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Time-resolved transport properties of a Y junction of Tomonaga-Luttinger liquid wires
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We study time-resolved transport properties of a Y junction composed of interacting one-dimensional quantum
wires using a bosonization approach. In particular, we investigate the ac conductivity of the Y junction formed
from finite-length Tomonaga-Luttinger liquid wires based on a plasmon scattering approach for injected charge
pulses of arbitrary shapes. In addition, we calculate the tunneling current and quantum noise of the Y junction
arising from pointlike tunneling impurities at the junction, including finite-temperature effects. Our results will
be useful for designing nanoelectronic quantum circuits and for interpreting time-resolved experiments [Kamata
et al., Nat. Nanotechnol. 9, 177 (2014)] in interacting wires and their junctions.
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I. INTRODUCTION

One-dimensional (1D) quantum wires and the junctions of
several 1D quantum wires are expected to be important for
potential applications as components in future nanoelectronic
devices. Such 1D quantum wires with interacting electrons
are described by the Tomonaga-Luttinger liquid (TLL) theory
[1–6], the low-energy excitations in which are the collective
density oscillations. These density oscillations or plasmon
modes are markedly different from their counterparts, i.e.,
Landau’s quasiparticle excitations, in higher dimensions de-
scribed very successfully by the Fermi liquid (FL) theory [7].
This leads to unique physics in 1D, such as the spin-charge
separation in which the spin and charge excitations propagate
with different velocities [8,9], or the phenomena of charge
fractionalization [10–12]. Recently, charge fractionalization
has also been observed using time-resolved measurements on
coupled integer quantum Hall edge channels [13].

In the present work, we investigate the time-dependent
transport properties of multiwire junctions, and a three-wire
Y junction in particular. These have already been realized
experimentally in crossed single-walled carbon nanotubes
[14,15]. Such Y junctions with interacting quantum wires
are also extremely “rich” from a basic physics viewpoint and
continue to be explored very actively in the literature [16–31].
Earlier theoretical studies of Y junctions have primarily
focused on the fixed points of the junction, their stability
analysis, and the associated dc conductivity. These studies
either use the fermionic language and the weak-interaction
renormalization-group (RG) approach [17], the bosonic and
conformal field theory language [19,21], or other numerical
methods such as the functional RG [20]. A comprehensive
study of the fixed points of the Y junction formed from spinless
interacting electrons, and the dc conductance, was carried
out in Ref. [19]. This was later extended to include spinful
electrons giving a much richer phase diagram in the parameter
space of charge and spin interactions [24], and to account for
different interaction strengths in different wires [30].

Time-dependent transport properties of 1D TLL wires have
also been studied earlier. Quantum noise for an infinite TLL
wire with pointlike tunneling impurity, around the “connected”
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fixed point of a two-wire junction, was studied in Ref. [32].
The ac conductivity of a clean finite-length TLL wire was
calculated in Refs. [10,33]. This has been recently generalized
to include arbitrary wave-packet shapes of the incident current
in Ref. [34]. Comparatively, the time-dependent transport
properties of Y junctions have drawn much less attention in
the literature and it is the aim of this paper to rectify this.

In this paper, we study the ac conductivity, the tunneling
current, and quantum noise (including shot noise and Joseph-
son noise) of a Y junction tuned to a dissipationless fixed
point with spinless TLL wires. We consider both time-reversal
symmetry (TRS)-preserving and TRS-violating junctions and
use the single-parameter description of the dissipationless
fixed points of the junction given in Refs. [21,26]. Our analysis
may be useful for interpreting time-resolved experiments
[13] in multiwire junctions and for designing nanoelectronic
quantum circuits [35].

This paper is organized as follows. In Sec. II, we discuss
the details of the three-wire Y junction and show that both the
Coulomb interactions in the wire and the “scattering” boundary
conditions at the junction can be treated using bosonization
with delayed evaluation of the boundary conditions [19]. In
Sec. III, we calculate the ac conductivity of the Y junction
formed from finite-length TLL wires which are connected to
FL leads—see Fig. 1(a). We also reproduce the known results
for a two-wire junction, and the dc conductivity as a limiting
case of our calculations. In Sec. IV, we calculate the tunneling
current and quantum noise at the junction with infinite TLL
wires [see Fig. 1(b)], in the presence of pointlike tunneling
impurities at the Y junction tuned to a dissipationless fixed
point. Finally, we summarize our findings in Sec. V.

II. BOSONIZATION OF THE JUNCTION—DELAYED
EVALUATION OF THE BOUNDARY CONDITION

In this section, we review the technique of bosonization
for the wire and, subsequently, the parametrization of the
dissipationless fixed points at the junction.

A. Bosonization of the wires

To model a junction of multiple wires, let us assume that N
semi-infinite wires meet at a junction. The wires are modeled as
spinless TLL on a half line and are parametrized by coordinates
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FIG. 1. (Color online) Schematic of a Y junction composed of
TLL wires. (a) A Y junction of finite-length TLL wires (red)
connected to Fermi-liquid leads at the ends (blue) with different
applied voltages. (b) A Y junction of infinite TLL wires.

xi, i = 1,2, . . . ,N , such that xi > 0. We use a folded basis to
describe the junction, i.e., we choose a convention that for all
the wires, xi = 0 at the junction and xi increases from 0 as
one goes outwards from the wires. We denote the incoming
and outgoing single-electron wave functions on wire i by φiI

and φiO, respectively, which in turn are proportional to plane
waves exp[−ik(xi + vt)] and exp[ik(xi − vt)], respectively,
for a given wave number k > 0 and velocity v. For simplicity of
analysis, we consider all the semi-infinite spinless TLL wires
to have the same short-range electron-electron (e-e) interaction
strength and Fermi velocity.

The spinless electron field on each wire can be expressed
as ψ(x) = ψI(x) + ψO(x) where the incoming/outgoing
fermionic fields ψI/O can be bosonized [5] as

ψI(x) = 1√
2πα

FIe
2iπNI(x+vt)/Le−ikFx+iφI(x),

ψO(x) = 1√
2πα

FOe2iπNO(x−vt)/LeikFx+iφO(x). (1)

Here, FI and FO are Klein factors for the incoming and
outgoing electrons, respectively, kF is the Fermi momentum,
and α is the inverse ultraviolet (short-distance) cutoff. NI

and NO count the number of incoming and outgoing chiral
particles with respect to the filled Fermi sea. The fields φI(x)
and φO(x) are the incoming (left-moving) and the outgoing
(right-moving) chiral bosonic fields in each wire and can be
expressed in terms of the bosonic creation and destruction
operators as

φO/I ≡
∑
q>0

1√
nq

(bqO/Ie
±iqx + b

†
qO/Ie

∓iqx)e−α|q|/2. (2)

The Lagrangian of the system is given by L = L0 + Lint,
where L0 describes free electrons in the wire, and is given
by

L0 = 1

4π

N∑
i=1

∫ L

0
dx[∂xφiO(−∂t − v∂x)φiO

+ ∂xφiI(∂t − v∂x)φiI)], (3)

where v denotes the Fermi velocity which we take to be same
in all the wires and i is the wire index. The corresponding
incoming and outgoing density and current fields in each wire

are given by

ρiO = ∂xφiO

2π
+ NiO

L
, JiO = −∂tφiO

2π
− NiO

L
,

(4)

ρiI = −∂xφiI

2π
+ NiI

L
, JiI = ∂tφiI

2π
− NiI

L
.

We emphasize here that the second term in the expressions
for density and current arise from an excessive number of
incoming and outgoing fermions with respect to the ground
state (filled Fermi sea), and can be controlled by applying
an external dc voltage in each TLL wire. These terms will
be very useful in Sec. IV, where we apply different dc bias
voltage on each of the three wires. However, for calculating
the ac conductivity in Sec. III, only the first term of the current
expression (temporal derivative of the fluctuating fields) is
needed since the average dc voltage is zero in all the wires,
and we will use the notation

jiO = −∂tφiO

2π
and jiI = ∂tφiI

2π
, (5)

in Sec. III.
For a short-range e-e interaction between the two chiral

modes in the wire, the term in the Lagrangian for each wire i

is of the form

Li
int = λ

4π

∫ L

0
dx∂xφiI∂xφiO, (6)

where λ is the e-e interaction strength (positive for repulsive
interactions) with the dimensions of velocity. Note that for
each of the wires described by Eqs. (3) and (6), the effective
TLL velocity and the effective TLL interaction strength are
given by

ṽ =
√

v2 − λ2/4, and g =
√

v − λ/2

v + λ/2
. (7)

B. Bosonization of the junction

To describe the junction uniquely, we need to impose an
appropriate boundary condition on the fields at the junction,
i.e., at x = 0. Following standard procedure [19,21,26], the
incoming and outgoing currents and, consequently, the bosonic
fields are related at the junction by a current splitting matrix
M, i.e., jOi = ∑

j Mij jIj , which leads to φOi = ∑
j Mij φIj .

Here we have ignored an integration constant which plays no
(physical) role in the computation of the Green’s functions
of the fields and, consequently, on the scaling dimensions
of various operators. In order to ensure that the matrix M
represents a fixed point of the theory, the incoming and
outgoing fields must satisfy appropriate bosonic commutation
relations; this restricts the matrix M to be orthogonal.
Scale invariance or conformal invariance imposes the same
constraints of orthogonality [25] on M. The constraint of
orthogonality also implies that there is no dissipation in the
system [36]. In addition, to ensure current conservation at the
junction, its rows (or columns) have to add up to unity.

Since φO and φI are interacting fields, we need to perform
a Bogoliubov transformation on them,

φO/I = 1

2
√

g
[(1 + g)φ̃O/I + (1 − g)φ̃I/O], (8)
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to obtain the corresponding “free” outgoing and incoming
(φ̃O/I) chiral fields, which satisfy the “free” field com-
mutation relations: [φ̃O/I(x,t),φ̃O/I(x ′,t)] = ±iπsign(x − x ′),
where the sign function is defined as sign(x) = 1,0,−1 for
x > 0, x = 0, and x < 0, respectively. However, unlike the
usual Bogoliubov transformation in the bulk, here we also
need to consider the effect of the junction matrix M relating
the interacting incoming and outgoing fields [21], which leads
to a “Bogoliubov transformation” of the matrix: M → M̃.
Qualitatively, M is related to tunnelings between the different
wires and tunneling in each wire, at a dissipationless junction.
The Bogoliubov transformed matrix M̃ which relates the free
incoming and outgoing fields, φ̃Oi(x) = ∑

j M̃ij φ̃Ij (−x), is
given by

M̃ = [(1 + g)I − (1 − g)M]−1[(1 + g)M − (1 − g)I]. (9)

We emphasize that this description is valid for a dissipationless
junction of any number of interacting one-dimensional wires.

For the case of a two-wire junction, there are only two
classes of orthogonal matrices: a rotation matrix whose
determinant is 1 and a reflection matrix whose determinant
is −1. The constraint that the columns (or rows) add up to one
implies that there is only one matrix in each class. These are
given by (

1 0
0 1

)
and

(
0 1
1 0

)
, (10)

which corresponds to the cases of the “disconnected” and the
“connected” fixed points of a two-wire junction, respectively.
In what follows, we focus on a three-wire Y junction.

A detailed study of the three-wire spinless TLL junction
using bosonization and boundary conformal field theory can
be found in Refs. [19,25]. In particular, for a three-wire charge-
conserving junction, all current splitting orthogonal matrices
M whose rows add up to one can be parametrized by a single
continuous parameter θ , and are divided into two classes on
the basis of TRS: detM1 = 1, and detM2 = −1. These two
classes of matrices are explicitly given by

M1 =
⎛⎝a b c

c a b

b c a

⎞⎠ , M2 =
⎛⎝ b a c

a c b

c b a

⎞⎠ , (11)

where a = (1 + 2 cos θ )/3, b = (1 − cos θ + √
3 sin θ )/3,

and c = (1 − cos θ − √
3 sin θ )/3. This gives us an explicit

single-parameter characterization of the two families of fixed
points; any fixed point in the theory can now be identified in
terms of θ , with the fixed points at θ = 0 and θ = 2π being
identical.

Note that the current splitting matrix M preserves TRS,
only if it is symmetric. Thus the junction current splitting
matrices belonging to the M2 class represent an asymmetric
class (in wire indices) of fixed points for systems with
TRS. The M1 class represents a Z3 symmetric (in the wire
index) class of fixed points and generally denotes systems
with broken TRS, which can arise, for instance, due to a
magnetic field at the junction (assuming a finite cross-sectional
area). In the M1 class of fixed points, only two points
given by θ = 0,π , at which the asymmetry producing sin θ

term vanishes, are TRS invariant. For the M1 class, θ = π ,

or [a,b,c] = [−1/3,2/3,2/3], corresponds to the so-called
Dirichlet fixed point (DP ). The disconnected fixed point (N ),
where there is no tunneling between any pair of wires, is given
by θ = 0 (i.e., [a,b,c] = [1,0,0]). The cases of θ = 2π/3
(i.e., [a,b,c] = [0,1,0]) and 4π/3 correspond to the chiral χ−
and χ+ fixed points, respectively, following the notation of
Ref. [19].

Note that the M2 class of fixed-point matrices has the
interesting property that (M2)2 = I. As a consequence,
M̃2 = M2, which implies that both the interacting and
the free fields satisfy identical boundary conditions
at the junction. This is not true for the M1 class of
fixed-point matrices, but the matrix M̃1 still has the
same form as the matrix M1 with the corresponding
parameters given by ã = [3g2 − 1 + (3g2 + 1) cos θ ]/δ
and b̃/c̃ = 2(1 − cos θ ± √

3g sin θ )/δ, where δ =
3[1 + g2 + (g2 − 1) cos θ ]. Note that the matrices M̃1

are nonlinear functions of the TLL parameter g, while the
matrices M̃2 are independent of g. This will have nontrivial
manifestations for physical observables (e.g., quantum noise,
tunneling current, etc.—see Sec. IV), when we consider
a junction slightly away from the fixed points, as scaling
dimensions of operators switched on perturbatively around
the M1 class will generally be nonlinear functions of g. On
the other hand, for the M2 class of fixed points, the scaling
dimensions of operators will always be linear functions of g.

Having characterized the junction, we now proceed to study
the ac conductivity of a Y junction formed from finite-length
TLL wires, connected to FL leads—see Fig. 1(a).

III. AC CONDUCTIVITY

In this section, we consider an incident charge wave packet
originating in the FL lead connected to one of the TLL wires,
say i, and its consequent motion after undergoing charge
fractionalization at the FL-TLL boundaries and at the junction.
This will also allow us to calculate the low-frequency ac current
splitting matrix S, which relates the complex amplitudes
of the incoming ac currents to the complex amplitudes of
the outgoing current, in the linear response regime. Such a
time-resolved measurement of an incident wave packet in a
TLL wire of integer quantum Hall edge channels was recently
used to identify a single-charge fractionalization event [13]. In
our language, this corresponds to a two-wire junction tuned
to be at the “connected” fixed point (effectively a single
finite-length TLL wire connected to FL leads).

In the dc limit, i.e., ω → 0, all signatures of charge frac-
tionalization are lost and S → M, which is the noninteracting
current splitting matrix for a junction with finite TLL wires
connected to the FL leads [Fig. 1(a)]. For a junction with TLL
wires extending to infinity, it simply reduces to the interacting
current splitting matrix at the junction for all frequencies,
S → M̃, since there is no FL-TLL interface. However, for
finite-length wires at finite frequencies, S depends on the
fixed point, the strength of the e-e interaction, and the length
of the TLL wires L, and it carries the signature of charge
fractionalization events at the FL-TLL boundary.

In our model of the junction, there is no mechanism of
power dissipation. Thus the average over one oscillation cycle
of the incoming energy must be equal to the average outgoing

195403-3



AMIT AGARWAL PHYSICAL REVIEW B 90, 195403 (2014)

energy per cycle. This imposes the constraint of unitarity on
the S matrix, which also serves as a useful check for our
calculations. Also note that we are considering all three wires
to have the same Fermi velocity and e-e interaction strengths,
and these are connected at the junction described by boundary
conditions which are cyclic in nature. Thus we expect to have
only a few independent coefficients in S, which should also
appear in a cyclic manner.

Before discussing the solution of the generalized plasmon
scattering problem [34] at the junction, we emphasize that this
calculation is valid only in the linear response regime and only
for ac frequencies which do not breach the linearization regime
for each TLL wire, i.e., ω < v/α. Also note again that we use
a folded basis for describing the junction such that all the wires
go from x = 0 to x = ∞ and the junction lies at x = 0.

The time evolution of the “injected” wave packet is given
by the coupled equation of motion (EOM) for the expectation
value of the incoming (φiI) and outgoing (φiO) fields in wire
i, which are governed by the Lagrangian given in Eqs. (3) and
(6). The EOM are

∂x

[
∂tφiI − v∂xφiI + λ

2
∂xφiO

]
= 0, (12)

∂x

[
∂tφiO + v∂xφiO − λ

2
∂xφiI

]
= 0. (13)

Let us now consider an electronic wave packet incident on TLL
wire i from the FL lead. The incoming bosonic field φI(x,t)
in the FL lead (x > L) can be expressed in terms of scattering
states of energy ω = vq by the following relation:

φiI(x,t) =
∫ ∞

−∞

dq

2π
φiI(q)e−i[q(x−L)+ωt]. (14)

Here, φiI(q) is specified by the Fourier transform ρiI(q) of the
incident charge density in wire i, ρiI(x,t = 0), by the relation
φiI(q) = 2π

iq
ρiI(q)—see Eq. (4). The extra factor of eiqL in the

above equation just shifts the position of the origin of the axis
in the FL leads, and it simplifies the calculations below. The
outgoing bosonic scattering state in the FL lead of wire j due
to in injected state in wire i only is given by

φ
(i)
jO(x,t) =

∫ ∞

−∞

dq

2π
φ

(i)
jO(q)ei[q(x−L)−ωt], (15)

where the outgoing amplitude in the momentum space is
related to the incoming amplitude via the elements of the ac
current splitting matrix:

φ
(i)
jO(q) = sji(q)φiI(q), (16)

with sji denoting the matrix elements of S and q = ω/v. We
emphasize here that we are considering all the wires to have
the same Fermi velocity. In the case of the bosonic states being
incident in all the wires, the total outgoing bosonic field gets
contribution from all the incoming fields and it is explicitly
given by φjO(x,t) = ∑

φ
(i)
jO(x,t) or, equivalently,

φjO(x,t) =
∑

i

∫ ∞

−∞

dq

2π
sji(q)φiI(q)ei[q(x−L)−ωt]. (17)

If the elements sij of S are known, then the total
time-dependent density (ρ = ρI + ρO) and the total outgoing
current (j = jI + jO) in the FL of wire j , due to an incoming
wave packet in wire i, is given by

ρ
(i)
j (x,t) =

∫ ∞

−∞

dq

2π
ρiI(q)e−iωt [e−iq(x−L)δij + sjie

iq(x−L)],

(18)
and

j
(i)
j (x,t)=v

∫ ∞

−∞

dq

2π
ρiI(q)e−iωt [−e−iq(x−L)δij+sjie

iq(x−L)].

(19)
In the TLL wire region (x < L), the incoming and outgoing

fields, corresponding to a situation when there is only an
incoming field in wire i, are given by

φ
(i)
j I

O
(x,t) =

∫ ∞

−∞

dq

2π
φiI(q)e−iωt

(
a

(i)
j I

O
e−ikx + b

(i)
j I

O
eikx

)
. (20)

Here the ac frequency ω = ṽk, where ṽ is the renormalized
Fermi velocity in the TLL region and is given by Eq. (7). Note
that in Eq. (20) above, q is the wave vector in the noninteracting
FL leads, and k denotes the wave vector in the interacting TLL
region for the fixed incoming energy ω and they are related to
each other via the equation k = vq/ṽ.

We now proceed to solve the “plasmon scattering” problem
and obtain the elements of S. Let us consider an incoming
current (from FL lead) only in wire 1. The continuity of the
incoming and the outgoing currents at x = L [using Eqs. (14),
(15), and Eq. (20), in Eq. (5)] gives the following equations in
each wire (six in all):

a
(1)
iI e−ikL + b

(1)
iI eikL = δi1, (21)

a
(1)
iO e−ikL + b

(1)
iOeikL = si1, (22)

where si1 are the elements of the first column of S, and the
superscript is used to indicate that the incoming current is in
wire 1. Within the TLL region (x < L), substituting Eq. (20)
in Eqs. (12) and (13) gives the following set of equations for
each wire (six in all):

2(ω − vk)a(1)
iI + kλa

(1)
iO = 0, (23)

2(ω − vk)b(1)
iI − kλb

(1)
iO = 0, (24)

in addition to the consistency condition ω = ṽk, with ṽ =√
v2 − λ2/4. Besides these, the boundary condition at the

junction (x = 0) is given by the field (current) splitting matrix
M as

a
(1)
iO + b

(1)
iO =

∑
j

Mij

(
a

(1)
j I + b

(1)
j I

)
. (25)

Solving these 15 equations simultaneously gives us the three
elements of the first column of the ac current splitting matrix.
Repeating this calculation for the case with an incoming unit
current in the other wires will give us the elements in the other
two columns.
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A. TRS-preserving (M2) fixed points

Let us first consider the TRS-preserving systems, i.e., Y
junctions with the M2 class of fixed points. Following the
procedure described above, we calculate the ac current splitting
matrix S, which has only six independent components. These
are are given by

s11 = 1

ξ
[2ṽb − iλ sin(2kL)], (26)

s22 = 1

ξ
[2ṽc − iλ sin(2kL)], (27)

s33 = 1

ξ
[2ṽa − iλ sin(2kL)], (28)

s21 = 2

ξ
ṽa, (29)

s31 = 2

ξ
ṽc, (30)

s32 = 2

ξ
ṽb, (31)

where a, b, and c are defined below Eq. (11), and, finally,

ξ = 2[ṽ cos(2kL) − iv sin(2kL)]. (32)

We note again that the ω dependence ofS appears in Eqs. (26)–
(32) via k which is defined after Eq. (24).

The other elements of S are given by s12 = s21,s13 =
s31, and, finally, s23 = s32. Note that the three off-diagonal
elements and the three diagonal elements have a very similar
structure and differ only due to the different corresponding
element in the current splitting matrix M2 at the junction.

To get some physical insight for the form of S, let us
consider the specific case of a junction with θ = 0 in the
M2 class, i.e., [a,b,c] = [1,0,0], which parameterizes the
case of wires 1 and 2 being directly connected, effectively
becoming one wire of length 2L, and wire 3 being completely
disconnected from the other two. For this case, Eqs. (26) and
(29) reduce to

s11 = −i(λ/2) sin 2kL

ṽ cos(2kL) − iv sin(2kL)
, (33)

s21 = ṽ

ṽ cos(2kL) − iv sin(2kL)
. (34)

As a check of our calculations, we note that Eqs. (33) and
(34) are identical to the set of equations given in Eq. (17) of
Ref. [37], which were derived for counterpropagating quantum
Hall edge states which interact with each other. Furthermore,
this simpler case can also be derived by considering a
steplike variation of the interaction strength, i.e., g(x) = g

for −L < x < L, and g(x) = 1 otherwise, in an interacting
1D wire [10,33]. Consider an electronic wave-packet incident
on the interacting region from the noninteracting region.
Fractionalization of charge [11] in the interacting region
implies the reflection of fractional charge q∗ = r0e, where
r0 = (1 − g)/(1 + g) and transmission of a fractional charge
q∗ = t0e into the interacting region, where t0 = 2g/(1 + g).
Other reflection and transmission coefficients for a single

impact are given by r ′
0 = −r0, and t ′0 = 2/(1 + g). The overall

reflection and transmission probability in this case can be
obtained by considering the infinite sequence of reflection
and transmission from the two boundaries of the finite-length
interacting region, and are given by

r(ω) = r0 + t0t
′
0

∞∑
n=1

(r ′
0e

2iωL/ṽ)2n = r0
1 − e4iωL/ṽ

1 − r2
0 e4iωL/ṽ

, (35)

which is identical to Eq. (33). Note that r0 = λ/2(v + ṽ). The
overall transmission coefficient is given by the sum of the
following infinite series:

t(ω) = t0t
′
0e

2iωL/ṽ

∞∑
n=0

(r ′
0e

2iωL/ṽ)2n = t0t
′
0e

2iωL/ṽ

1 − r2
0 e4iωL/ṽ

, (36)

and is identical to Eq. (34).
We thus see that the ac scattering coefficients encode the

full history of the trajectory of the electron including multiple-
charge fractionalization events at the FL-TLL interfaces, and
at the junction.

B. TRS-violating (M1) fixed points

We now consider the case of Y junctions which do not
preserve TRS, i.e., the M1 class of fixed points. In this case,
the S matrix has the same cyclic form of the M1 class of
matrices and it has only three independent elements, since all
the diagonal elements of M1 are identical. Following the same
procedure as in the previous case, we calculate the elements
of S to be

s11 = λ−1η−1[ṽ(8ṽ{2ṽe3ikL cos(kL)[2λ cos θ + 3 cos(2kL)

× (−2λ cos θ − λ + 4v)+λ − 12v] − 3ṽ2(−1 + e2ikL)

× (1+e2ikL)2 + ie3ikL sin(kL)[3λ(2 cos θ + 1)(2v − λ)

× cos(2kL) − 2λ cos θ (2v+λ)+(6v + λ)(4v − λ)]}
− 3(−1 + e2ikL)2(1 + e2ikL)(λ3 + 16v3 − 8λv2 cos θ

− 4λv2)) + 3v(−1 + e2ikL)3(2v − λ)(λ2

+ 4v2 − 4λv cos θ )], (37)

where

η = 12e3ikL[2ζ − λ sin(kL)]{[2ζ − λ sin(kL)]2

+ 4iλ sin(kL)ζ (1 − cos θ )} (38)

and

ζ = ṽ cos(kL) − iv sin(kL). (39)

The other elements of S are given by

s21 = −48η−1ṽ2e3ikL[2ζc − iλ sin(kL)b], (40)

s31 = 48η−1ṽ2e3ikL[2ζ ∗c + iλ sin(kL)b], (41)

along with s22 = s33 = s11,s12 = s23 = s31, and, finally, s13 =
s32 = s21.

In Fig. 2, we plot the absolute values of some of the elements
of S, as a function of the incoming energy (ω = ṽk) and the
parameter θ describing the fixed points of the junction. Note
that unlike the dc conductivity, the ac current amplitudes carry
signatures of the e-e interactions, i.e., they depend on the e-e
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FIG. 2. (Color online) The amplitudes of the ac current splitting
matrix for (a) the M1 class as a function of the frequency ω at the
fixed point parameterized by θ = π/3, (b) the M1 class as a function
of θ for ωL/v = π/2, (c) the M2 class as a function of ω with
θ = π/3, and (d) theM2 class as a function of θ for ωL/v = π/2. The
curves marked by blue squares, red circles, and magenta diamonds
represent |s11|,|s21|,|s31|, respectively, in all of the panels. The e-e
interaction strength is chosen to be λ = 0.5v (which gives ṽ = 0.97v

and g = 0.88).

interaction strength λ and the finite length L of the TLL wires.
The amplitudes oscillate as a function of the frequency of the
incident ac current with a period of 2πṽ/L for the M1 class of
fixed points and with a period of πṽ/L for theM2 class of fixed
points, as can be seen from Figs. 2(a) and 2(c), respectively.
Experimentally, such measurements of oscillations of the ac
current amplitude as a function of the frequency may be used to
classify the Y junctions, whose fixed point may not be known
a priori.

Motivated by recent time-resolved experiments on 1D TLL
wires [13,34], we study the propagation of a wave-packet
incident from a FL lead in wire 1, in Fig. 3. Note that the results
depicted in Fig. 3(a) are similar to the results for reflected
current in type-I geometry for a 1D TLL wire, reported in
Ref. [13]. Our results generalize the recent results of Ref. [34],
for arbitrary-shaped wave-packet propagation in a single TLL
wire to the case of multiwire junctions.

C. The DC limit

In the linear response regime, the dc conductivity of the Y
junction is different if the TLL wires are connected to FL leads
and if the TLL wires extend to infinity. This is well known for
the case of a single TLL wire, whose linear dc conductance is
e2/h when connected to FL leads and is ge2/h for an infinite
TLL wire [38].

To obtain the dc conductivity for a Y junction connected to
FL leads, from our ac results, we note that in the dc limit, i.e.,
as ω → 0 (or as k → 0), for both classes of fixed points we
have

lim
ω→0

S = M. (42)
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(b)(a)

(d)(c)

FIG. 3. (Color online) Pulse propagation in a Y junction as a
function of time, for an incoming current only in wire 1. For the
junction tuned to θ = 0 fixed point of classM2, (a) shows the outgoing
reflected current in wire 1 and (b) shows the outgoing transmitted
current in wire 2. In this case, wires 1 and 2 are completely connected,
effectively becoming one wire, and wire 3 is completely disconnected.
For the junction tuned to the chiral fixed point χ+, i.e., θ = 4π/3 of
theM1 class of fixed points, (c) shows the outgoing (reflected) current
in wire 1 and (b) shows the outgoing (transmitted) current in wire 3.

This implies I out
i = ∑

j Mij I
in
j , where we have defined I

in(out)
i

to be the current flowing towards (away from) the junction
in the TLL wire i. Further if Vj is the voltage applied in
the FL lead connected to wire j , then the incoming current
(per spin) is related to it by I in

i = ∑
j (e2/h)δijVj . Now using

the definition of the junction conductance G, which relates
the net current flowing towards the junction to the external
voltages, i.e., Ii ≡ I in

i − I out
i = ∑

j GijVj , we obtain the dc
conductance matrix (per spin orientation) to be

G = (e2/h)(I − M). (43)

For a Y junction with TLL leads extending to infinity, the
voltage applied in the LL lead of wire j is related to the
incoming current by I in

i = ∑
j (ge2/h)δijVj , and the current

splitting matrix at the junction is M̃. Thus the conductance
matrix (per spin) is given by

G = (ge2/h)(I − M̃). (44)

As a check of Eqs. (43) and (44), we note that they are
consistent with the conductance of several fixed points reported
in Ref. [19] using the Kubo formula and other methods.
We emphasize here that the dc conductivity for a junction
of finite-length TLL wires connected to FL leads does not
carry any signature of interactions and charge fractionalization
events in the system. In contrast, the ac conductivity depends
on the e-e interactions as well as the length of each wire.

In the next section, we consider a Y junction of infinite-
length TLL wires [see Fig. 1(b)], with pointlike tunneling
impurities at the junction, and calculate the “tunneling” current
and quantum noise at the junction.
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IV. TUNNELING CURRENT AND TUNNELING
NOISE AT THE JUNCTION

We now consider the effect of pointlike charge-conserving
tunneling operators between infinite TLL wires, at the junction
(x = 0), and study the tunneling current and low-frequency
quantum noise arising due to these. Note that each of the
boundary conditions at the junction characterized by θ corre-
sponds to a scale invariant boundary condition, or a RG fixed
point, of the bosonic field theory. The knowledge of M at each
θ thus completely specifies all the reflection and transmission
amplitudes at the level of the Hamiltonian for the Y junction—
see Ref. [19]. Additional small tunneling (boundary operators)
between wires may be treated as a small variation of the
amplitudes. If all of the tunneling operators at the junction are
irrelevant in a RG sense, then the fixed point is stable; other-
wise, switching on of relevant tunneling operators around any
fixed point makes the junction “flow” to another fixed point on
changing length and energy scales in the system. In our case, a
tunneling operator is relevant (irrelevant) if the boundary scal-
ing dimension of the tunneling operators is less than (greater
than) unity, i.e., d0 < 1 (d0 > 1). However, we emphasize that
as long as the wire length is not very large (as compared to
the other length scales set by the temperature or the external
voltages), such that the RG flow does not take one far away
from the fixed point (either stable or unstable), the calculations
described in this section are still valid for all fixed points. A
similar setup was used in Ref. [29] to study rectification in a
Y junction of TLL wires, which was found to be strongest for
junctions violating TRS and for strongly coupled junctions.

We consider very narrow (pointlike) tunneling barriers, so
that the time duration of the tunneling event is much smaller
than the time duration between two successive tunneling
events. Such discrete tunneling events lead to the so-called shot
noise, whose spectrum carries the signature of correlations
between different tunneling events. In addition, we also
have different voltages in different leads. This leads to the
so-called Josephson noise, which arises from the quantum
interference of the wave functions, on different sides of the
tunneling impurity (different wires in our case), and it may
lead to a divergence in the noise spectrum at frequency
ω = qVeff/h, where Veff is the effective voltage difference
that the tunneling operator is subjected to [32]. In what
follows, we derive the tunneling noise at the junction from
a perturbative calculation, which gives both the shot-noise and
Josephson-noise contributions.

In a clean junction (no tunneling “impurity”), the current
in wire i is given by Ii = GijVj , where G is given by Eq. (44)
for a Y junction with infinite TLL wires. The switching on of
the tunneling operators (ψ†

iOψj I) in the vicinity (xi � 1/kF)
of the Y junction, which is tuned to be at a particular fixed
point, leads to an additional tunneling current δIi , such that
I total
i = Ii + δIi . If the tunneling Hamiltonian is expressed as

Htunn = γψiO(0,t)†ψj I(0,t) + H.c., (45)

then the tunneling current operator (δÎi) is defined by

δÎi(t) = q
dρ̂iO

dt
= −iq�

−1[ρ̂iO,Ĥtunn]

= iqγ �
−1[ψ†

iOψj I − H.c.]. (46)

It can be calculated at any time t from the following expression:

〈δÎi〉 = 〈0|S(−∞; t)δÎi(t)S(t ; −∞)|0〉, (47)

where |0〉 denotes the ground state of the unperturbed system,
i.e., the initial state at t → −∞. Here, S is the scattering matrix
arising due to the tunneling impurities, and it is given by

S(t ; −∞) = S†(−∞; t) = T e−i�−1
∫ t

−∞ Ĥtunn(t ′)dt ′ , (48)

where T denotes the time-ordering operator. Using the
notation B̂ij (x,t) ≡ ψ

†
iOψj I for the tunneling operator, and

expressing the fermionic operators in terms of bosonic fields
using Eq. (1), we get

B̂ij (x,t)

= 1

2πα
F

†
iOFj Ie

i(2π/L)(NiO−Nj I)vt e−iφj I(x,t)e−iφiO(x,t). (49)

The tunneling current, in terms of the tunneling operator, is
δÎi(t) = iqγ �

−1[B̂ij (t) − H.c.], while the scattering matrix is
given by S(t,−∞) = 1 − i�−1γ

∫ t

−∞ dt ′[B̂ij (t ′) + H.c.], up to
first order in the tunneling amplitude γ . Thus the expectation
value of the tunneling current operator, up to second order in
γ , is given by

δIi = qγ 2

�2

∫ t

−∞
dt ′〈0|[B̂†

ij (t)Bij (t ′)−B̂ij (t ′)B̂†
ij (t)] + H.c.|0〉.

(50)

The symmetrized noise is given by the Fourier transform of
the current-current correlator,

S(ω) =
∫ ∞

−∞
dte−iωt 〈δÎi(t)δÎi(0) + δÎi(0)δÎi(t)〉, (51)

and up to second order in γ , we obtain

S(ω) = q2γ 2

�2

∫ ∞

−∞
dte−iωt

×〈0|[B̂ij (t)B†
ij (0) + B̂ij (t)B̂†

ij (0)] + H.c.|0〉. (52)

To obtain the final expressions for the tunneling cur-
rent and for the symmetrized quantum noise, we need the
ground-state expectation values of operators, such as O ≡
B̂ij (x,t)B̂†

ij (x ′,t ′). Following a standard procedure [5], at zero
temperature (T ), these are given by

〈0|O|0〉 = α2d0

4π2α2

ei 2π
L

〈0|NiO−Nj I|0〉v(t−t ′)

{(x − x ′)2 − [v(t − t ′) − iα]2}d0
, (53)

where d0 is the boundary scaling dimension of the tunneling
operator involved, i.e., B̂ij = ψ

†
iOψj I. For all possible tunnel-

ing operators, d0 is tabulated in Table I for both the M1 and
M2 class of fixed points [26]. In addition, we also have terms
such as NiO − Nj I in the exponential whose expectation values
depend on the external chemical potentials μi (or voltages Vi)
applied on each wire in the grand canonical ensemble picture.
The outgoing NiO are related by the current splitting matrix M
to the incoming NiI, which are in turn related to the external
reservoir voltages. Thus we have

NiO =
∑

p

MipNpI and
hv

L
〈NiI〉 = μi = qVi. (54)

195403-7



AMIT AGARWAL PHYSICAL REVIEW B 90, 195403 (2014)

TABLE I. Scaling dimensions of various tunneling operators for
both M1 and M2 classes of fixed points.

Operators (M1 class) Scaling dimension (d0)

ψ
†
iOψiI

4g(1−cos θ)
3[g2+(g2−1) cos θ+1]

ψ
†
2Oψ1I,ψ

†
3Oψ2I,ψ

†
1Oψ3I

2g(cos θ+√
3 sin θ+2)

3[g2+(g2−1) cos θ+1]

ψ
†
1Oψ2I,ψ

†
2Oψ3I,ψ

†
3Oψ1I

2g(cos θ−√
3 sin θ+2)

3[g2+(g2−1) cos θ+1]

Operators (M2 class) Scaling dimension (d0)
ψ

†
1Oψ1I

1
3 g(2 + cos θ − √

3 sin θ )
ψ

†
2Oψ2I

1
3 g(2 + cos θ + √

3 sin θ )
ψ

†
3Oψ3I

2
3 g(1 − cos θ )

ψ
†
1Oψ2I,ψ

†
2Oψ1I

3+g2

6g
(1 − cos θ )

ψ
†
2Oψ3I,ψ

†
3Oψ2I

3+g2

12g
(2 + cos θ − √

3 sin θ )

ψ
†
3Oψ1I,ψ

†
1Oψ3I

3+g2

12g
(2 + cos θ + √

3 sin θ )

The expectation value of 〈NiO − Nj I〉 now defines a new
frequency scale which is related to external voltages by

ω0 ≡ 2πv

L
〈NiO−Nj I〉 = h−1q

(∑
p

(MipVp) − Vj

)
, (55)

where j and p are wire indices. Physically, �ω0 is the
effective voltage difference that the tunneling operator “feels”
(is subjected to) for an electron incoming in lead j and finally
outgoing in lead i.

We now proceed to calculate the tunneling current by
substituting Eqs. (55) and (53) in Eq. (50). A straightforward
calculation, using the integral

I± =
∫ ∞

−∞
dt ′

e±iω0t
′(

α
v
−it ′

)2d0
= 2π |ω0|2d0−1

�(2d0)
e− α|ω0 |

v θ (∓ω0) (56)

gives

δIi = q
2πγ 2

h2α2

1

�(2d0)

(
α

v

)2d0

|ω0|2d0−1sign(ω0). (57)

Here, �(2d0) appearing in the denominator is the gamma
function. The scaling dimension d0, in general, depends on
the strength of interactions and the fixed point (θ ) that the
junction is tuned to. It is tabulated in Table I, and a contour
plot of d0 in the (θ,g) parameter space is presented in Fig. 4.
For the case of a “noninteracting” junction, i.e., d0 → 1 (which
is equivalent to the case of g → 1 in a single-wire scenario),
δIi |d0→1 = q

2πγ 2

h2v2 ω0. In the limiting case of d0 → 1/2 (which
is equivalent to the case of g → 1/2 in the single-wire
scenario), we have δIi |d0→ 1

2
= q

2πγ 2

h2αv
sign(ω0).

To relate it to an earlier work, let us consider the fixed point
θ = 0 of theM2 class, i.e., [a,b,c] = [1,0,0], which represents
the specific case of wires 1 and 2 being directly connected
and wire 3 being completely disconnected. Now consider
a tunneling operator ψ

†
2Oψ2I, for which ω0 = h−1q(V1 −

V2) and d0 = g. The tunneling current in this case is
given by

δIi = q
2πγ 2

h2α2

1

�(2g)

(
α

v

)2g

|h−1q(V1 − V2)|2g−1, (58)

which has earlier been reported in the context of current
enhancement by a tunneling impurity in Ref. [39], and as a
limiting case of two or more impurity scattering in TLL wires
in Refs. [40,41].

Equation (57) can be generalized to finite temperatures by
using the following transformation [32]:

I± =
∫ ∞

−∞
dt ′

e±iω0t
′(

α
v

− it ′
)2d0

→ eiπd0

∫ ∞

−∞
dt ′

e±iω0t
′∣∣ sinh(πT t ′)

πT

∣∣2d0
,

(59)
which gives

I±(T ) = 2(πT )2d0−1B

(
d0 + iω0

2πT
,d0 − iω0

2πT

)
e± ω0

2T , (60)

where T denotes the temperature in units of kB/�, with kB

being the Boltzman constant, and B(x,y) = B(y,x) is the
β function. The β function can also be written in terms of
the � function: B(x,y) = �(x)�(y)/�(x + y). The tunneling
current at finite T � �v/α is now given by

δIi(T ) = q
4γ 2

h2α2

(
α

v

)2d0

(πT )2d0−1

×B

(
d0 + iω0

2πT
,d0 − iω0

2πT

)
sinh

(
ω0

2T

)
. (61)

In the limiting case of d0 → 1, we can use the identity
�(1 + ix)�(1 − ix) = πx/ sinh(πx) to obtain δIi(T )|d0→1 =
q

2πγ 2

h2v2 ω0, independent of the temperature. For the case of d0 →
1/2, one can use the identity �(1/2 + ix)�(1/2 − ix) =
π/ cosh(πx) to get δIi(T )|d0→ 1

2
= q

4πγ 2α

h2v
tanh[ω0/(2T )].

The symmetrized quantum noise, up to second order in the
tunneling strength γ , can also be calculated in a similar fashion
and is given by

S(ω) = q2 2πγ 2

h2α2

1

�(2d0)

(
α

v

)2d0

× (|ω − ω0|2d0−1 + |ω + ω0|2d0−1). (62)

It can be expressed in terms of the tunneling current as

S(ω) = qδIi(|1 − ω/ω0|2d0−1 + |1 + ω/ω0|2d0−1). (63)

As a check of our calculations, we note that for the specific case
of θ = 0, discussed in the previous paragraph, Eq. (62) of our
paper reproduces Eq. (17) of Ref. [32], in which the authors
studied the perturbative noise for a small point impurity in an
otherwise clean TLL. In the limit |ω/ω0| → 0 or at small
frequencies, S(ω) ≈ 2qδIi independent of the interaction
parameter, which is the typical Schottky’s shot-noise result.
It corresponds to the uncorrelated arrival of particles at the
tunnel barrier, whereby the time interval between arrival times
is described by a Poissonian distribution. In the opposite limit
of |ω0/ω| → 0, we get S(ω) ≈ 2qδIi |ω/ω0|, consistent with
results for noninteracting electrons [32]. In the limiting case of
d0 → 1, for low frequencies (ω < ω0), we have S(ω)|d0→1 =
2qδIi , while for high frequencies (ω > ω0), we have S(ω) =
2qδIi

ω
ω0

, giving a linear dependence on the frequency. Note
that the high-frequency limit of the noise spectrum for d0 → 1
is primarily determined by zero point fluctuations and is
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FIG. 4. (Color online) The scaling dimension for various tunneling operators. (a)–(c) The operators ψ
†
iOψiI, ψ

†
1Oψ2I, and ψ

†
2Oψ1I,

respectively, for the M1 class of fixed points (as they appear in Table I). (d)–(i) The scaling dimensions of various tunneling operators
as they appear in Table I, for the M2 class of fixed points. In all panels, the purple region has d0 < 1/2, the green region represents
1/2 < d0 < 1, and the blue region has d0 > 1. Both the backscattering current and the quantum noise show diverging behavior for d0 < 1/2,
i.e., in the (θ,g) parameter space represented in purple. Also note that the tunneling operators become relevant in the region d0 < 1, i.e., purple
and green regions, and will make the junction “flow” to another fixed point.

independent of the applied voltages, as expected [42]. In the
limit d0 → 1/2, we obtain S(ω)|d0→ 1

2
= 2qδIi .

The noise power spectrum in Eq. (62) can also be general-
ized to include finite-temperature effects. Using the mapping of
Eq. (59), we obtain the finite-temperature symmetrized noise
to be

S(ω) = q2 4γ 2

h2α2

(
α

v

)2d0

(πT )2d0−1[f (ω+ω0)+f (ω − ω0)],

(64)
where

f (x) = cosh

[
x

2T

]
B

(
d0 + ix

2πT
,d0 − ix

2πT

)
. (65)

Note that finite temperature smears the singularities of the
noise power spectrum. The zero-frequency limit of Eq. (64)
gives

S(ω → 0) = 2qδIi(T ) coth

[
ω0

2T

]
, (66)

which is the equivalent of the equilibrium Johnson-
Nyquist noise for a Y junction. For the case of d0 →
1, we get S(ω,T )|d0→1 = q

2πγ 2

h2v2 [h(ω + ω0) + h(ω − ω0)],
where h(x) = x coth[x/(2T )]. For d0 → 1/2, we have
S(ω,T )|d0→1/2 = 2qδIi(T ) coth[ω0/(2T )].

We plot the ratio δI1/δI1(d0 = 1) versus ω0 in Fig. 5(a),
for the backscattering operator ψ

†
1Oψ1I when the junction is

tuned to be at the χ+ fixed point. The divergence of this ratio
whenever 2d0 − 2 < 0 is evident. The ratio S(ω)/2qδI1 is
plotted in Fig. 5(b). This ratio diverges whenever 2d0 − 1 < 0.

An important difference in the three-wire case compared to
the two-wire case is that both ω0 and d0, i.e., the frequency of
divergence in S(ω) as well as the power law of divergence, are,
in general, complicated functions of the boundary conditions
at the junction (M) and the e-e interaction strength. Note that
the noise diverges as ω → ±ω0 when d0 < 1/2. We believe
that this divergence is not a limitation of our γ 2 perturbation
theory and it will persist even if we go to higher orders in
γ , as in the case of a “tunneling” impurity in a single TLL
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FIG. 5. (Color online) The (a) tunneling current and (b) quantum
noise in wire 1, as a function of ω0, for different values of the
interaction strength. The junction is tuned to the “chiral” fixed point
(χ+), i.e., θ = 4π/3 in the M1 class, and the tunneling operator
is chosen to be the backscattering operator ψ

†
O1ψI1. The scaling

dimension of ψ
†
O1ψI1 at the χ+ fixed point for g = (0.3,0.7,1,1.5),

which corresponds to the lines represented by the blue square, red
circle, black solid, and magenta diamond markers, respectively, in
both panels, is given by d0 = (0.39,0.84,1,1.14). We have chosen
ω = 0.1α/v for (b).

wire [32]. However, this divergence is a limitation of our
low-energy theory, and in a realistic experimental scenario
it should be regularized by the highest relevant energy scale
(e.g., temperature or the maximum external voltage) . This
is usually achieved by replacing the ultraviolet energy cutoff
�v/α by kBT or max[V1,V2,V3].

Finally, we note that the results of this section are valid for
an electronic Y junction as well as for a quasiparticle junction
formed from quantum Hall (QH) edge states. The substitution
q → e accounts for electron tunneling and q → νe takes care
of quasiparticle tunneling in QH edge states, where e denotes
the electron charge and ν is the QH filling fraction.

V. SUMMARY AND CONCLUSIONS

In this paper, we investigated the ac conductivity of a Y
junction formed from finite-length TLL wires connected to
FL reservoirs, based on the plasmon scattering approach, for
injected charge pulses of arbitrary shapes. This formalism
gives the full spatiotemporal profile of the charge wave packet
in all the wires, and is therefore very useful for analyzing
time-resolved transport experiments in TLL wires [13,34] and
their junctions. We find that unlike the dc conductivity of a
“clean” junction, the ac conductivity depends on the strength
of the e-e interactions and the length of the wire. Consequently,
it carries signatures of charge fractionalization at the TLL-FL
interface as well as at the junction. The ac conductivity also
displays an oscillatory behavior as a function of the frequency
of the incoming pulse, with the periodicity of πṽ/L for the
time-reversal symmetric junctions, i.e., junctions characterized
by M2 class of fixed points, and with a period of 2πṽ/L

for junctions which break time-reversal symmetry, i.e., those

characterized by the M1 class of fixed points. The limitation
of our calculation is that it is valid only for low ac frequencies
which do not breach the linearization regime of each TLL wire,
i.e., ω < v/α.

Additionally, we consider pointlike tunneling impurities at
the junction of infinite TLL wires, and find the corresponding
tunneling current and quantum noise spectrum. We explicitly
show that the correlations arising from strong e-e interactions
in TLL wires give rise to singularities in the noise spectrum
(calculated up to second order in γ ), as a function of the
frequency or the applied voltage. The divergence in the noise
spectrum for some specific frequencies will possibly persist
to even higher orders in γ , and is an artifact of the effective
low-energy TLL Hamiltonian that we are using. In any realistic
experimental scenario, the high-energy or ultraviolet cutoff
α−1 will get replaced by the other energy scales such as the
temperature or the maximum applied voltage, which would
cut off the divergences. Another important aspect to consider
is that these calculations are valid only in the “tunneling”
limit, until γ does not flow (in a RG sense) beyond the
TLL bandwidth [43], i.e., γ 2 < (α(|ω ± ω0|/v)1−2d0 . Note that
similar effects have been reported in a tunneling scenario in
a two-wire junction [32,39], where such divergences occur
at very strong e-e interaction strength of g < 1/2, which
is a difficult regime to probe experimentally. However, the
three-wire junction offers the possibility of being tuned (by
means of nanogates applied in the vicinity the junction)
to various fixed points, where these enhancements in the
tunneling current and divergence of the quantum noise can
also occur in a very wide regime of g, including attractive e-e
interaction strengths—see Fig. 4.

We firmly believe that both of these studies, i.e., the effects
of pulse propagation in a Y junction and “backscattering” by
tunneling impurities at the junction, will be very useful for
interpreting time-resolved experiments [13,34] in multiwire
junctions of interacting electrons, and in the design and
fabrication of quantum circuitry in the future. Experimentally,
TLL wire Y junctions may be fabricated using carefully
patterned 1D wires in a two-dimensional electron gas, and
tuned to various fixed points by means of nanogates applied
near the junction. Another possibility is an “island” setup
proposed in Ref. [21], formed from quantum Hall edge states,
which may be more feasible. In this case, the tunneling
operators can be controlled by means of gate voltage operated
constrictions in the central region of the island.
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