

∫
dr′Zn,p∗

s (z)u∗
n+s,X(x,y)∂yvss ′ (r − ri)Zn′,p′∗

s ′ (z)un′+s ′,X′ (x,y)

×Zn′,p′∗

s ′
1

(z′)u∗
n′+s1′ ,X′ (x ′,y ′)∂y ′vs1′ s1 (r′ − r′

i)Zn,p
s1

(z)un+s1,X(x ′,y ′). (65)

The resulting pattern of oscillations of the longitudinal
conductivity calculated taking into account Landau states
belonging to the ground level of size quantization of z-direction
heavy holes, in the absence of the Dresselhaus coupling and
axial terms, is presented in Fig. 17. The system does exhibit
some peculiar features originating from crossings in the hole
spectra. However, the pattern is extremely complex, and the
multiple conductivity maxima are too close to be separated.
We note that the pattern of oscillations is qualitatively similar
to those observed experimentally, e.g., in Ref. [58]. However,
detailed comparison with experimental data is not feasible
at this stage. Coulomb interactions of charge carriers that
undoubtedly affect experiment are not taken into consideration
by our procedure. A simple account of Hartree terms would
not be sufficient, because exchange interactions are supposed
to result in exchange enhancement of the Zeemann splitting,
and in a much more complex way than for the electrons
considered in Ref. [71]. However, the calculation presented
here shows that the hole Shubnikov-de Haas patterns are
characterized by beating-like structures even when spin-
orbit interactions traditional for electron spectra, Rashba and
Dresselhaus terms, are not taken into account, and only the
Luttinnger Hamiltonian is included. Furthermore, complex
patterns arise when only Landau states belonging to the
ground level of size quantization of heavy holes are taken into
account, but not the light-hole or excited heavy-hole Landau
series. This picture is a direct consequence of nonequidistant,
crossing levels.

FIG. 17. (Color online) Shubnikov-de Haas oscillations of holes
in an ideal quantum well without Dresselhaus-like perturbations.
Features related to level crossings are obvious.

IX. CONCLUSIONS

We use the Luttinger Hamiltonian to describe the holes
confined in GaAs quantum wells in the presence of a perpen-
dicular magnetic field. We have identified the semiclassical
regime, in which the physics of holes is reminiscent of the
physics of electrons. We derive hole energies, and thereby
the cyclotron masses and the g factors in the semiclassical
regime analytically, by developing an analytical method of
solving for size-quantized Luttinger holes in a perpendicular
magnetic field. In the semiclassical regime with large Landau
level indices, and for the size quantization energy much bigger
than the cyclotron energy, the cyclotron mass coincides with
the in-plane effective mass, calculated in the absence of a
magnetic field. The g factor is defined not only by the constant
of direct coupling κ of the angular momentum of holes with the
magnetic field, but also by the Luttinger constants defining the
effective masses of holes. For the 2D holes with heavy mass in
[001] growth direction, in the semiclassical regime g = 4.05.
This sheds light on why the g factor of holes measured [68]
in a quantum point contact embedded in the 2D hole gas is
g∗ = 5, close to the 2D value, and is far from 6κ = 7.2. In
order to ensure the proper definition of the g factors of the
holes, we used a solution of a simpler but illuminating problem
of the electron g factor in the presence of spin-orbit Rashba
interactions for illustration.

Outside the semiclassical range of parameters, holes behave
as a species completely different from electrons. This is a
consequence of the extraordinary strong angular momentum
to momentum interactions, coupling of transverse and in-plane
motion, mutual transformation of heavy and light holes with
projections of angular momenta differing by ±1, and coupling
of heavy and light holes with angular momentum projections
differing by ±2. Spectra emerging for size- and magnetic-field-
quantized holes are nonequidistant, not fanlike, and exhibit
multiple crossings, including crossing in the ground level.
Cyclotron masses of the holes in this regime arise from a
few cyclotron transitions between levels with close energy
separations. We explain theoretically why experiments do not
show jumps in the value of the cyclotron masses when the
integer part of the hole filling factors in the magnetic field
changes. The only possible abrupt change in the value of the
cyclotron mass may result from level crossing. Experimental
observation of such changes can be used to identify crossings.
We evaluate g factors and intensities of hole spin resonance.
The values of cyclotron masses and g factors outside the
semiclassical regime cannot be treated as band parameters, or
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used for modeling of nanostructures and topological objects
based on 2D hole systems.

We calculate the effect of the Dresselhaus and nonaxial
terms in the magnetic hole quantized spectra. Dresselhaus
terms of different symmetries are taken into account, and a
regularization procedure is developed for the k3

z Dresselhaus
terms, requiring special treatment. The Dresselhaus and
nonaxial terms transform some of the crossings in the Luttinger
hole magnetic spectra into anticrossings, but several crossings,
including ground state crossing, are unaffected. Dresselhaus
terms substantially affect the cyclotron masses in the range of
magnetic fields containing crossings and anticrossings.

Holes exhibit complex patterns of the Shubnikov-de Haas
oscillations. Oscillations are characterized by beating-like
structures even when spin-orbit interactions traditional for
electron spectra, the Rashba and Dresselhaus terms, are not
taken into account, and only the Luttinger interactions are in-
cluded. This property is also a consequence of nonequidistant
spectra and level crossing. Crossings of levels are of critical
importance, especially since novel fractional quantum Hall
states with even denominator can appear at the crossings.
Control of the nonequidistant levels and crossing structure by
magnetic field can be used to control the Landau level mixing
in hole systems, and thereby control hole-hole interactions,
which are the subject of on-going research.
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APPENDIX A: CALCULATION OF WAVE VECTORS
DESCRIBING THE HOLE STANDING WAVES IN THE

SEMICLASSICAL APPROXIMATION

We first expand the wave vector, e.g., for the z-direction
heavy-hole state keeping the usual term characterizing the
z-direction plane wave and terms independent of and linear in
the width of the quantum well (parameter w):

qh = pπ

2w
+ u + wδ + O(w2). (A1)

For the calculation of the cyclotron mass in the semiclassical
approximation, it is sufficient to consider the time-reversal
symmetric part of the Hamiltonian and the corresponding
energies only. We expand the energy of z-direction heavy-
and light-hole states given by Eq. (20) in terms of qz and in
terms of n, and obtain Eqs. (37) and (38). Using the identity
En

0,h(qh) = En
0,l(ql), we find the relationship between ql and

qh:

ql =
√

γ1 − 2γ2

γ1 + 2γ2
q2

h + 4γ 2
2 − 12γ 2

3

γ1γ2 + 2γ 2
2

(n − 1)

=
√

γ1 − 2γ2

γ1 + 2γ2

pπ

2w
+ u

√
γ1 − 2γ2

γ1 + 2γ2
+

√
γ1 − 2γ2

γ1 + 2γ2

×
[

1

pπ

4γ 2
2 − 12γ 2

3

γ1γ2 − 2γ 2
2

(n − 1) + δ

]
w + O(w2). (A2)

Expansions (A1) and (A2) are used to solve Eq. (24). This
quadratic equation in τ has two solutions, which in the leading
order in w are given by

τ1 = −6γ 2
3 (n − 1)

p2π2γ 2
2

w2 + O(w3), (A3)

τ2 = − p2π2γ 2
2

6(n − 1)γ 2
3

γ1 − 2γ2

γ1 + 2γ2

1

w2
+ O(w0). (A4)

The same expressions for qh and ql can be used in
the definition of τ ]Eq. (25)]. In the leading order, the
corresponding terms are

τ = − 1

u

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
1

w

+O(w0), p odd, (A5)

τ = u

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
w

+O(w2), p even. (A6)

Comparison with Eqs. (A3) and (A4), which do not include
linear in w and linear in 1/w terms in the corresponding
expansions, indicates that it must be u = 0 in (A1). Therefore
using Eq. (A1) in the definition of τ gives the following
expansions:

τ = −1

δ

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
1

w2

+O(w0), p odd, (A7)

τ = δ

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
w2

+O(w4), p even. (A8)

Now, comparing (A7) and (A8) with (A3) and (A4), we notice
that the first solution appears for even p and the second solution
is for odd p. Then, solving for δ, we obtain

δ = 6(−1)p+1

p2π2

γ 2
3

γ 2
2

√
γ1 + 2γ2

γ1 − 2γ2

×
[

tan

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)](−1)p

(n − 1). (A9)

For z-direction light holes,

qh =
√

γ1 + 2γ2

γ1 − 2γ2
q2

l + −4γ 2
2 + 12γ 2

3

γ1γ2 − 2γ 2
2

(n − 1), (A10)

and the proof is identical to the one presented above, with the
only difference that the quantity under the square root is the
inverse of that for heavy holes.
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APPENDIX B: MATRIX ELEMENTS OF THE k3
z

OPERATOR IN QUANTUM WELLS:
REGULARIZATION PROCEDURE

In order to investigate the role of all Dresselhaus-type terms
in the hole spectra allowed by symmetry, we need to project the
bulk Dresselhaus terms given by Eq. (56) to the manifold of the
2D hole states. This requires calculating the matrix elements
of the k3

z operator in the quantum wells. The potential of an
infinite rectangular quantum well exhibits discontinuities at
the edges of the well. As a result, the third derivative of the
wave function over the coordinate along the growth axis is
not well-defined. Ignoring the discontinuities when calculating
the matrix elements of the operator k3

z generates peculiar and
physically meaningless results, and a rigorous regularization
procedure is needed.

We base our considerations on the idea that close crystalline
bands can be considered on their own, once the perturbative
admixture of all other bands accounting for the appearance
of all terms with important symmetries is taken into account.
This must be done using the natural boundary conditions that
the wave functions and fluxes are continuous at the boundaries
for all states within a group of close states. The regularization
we find here satisfies these boundary conditions.

1. Infinitely deep quantum well

Let us consider first the case of an ideal infinitely
deep quantum well of width w. The wave functions are
the symmetric s

p(z) =
√

1
w

cos (2p+1)πz

2w
and antisymmet-

ric a
q (z) =

√
1
w

sin qπz

w
states (p and q are integers).

We notice that 〈a
q (z)|k3

z |s
p(z)〉 = −i

(−1)q−pπ2(2p+1)3q

w3[4q2−(2p+1)2] and

〈s
p(z)|k3

z |a
q (z)〉 = i

(−1)q−p4π2q3(2p+1)
w3[4q2−(2p+1)2] . Hence the operator

k3
z looks nonHermitian! The origin of this behavior is the

discontinuity of the confining potential.
A potential defining an infinitely deep well is

V (z) =
{
V0(z), if |z| � w

∞. otherwise . (B1)

The eigenfunction of the Schrödinger equation for the motion
in this potential corresponding to the energy E will be
denoted by E(z). The boundary conditions require that E(z)
vanishes at z = ±w.

To remove the discontinuity at the boundaries, we will use
a “smooth” potential, whose behavior is regular, so that it
leads to wave functions resulting in the hermitian projected
operator k3

z . We then take the limit, in which a smooth potential
becomes an infinitely deep potential. Our choice for a smooth
potential is

V�(z) =

⎧⎪⎨
⎪⎩
V0(z), if |z| � w,

1
2m�2(z − w)2 + V ′

0(w)(z − w), if z > w,

1
2m�2(z + w)2 + V ′

0(−w)(z + w), if z < −w.

(B2)

This potential is continuous and differentiable everywhere,
assuring a well-defined third derivative of the wave function.
In the limit � → ∞, this potential reproduces the infinite well
potential of Eq. (B1). The eigenfunction of the Schrödinger
equation in the presence of this potential corresponding to
energy E� will be denoted by �,E�

(z). We show that in
the limit of large �, �,E�

(z) converges toward E(z). The
original potential of an infinitely deep well and its regularized
counterpart are presented in Fig. 18.

A general normalizable wave function in the presence of
the smooth potential is

�,E�
(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�,E�,0(z), if |z| � w,

α�,E�
D− 1

2 + E�
�

+ V ′
0(w)

m�3

(√
2m�(z − w) +

√
2

m�3 V
′

0(w)
)

, if z > w,

β�,E�
D− 1

2 + E�
�

+ V ′
0(−w)

m�3

(
−√

2m�(z + w) −
√

2
m�3 V

′
0(−w)

)
, if z > w,

(B3)

where D is the parabolic cylinder function [83] and �,E�,0(z) is the solution Schrödinger equation inside the well

− 1
2m

∂2�,E�,0(z)
∂z2 + V0(z)�,E�,0(z) = E��,E�,0(z).

The coefficients α and β are determined by imposing the continuity boundary condition on the wave function at z = ±w as

α�,E�
= �,E�,0(w)

D− 1
2 + E�

�
+ V ′

0(w)

m�3

(√
2

m�3 V
′

0(w)
) , (B4)

FIG. 18. Potential of an infinitely deep well (left) and its drivable counterpart (right).
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β�,E�
= �,E�,0(−w)

D− 1
2 + E�

�
+ V ′

0(−w)

m�3

(−√
2

m�3 V
′

0(−w)
) . (B5)

Continuity of the derivative of the wave function at the boundaries of the quantum well requires that

 ′
�,E�,0(w) = − �,E�,0(w)

D− 1
2 + E�

�
+ V ′

0(w)

m�3

(√
2

m�3 V
′

0(w)
)D 1

2 + E�
�

+ V ′
0(w)

rm�3

(√
2

m�3
V ′

0(w)

) √
2m�, (B6)

 ′
�,E�,0(−w) = �,E�,0(−w)

D− 1
2 + E�

�
+ V ′

0(−w)

m�3

(−√
2

m�3 V
′

0(−w)
)D 1

2 + E�
�

+ V ′
0(−w)

m�3

(
−

√
2

m�3
V ′

0(−w)

) √
2m�. (B7)

Retaining only the leading terms in �, we find the relation between the wave function at z = ±w and its derivative:

 ′
�,E�,0(w) = −

√
m�

2�
(

3
4

)
�

(
1
4

) �,E�,0(w) + O

(
1√
�

)
, (B8)

 ′
�,E�,0(−w) =

√
m�

2�
(

3
4

)
�

(
1
4

) �,E�,0(−w) + O

(
1√
�

)
. (B9)

We see that in the limit of � → ∞, the derivative  ′
�,E�,0(w) cannot be infinite as it is expressed using only parabolic cylinder

functions, which do not have poles. This requires that �,E�,0(±w) → 0, which represents the boundary conditions imposed on
the original discontinuous potential, and thus, �,E�,0 → E .

The integral describing the matrix element of k3
z between the states characterized by wave functions �,E2

�
and �,E1

�
of the

smooth potential can be split in three parts
∫ ∞
−∞ ∗

�,E2
�

(z)
∂3

�,E1
�

(z)

∂z3 dz = ∫ w

−w
. . . + ∫ ∞

w
. . . + ∫ −w

−∞ . . . = I1 + I2 + I3. The first

integral converges in the large � limit to the value calculated using the discontinuous potential
∫ w

w
∗

E2
(z)

∂3E1 (z)
∂z3 dz.

Evaluation of the quadratures outside the well is simplified using the transformation of variables

I2 = 2m�α∗
�,E2

�

α�,E1
�

∫ ∞
√

2
m�3 V ′

0(w)
D

− 1
2 + E2

�
�

+ V ′
0(w)

m�3

(ξ )
∂3

∂ξ 3
D

− 1
2 + E1

�
�

+ V ′
0(w)

m�3

(ξ )dξ, (B10)

I3 = −2m�β∗
�,E2

�

β�,E1
�

∫ ∞
√

2
m�3 V ′

0(−w)
D

− 1
2 + E2

�
�

+ V ′
0(−w)

m�3

(ξ )
∂3

∂ξ 3
D

− 1
2 + E1

�
�

+ V ′
0(−w)

m�3

(ξ )dξ. (B11)

Retaining only the leading order terms in �, we reduce the above quadratures to

I2 = 2m�
∗

�,E2
�,0

(w)

D− 1
2
(0)

�,E1
�,0(w)

D− 1
2
(0)

∫ ∞

0
D− 1

2
(ξ )

∂3

∂ξ 3
D− 1

2
(ξ )dξ, (B12)

I3 = −2m�
∗

�,E2
�,0

(−w)

D− 1
2
(0)

�,E1
�,0(−w)

D− 1
2
(0)

∫ ∞

0
D− 1

2
(ξ )

∂3

∂ξ 3
D− 1

2
(ξ )dξ. (B13)

We use the following formula for the derivative of the parabolic cylinder functions [83]:

∂3Dν(t)

∂t3
= 1

8
(ν2 − 3ν + 2)νDν−3(t) − 3

8
ν2Dν−1(t) + 1

8
(3ν + 3)Dν+1(t) − Dν+3(t), (B14)

and the expression for an integral of product of D’s [83]

∫ ∞

0
Dα(t)Dν(t) dt = 2

1
2 (−α−ν−3)

(
�

(−α
2

)
�

(
1−ν

2

) − �
(

1−α
2

)
�

(− ν
2

) )

(α − ν)�(−α)�(−ν)
(B15)

in order to determine the value of quadrature that is present in Eqs. (B12) and (B13), which is

∫ ∞

0
D− 1

2
(ξ )

∂3

∂ξ 3
D− 1

2
(ξ )dξ = �2

(
3
4

)
2π

√
2

. (B16)
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FIG. 19. Potential of a finite well (left) and its differentiable counterpart (right).

Using the result (B16), we obtain the expressions for integrals outside the quantum well:

I2 = m�

2π2
�2

(
3

4

)
�2

(
1

4

)
∗

�,E2
�,0(w)�,E1

�,0(w) = m�∗
�,E2

�,0(w)�,E1
�,0(w), (B17)

I3 = −m�

2π2
�2

(
3

4

)
�2

(
1

4

)
∗

�,E2
�,0(−w)�,E1

�,0(−w) = −m�∗
�,E2

�,0(−w)�,E1
�,0(−w). (B18)

Using the relation between values of the wave function and its derivative at the boundaries, Eqs. (B8) and (B9), we find that the
contributions to the integral from z outside the well are

I2 = 1
2 ′∗

�,E2
�,0(w) ′

�,E1
�,0(w), (B19)

I3 = − 1
2 ′∗

�,E2
�,0(−w) ′

�,E1
�,0(−w). (B20)

Adding all parts together, we determine the value of the k3
z matrix element:

〈
E2

∣∣k3
z

∣∣ E1

〉 = i

∫ w

−w

∗
E2

(z)
∂3E1 (z)

∂z3
dz + i

2
 ′∗

E2
(w) ′

E1
(w) − i

2
 ′∗

E2
(−w) ′

E1
(−w). (B21)

2. Quantum well with finite depth

We now develop the regularization procedure for the k3
z averages in a well of finite depth. The potential is discontinuous at the

boundaries, but the potential jump is finite. In general, the potential can be a smooth function, both inside and outside the well.
From the previous consideration, we see that the regularization scheme is independent of the details of the potential. Hence we
take the potential to be constant both inside and outside the well,

V (z) =
{

0, if |z| � w

V0, otherwise . (B22)

The wave function corresponding to energy E is denoted by E .
The procedure is similar to that used for an infinitely deep quantum well. The potential is regularized using a parameter,

that eventually will be taken to infinity. The matrix element is evaluated near the boundaries, and the limit for large potential
parameter is considered. The smooth potential differs from the discontinuous one only in a small region near the boundaries of
the quantum well:

V�(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V0, if z < −w − 2
�

√
V0
m

,

V0 − 1
2m�2

(
z + w + 2

�

√
V0
m

)2
, if − w − 2

�

√
V0
m

� z < −w − 1
�

√
V0
m

,

1
2m�2(z + w)2, if − w − 1

�

√
V0
m

� z < −w,

0, if |z| � w,

1
2m�2(z − w)2, if w < z � w + 1

�

√
V0
m

,

V0 − 1
2m�2

(
z − w − 2

�

√
V0
m

)2
, if w + 1

�

√
V0
m

< z � w + 2
�

√
V0
m

,

V0, if z > w + 2
�

√
V0
m

.

(B23)

It is continuous and differentiable everywhere. The original and modified potential are plotted in Fig. 19.
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The eigenfunction corresponding to energy E� is

�,E�
(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�,E�,1,L(z), if z < −w − 2
�

√
V0
m

,

γ�,E�,LD− 1
2 − i(E�−V0)

2�

[
e

iπ
4

(√
2m�(w + z) +

√
8V0
�

)]
+ δ�,E�,LD− 1

2 + i(E�−V0)
2�

[
e

3iπ
4

(√
2m�(w + z) +

√
8V0
�

)]
, if − w − 2

�

√
V0
m

� z < −w − 1
�

√
V0
m

,

α�,E�,LD− 1
2 + E�

��

[
√

2m�(w + z)]

+β�,E�,LD− 1
2 + E�

��

[−√
2m�(w + z)], if − w − 1

�

√
V0
m

� z < −w,

�,E�,0(z), if |z| � w,

α�,E�,RD− 1
2 + E�

�

[
√

2m�(z − w)]

+β�,E�,RD− 1
2 + E

�
[−√

2m�(z − w)] if w < z � w + 1
�

√
V0
m

,

γ�,E�,RD− 1
2 − i(E�−V0)

2�

[
e

iπ
4

(√
2m�(z − w) +

√
8V0
�

)]
+ δ�,E�,RD− 1

2 + i(E�−V0)
2�

[
e

3iπ
4

(√
2m�(z − w) +

√
8V0
�

)]
, if w + 1

�

√
V0
m

< z � w + 2
�

√
V0
m

,

�,E�,1,R(z), if z > w + 2
�

√
V0
m

,

(B24)

where �,E�,0 and �,E�,1 represents the solutions of Schrödinger equation inside and outside the quantum well − 1
2m

∂2�,E�,0(z)
∂z2 =

E��,E�,0(z), − 1
2m

∂2�,E�,1(z)
∂z2 + V0�,E�,1(z) = E��,E,1(z), indices L and R refers to left (z < −w) and right (z > w) of the

well.
Continuity conditions imposed on the wave functions and their derivative determine the coefficients α, β, γ and δ. Retaining

only the leading terms in �, we find

α�,E�,L = β�,E�,L = �
(

3
4

)
√

2
√

2π
�,E�,0(−w), (B25)

γ�,E�,L = δ�,E�,L = �
(

3
4

)
√

2
√

2π
�,E�,1,L(−w), (B26)

α�,E�,R = β�,E�,R = �
(

3
4

)
√

2
√

2π
�,E�,0(w), (B27)

γ�,E�,R = δ�,E�,R = �
(

3
4

)
√

2
√

2π
�,E�,1,R(w). (B28)

The matrix element integral is given by the following terms:
∫ ∞
−∞ ∗

�,E2
�

(z)
∂3

�,E1
�

(z)

∂z3 dz = ∫ −w− 2
�

√
V0
m

−∞ . . . + ∫ −w− 1
�

√
V0
m

−w− 2
�

√
V0
m

. . . +
∫ −w

−w− 1
�

√
V0
m

. . . + ∫ w

−w
. . . + ∫ w+ 1

�

√
V0
m

w
. . . + ∫ w+ 2

�

√
V0
m

w+ 1
�

√
V0
m

. . . + ∫ ∞
w+ 2

�

√
V0
m

. . . = I1 + I2 + I3 + I4 + I5 + I6 + I7. The integrals I1, I4

and I5 converge to their respective values for the discontinuous potential.
Using the Taylor expansion of the parabolic cylinder functions [83]

Dν(t) � 2ν/2√π

�
(

1−ν
2

) − 2
ν+1

2
√

πt

�
(− ν

2

) − 2
ν
2 −2√π (2ν + 1)t2

�
(

1−ν
2

) + 2
ν−3

2
√

π (2ν + 1)t3

3�
(− ν

2

) + 2
ν
2 −5√π (4ν2 + 4ν + 3)t4

3�
(

1−ν
2

) + O(t5), (B29)

we calculate integrals over connecting regions. In the leading order in �, these are

I2 � �2
(

3
4

)
m�√

2π
∗

�,E2
�,1,R

(−w)�,E1
�,1,R(−w)

∫ −
√

2V0
�

−2
√

2V0
�

[
D− 1

2

(
e− iπ

4 ξ
) + D− 1

2

(
e− 3iπ

4 ξ
)] ∂3

∂ξ 3

[
D− 1

2

(
e

iπ
4 ξ

) + D− 1
2

(
e

3iπ
4 ξ

)]
dξ

� −3mV0

4
∗

�,E2
�,1,R

(−w)�,E1
�,1,R(−w), (B30)

I3 � �2
(

3
4

)
m�√

2π
∗

�,E2
�,0(−w)�,E1

�,0(−w)
∫ 0

−
√

2V0
�

[D− 1
2
(ξ ) + D− 1

2
(ξ )]

∂3

∂ξ 3
[D− 1

2
(ξ ) + D− 1

2
(ξ )]dξ

� −mV0

4
∗

�,E2
�,0(−w)�,E1

�,0(−w), (B31)
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I5 � �2
(

3
4

)
m�√

2π
∗

�,E2
�,1,R

(w)�,E1
�,1,R(w)

∫ 2
√

2V0
�√

2V0
�

[
D− 1

2

(
e− iπ

4 ξ
) + D− 1

2

(
e− 3iπ

4 ξ
)] ∂3

∂ξ 3

[
D− 1

2

(
e

iπ
4 ξ

) + D− 1
2

(
e

3iπ
4 ξ

)]
dξ

� 3mV0

4
∗

�,E2
�,1,R

(w)�,E1
�,1,R, (B32)

I6 � �2
(

3
4

)
m�√

2π
∗

�,E2
�,0(w)�,E1

�,0(w)
∫ 0

−
√

2V0
�

[D− 1
2
(ξ ) + D− 1

2
(ξ )]

∂3

∂ξ 3
[D− 1

2
(ξ ) + D− 1

2
(ξ )]dξ

� mV0

4
∗

�,E2
�,0(w)�,E1

�,0(w). (B33)

The regularization procedure now reads

〈E2 |k3
z |E1〉 = i

∫ ∞

−∞
∗

E2
(z)

∂3E1 (z)

∂z3
dz + imV0[∗

�,E2
(w)�,E1 (w) − ∗

�,E2
(−w)�,E1 (−w)]. (B34)

3. Regularization for matrix Schrödinger equations

Finally, we consider quantum wells described by matrix Schrödinger equations

− M̂2
∂2̂(z)

∂z2
− iM̂1

∂̂(z)

∂z
+ M̂0̂(z) + V (z)Î ̂(z) = Ê(z), (B35)

where M̂1, M̂2 and M̂3 are n × n matrices, Î is the n × n identity and ψ̂ is a column of n functions. We assume that M2 is
a diagonal matrix with positive and constant elements [M2]ii = 1/(2mi). The potential V corresponds to an infinite well as in
Eq. (B1). We apply the same regularization procedure for the potential (Fig. 18)

V�,i(z) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |z| � w,

�2

2mi
(z − w)2, if z > w,

�2

2mi
(z + w)2, if z < −w,

(B36)

Outside the quantum well, the above equation is written using a transformation to the variable ξ = √
2�(z ± w) as

− ∂2�,i(ξ )

∂ξ 2
− imi

√
2

�
(M̂1)ij

∂�,j (ξ )

∂ξ
+ mi

�
(M̂0)ij�,j (ξ ) + ξ 2

4
�,i(ξ ) = miE�

�
�,i(ξ ), (B37)

where + signs refer to the left side of the well and − to the right side. In the limit of � → ∞, it reads

− ∂2�,i(ξ )

∂ξ 2
+ ξ 2

4
�,i(ξ ) = 0. (B38)

Imposing the requirement that ψ̂(±∞) = 0, we find the solutions

±,�i(ξ ) = α±,iD− 1
2
(±ξ ). (B39)

The procedure is identical to the previous case, although the wave functions are now n vectors. The final result reads

〈
̂E2

∣∣P̂ k3
z

∣∣ ̂E1

〉 = i

∫ w

−w

̂∗
E2

(z)P̂
∂3E1 (z)

∂z3
dz + i

2
̂ ′∗

E2
(w)P̂ ̂ ′

E1
(w) − i

2
̂ ′∗

E2
(−w)P̂ ̂ ′

E1
(−w), (B40)

where P̂ is a matrix with constant elements.

APPENDIX C: MATRIX ELEMENTS OF THE DRESSELHAUS SPIN-ORBIT INTERACTION

The following matrix elements of terms contributing to the Dresselhaus interactions given by Eq. (56) have nonzero values:

〈(n+4,−p)|
∑

i

Ji κ̂i |(n,p)〉 = −
√

3(n + 1)(n + 2)(n + 3)

8
I

4,0
1,0 (n,p) −

√
n(n + 1)(n + 2)

2
I

4,0
2,1 (n,p)

−
√

3(n − 1)n(n + 1)

8
I

4,0
3,2 (n,p), (C1)
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〈(n+2,−p)|
∑

i

Ji κ̂i |(n,p)〉 = −3i

2

√
(n + 1)(n + 2)I 2,1

0,0 (n,p) − i

2

√
n(n + 1)I 2,1

1,1 (n,p)

+ i

2

√
(n − 1)nI

2,1
2,2 (n,p) + 3i

2

√
(n − 1)(n − 2)I 2,1

3,3 (n,p), (C2)

〈(n,−p)|
∑

i

Ji κ̂i |(n,p)〉 =
√

3n3

8

[
I

0,0
1,0 (n,p) + I

0,0
0,1 (n,p)

] +
√

(n − 1)3

2

[
I

0,0
2,1 (n,p) + I

0,0
1,2 (n,p)

]

+
√

3(n − 2)3

8

[
I

0,0
2,3 (n,p) + I

0,0
3,2 (n,p)

] +
√

3n

2

[
I

0,2
0,1 (n,p) + I

0,2
1,0 (n,p)

]

+
√

2(n − 1)
[
I

0,2
1,2 (n,p) + I

0,2
2,1 (n,p)

] +
√

3(n − 2)

2

[
I

0,2
2,3 (n,p) + I

0,2
3,2 (n,p)

]
, (C3)

〈(n+4,−p)|
∑

i

J 3
i κ̂i |(n,p)〉 = −7

8

√
3(n + 1)(n + 2)(n + 3)

2
I

4,0
1,0 (n,p) − 5

2

√
n(n + 1)(n + 2)

2
I

4,0
2,1 (n,p)

−7

8

√
3(n − 1)n(n + 1)

2
I

4,0
3,2 (n,p) + 3

4

√
(n + 1)3

2
I

4,0
3,0 (n,p)

+3

4

√
2(n + 1)I 4,2

3,0 (n,p), (C4)

〈(n+2,−p)|
∑

i

J 3
i κ̂i |(n,p)〉 = −27i

8

√
(n + 1)(n + 2)I 2,1

0,0 (n,p) − i

8

√
n(n + 1)I 2,1

1,1 (n,p)

+ i

8

√
(n − 1)nI

2,1
2,2 (n,p) + 27i

8

√
(n − 1)(n − 2)I 2,1

3,3 (n,p), (C5)

〈(n,−p)|
∑

i

J 3
i κ̂i |(n,p)〉 = 7

8

√
3n3

2

[
I

0,0
1,0 (n,p) + I

0,0
0,1 (n,p)

] + 5

2

√
(n − 1)3

2

[
I

0,0
2,1 (n,p) + I

0,0
1,2 (n,p)

]

+ 7

8

√
3(n − 2)3

2

[
I

0,0
2,3 (n,p) + I

0,0
3,2 (n,p)

] + 7

8

√
6n

[
I

0,2
0,1 (n,p) + I

0,2
1,0 (n,p)

]
+ 5

2

√
2n − 2

[
I

0,2
1,2 (n,p) + I

0,2
2,1 (n,p)

] + 7

8

√
6n − 12

[
I

0,2
2,3 (n,p) + I

0,2
3,2 (n,p)

]
− 3

4

√
(n − 2)(n − 1)n

2

[
I

0,0
0,3 (n,p) + I

0,0
3,0 (n,p)

]
, (C6)

〈(n+6,−p)|
∑

i

Vi ι̂i |(n,p)〉 = 3

4

√
(n + 3)(n + 2)(n + 1)

2
I

6,0
3,0 (n,p), (C7)

〈(n+2,−p)|
∑

i

Vi ι̂i |(n,p)〉 = 1

4

√
3(n + 2)(n + 1)n

2
I

2,0
0,1 (n,p) − 3

4

√
(n + 1)n(n − 1)

2
I

2,0
1,2 (n,p)

+1

4

√
3n(n − 1)(n − 2)

2
I

2,0
2,3 (n,p) + 1

4

√
3(n + 1)3

2
I

2,0
1,0 (n,p)

−3

4

√
n3

2
I

2,0
2,1 (n,p) + 1

4

√
3(n − 1)3

2
I

2,0
3,2 (n,p) − 3

4

√
n3

2
I

2,0
3,0 (n,p)

+3

4

√
2nI

2,2
3,0 (n,p) +

√
6(n + 1)

4
I

2,2
1,0 (n,p) − 3

4

√
2nI

2,2
2,1 (n,p)

+
√

6(n − 1)

4
I

2,2
3,2 (n,p) +

√
3i

2
(2n + 1)I 2,1

2,0 (n,p) −
√

3i

2
(2n − 1)I 2,1

3,1 (n,p) (C8)

〈(n+6,−p)|
∑

i

Vi k̂
3
i |(n,p)〉 = −3

4

√
(n + 3)(n + 2)(n + 1)

2
I

6,0
3,0 (n,p), (C9)
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〈(n+2,−p)|
∑

i

Vi k̂
3
i |(n,p)〉 = −1

4

√
3(n + 2)(n + 1)n

2
I

2,0
0,1 (n,p) + 3

4

√
(n + 1)n(n − 1)

2
I

2,0
1,2 (n,p)

− 1

4

√
3n(n − 1)(n − 2)

2
I

2,0
2,3 (n,p) − 3

8

√
6(n + 1)3I

2,0
1,0 (n,p) + 9

8

√
2n3I

2,0
2,1 (n,p)

− 3

8

√
6(n − 1)3I

2,0
3,2 (n,p) − 9

8

√
2n3I

2,0
3,0 (n,p) +

√
3i

2
I

2,3
2,0 (n,p) −

√
3i

2
I

2,3
3,1 (n,p). (C10)

Here, the components of the operator ι̂ are given by
ι̂i = {

k̂i ,
(
k̂2

i−1 + k̂2
i−2

)}
, (C11)

where cyclic permutation of indices is implied. The superposition integral I
�,m
i,j (n,p) is defined as

I
�,m
i,j (n,p) =

∫ w

−w

(
ζ

n+�,p′
i (z)

)∗ ∂m

∂zm
ζ

n,p

j (z)dz + K�
i,j (n,p), (C12)

which is nonzero only if p′ = (−1)i+j+mp. The evaluation of this integral gives

I
�,m
i,j (n,p) = 4wim

∑
α,β

(
λ

n+�,p′
qα,i

)∗
λ

n,p

qβ ,j q
m
β {sinc[(qβ − q∗

α)w] + (−1)j+mpsinc[(qβ + q∗
α)w]}. (C13)

The quantity K�
i,j (n,p) is the correction due to the regularization procedure described in Appendix B, for m = 3, which is given

by

K�
i,j (n,p) = −2

∑
α,β

q∗
αqβ

(
λ

n+�,p′
qα,i

)∗
λ

n,p

qβ ,i{sin[(qβ − q∗
α)w] + p(−1)j+1 sin[(qβ + q∗

α)w]}. (C14)

APPENDIX D: MATRIX ELEMENTS OF NONAXIAL PERTURBATION

The following matrix elements of the nonaxial term described by Eq. (59) have nonzero values:

〈(n+4,−p)|J 2
−(a†)2|(n,p)〉 = 2

√
3
[√

(n + 2)(n + 2)I 4,0
3,0 (n,p) +

√
n(n + 1)I 4,0

4,1 (n,p)
]
. (D1)
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