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Coupled-mode theory for film-coupled plasmonic nanocubes
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Planar metallic nanoparticles separated by nanoscale distances from a metal film support unique plasmonic
resonances useful for controlling a wide range of photodynamic processes. The fundamental resonance of a
film-coupled planar nanoparticle arises from a transmission-line mode localized between nanoparticle and film,
whose properties can be roughly approximated by closed form expressions similar to those used in patch antenna
theory. The insight provided by the analytical expressions, and the potential of achieving similar closed-form
expressions for a range of plasmonic phenomenon such as spasing, fluorescence enhancement, and perfect
absorbers, motivates a more detailed study of the film-coupled patch. Here, we present an expanded analytical
analysis of the plasmonic patch geometry, applying an eigenmode expansion method to arrive at a more accurate
description of the field distribution underneath a film-coupled plasmonic nanocube. The fields corresponding
to the inhomogeneous Maxwell’s equations are expanded in a set of lossless waveguide eigenmodes. Radiation
damping and Ohmic losses are then perturbatively taken into account by considering an equivalent surface
impedance. We find that radiative loss couples the lossless eigenmodes, leading to discernible features in the
scattering spectra of the nanocubes. The method presented can be further applied to the case of point source
excitations, in which accounting for all potential eigenmodes becomes essential.

DOI: 10.1103/PhysRevB.90.195402 PACS number(s): 42.25.Bs

I. INTRODUCTION

The use of plasmonic nanostructures for enhancing pho-
todynamic processes in nearby emitters has been well doc-
umented. An emitter placed within the gap of two closely
separated nanoparticles, or near a sharp corner or tips of a
nanoparticle, experiences a strongly modified electromagnetic
environment, with large optical field enhancements and an
enhanced radiative density of states [1–3]. A wide variety of
optical phenomena can be impacted within such enhancement
volumes, including fluorescence [4], photocatalysis [5], optical
bistability [6], surface plasmon amplification (spasing) [7],
two-photon absorption [8], four-wave mixing [9], and many
others.

Film-coupled plasmonic nanocubes and other planar film-
coupled systems represent advantageous plasmonic platforms
for several reasons. The field distribution of a nanoparticle
spaced closely above a metal film strongly resembles that of
a nanoparticle dimer [10]—two nanoparticles separated by
a nanoscale gap—which is known to exhibit some of the
largest and most strongly localized field enhancements [11].
The film-coupled nanoparticle system retains the desirable
field enhancement properties of the dimer; however, film-
coupled nanoparticle systems are much more controllable
and amenable to experimental realization, particularly for
the most extreme (subnanometer) gap dimensions [12]. The
film-coupled geometry as an experimental platform has al-
lowed nearly unprecedented control over the gap thickness,
leveraging planar deposition methods such as layer-by-layer
approaches for organic spacer layers, or atomic layer deposi-
tion (ALD) for inorganic spacer layers.
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Distinct from nanosphere dimers or even film-coupled
nanospheres, film-coupled planar nanoparticles, such as
nanocubes or nanoplatelets, possess a rich mode structure that
can easily be controlled in experiment. Film-coupled planar
nanoparticles support gap-plasmon modes, characterized by
fields that are confined and propagate between the nanoparticle
and film [13–15]. The gap-plasmon modes can be understood
from transmission line theory, modified suitably by taking into
account the dispersion of the metal.

While any film-coupled planar nanoparticle or nanoplatelet
will support the distinctive transmission line gap plasmons,
here we are motivated by recent experimental studies to
consider nanocubes as a concrete conceptual implementation.
Nanocubes can be fabricated by colloidal methods and readily
deposited on an insulating spacer layer over a metal film.
Film-coupled nanocubes were suggested as a convenient
and inexpensive means of forming large-area, controlled
reflectance surfaces [16], and have more recently been applied
in the context of fluorescence enhancement [4]. The scattering
properties of a film-coupled nanocube at optical wavelengths
bear considerable resemblance to those of the patch antenna,
ubiquitous in microwave engineering. Methods of analysis to
predict the radiation characteristics of driven patch antennas
are well known in microwave engineering and are becoming
increasingly common to describe the scattering characteristics
of optical patch antennas. The film-coupled nanocube can be
considered as an example of an optical patch antenna, though
we note the theoretical approach outlined here is not restricted
to nanocubes.

Ciraci et al. [14] recently presented an analytical treatment
of the scattering characteristics of a film-coupled nanocube,
applying the transmission line circuit model to solve for the
gap-plasmon propagating in the gap between the cube and
film. The nanocube was assumed to be excited to a normally
incident plane wave, coupled to the nanocube resonance via
the magnetic flux passing through the gap. The transmission
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line model for the nanopatch antenna was modified by intro-
ducing the gap-plasmon dispersion relation, allowing the more
complex optical response of the metal to be modeled. In this
work, only the fundamental cavity mode of the nanopatch was
considered. A comparison of the resulting analytical formulas
with full-wave numerical simulations revealed reasonable
agreement between the spectral properties of the nanopatch
as well as the field enhancement within the gap region as a
function of excitation wavelength; however, additional mode
structure found in the numerical simulations, as well as in
later experiments [17], was not captured by the analytical
treatment and was presumed to be related to higher-order mode
excitation.

Our goal in the present paper is to use coupled-mode
theory (CMT) [18–23] to provide a more detailed analytical
analysis of the film-coupled nanocube system that incorporates
potentially all of the higher order modes that can be excited
within the gap region. The complete mode set assumes greater
importance, for example, when the excitation is a point source
located within the gap region. By including all higher order
modes, we effectively construct the Green’s function for the
nanopatch, which can ultimately be used to determine the
optical properties of emitters embedded within the gap region.

The model presented in this paper is not unlike the cavity
model used for patch antennas [24], where the gap between the
patch and the metal film is modeled as a resonator cavity with
perfectly electric conducting (PEC) boundaries on the patch
and ground plane surfaces and perfectly magnetic conducting
(PMC) boundaries on the gaps. In this paper, we develop
a similar model for the film-coupled nanocube system, but
modify it by analytically including the coupling to the incident
field, gap plasmon effects, and the Ohmic and radiative losses.

We begin by introducing the standard cavity eigenmode
expansion of Maxwell’s equations [25], derived using a
variation of Lorenz reciprocity. We then define an eigenvalue
problem that is similar to the real problem but excluding
all lossless by replacing the gap volume with a lossless,
rectangular cavity, where the open slots replaced by PMCs
and the dielectric constant of the metal is purely real. The
field solutions within the lossless cavity can be expressed
as a set of orthogonal eigenmodes, which we define as the
lossless eigenmodes. We take this approximation initially as
an ansatz, later confirming its validity by full-wave simulation.
The coupling of the incident field to the eigenmodes and
the radiative losses can then be found analytically using the
lossless eigenmode fields. Ohmic losses are found by allowing
the imaginary part of the dielectric constant to resume its
physical value and integrating the resulting Poynting vector
over the metal surfaces.

When losses are included in any system, the eigenvalues are
no longer real and the eigenmodes are no longer necessarily
orthogonal. This has been recently demonstrated specifically
for plasmonic resonances by Lalanne et al. [21], where it
was shown that mode nonorthogonality must be taken into
account in order to compute the correct eigenmode amplitude
spectrum. In this paper the eigenmode nonorthogonality is
handled in three different approaches. In the first approach,
mode nonorthogonality is ignored and all of the modes are
assumed to be decoupled. Assuming that the modes are
orthogonal allows very intuitive and simple equations to be

derived that describe the resonances of the gap plasmon
eigenmodes.

In the second approach, the losses and the resulting eigen-
mode cross coupling is calculated based on the assumption
of a surface impedance of the slots. The surface-impedance
approach is able to explain the presence of resonances in the
amplitude spectrum that are observed in simulation, but should
be zero if the modes are orthogonal. Some of these resonances
can be considered “dark” in the sense that they cannot directly
couple to the far field, but are excited by cross coupling with
a bright mode.

The third and final approach presented utilizes a Fourier
method [24] to calculate the radiation damping and cross
coupling between modes. This approach results in the best
match between the analytically computed eigenmode ampli-
tude spectrum and the amplitude spectrum extracted from
simulation.

II. DERIVATION OF EIGENMODE COUPLED EQUATIONS

Our goal in this section is to solve for the fields within the
gap region of a film-coupled nanocube, assuming excitation
by an incident driving wave. We assume the actual electric
and magnetic fields within the gap can be expanded in a sum
over cavity eigenmodes, defined by the volume underneath
the nanocube as well as the bounding metal and free-space
surfaces, or

E =
∑

μ

eμ(ω)Eμ(r) (1a)

H =
∑

μ

hμ(ω)Hμ(r). (1b)

We seek to determine the electric and magnetic field
coefficients and their dependence on the driving field, radiation
damping, and Ohmic losses. In the following, we derive a set
of two coupled infinite-rank matrix equations: one in which
radiative damping appears as a perturbative term and another
in which Ohmic loss appears as a perturbative term. The
perturbative terms additionally serve to couple the eigenmodes
together.

Each of the eigenmodes satisfies the homogeneous
Maxwell’s equations, or

∇ × Hμ = jωμε0Eμ (2a)

∇ × Eμ = −jωμμ0Hμ. (2b)

As a starting point, we first assume the fields can be
expanded in the set of lossless eigenmodes. To obtain lossless
eigenmodes, we replace the slots by PMCs and requiring the
dielectric constant of the metal film to be real, as shown in
Fig. 1(b). Simulation results and previous work show that
modes in which the electric field is zero on the boundaries are
overly damped and do not play a role in the system response.
Thus, for the modes of relevance, the electric field is maximum
and the magnetic field is minimum at the slots (or gap edges)
of the cube.

The eigenvalue problem given by Eqs. (6a) and (6b),
together with the PMC and metal boundary conditions, is
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FIG. 1. (Color online) (a) Fields from a simulated film-coupled
nanocube at the resonance frequency of the E01 mode. (b) The lossless
cavity eigenmode problem, with boundary conditions. (c) Illustration
of coordinate system convention for a film-coupled nanocube.

satisfied if (see Fig. 2) [24]

Ex
mn = E0 cos(kxmnx) cos(mπy/W ) cos(nπz/W ) (3a)

Ey
mn = E0

kxmnW

π

m

m2 + n2
sin(kxmnx) sin(mπy/W )

× cos(nπz/W ) (3b)

Ez
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n

m2 + n2
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FIG. 2. (Color online) The lossless eigenmodes (a) E0,1(r),
(b) E1,1(r), (c) E2,1(r), and (d) E2,2(r).

H x
mn = 0 (3d)

Hy
mn = −i

E0

Z0

ωmnW

cπ

n

m2 + n2

× cos(kxmnx) cos(mπy/W ) sin(nπz/W ) (3e)

Hz
mn = i

E0

Z0

ωmnW

cπ

m

m2 + n2

× cos(kxmnx) sin(mπy/W ) cos(nπz/W ) (3f)

for (x,y,z) ∈ V , where V is the volume of the gap: V =
{[−h/2,h/2] × [0,W ] × [0,W ]}. In these equations, ωmn is

the resonance frequency, Z0 =
√

μ0

ε0
is the impedance of free

space, c is the speed of light, and E0 is an arbitrary constant
with units of electric field that is used to normalize the modes.
The double index mn was used in these equations rather than
the single index μ to classify the modes in terms of the number
of nodes in the y and z directions.

Unlike patch antennas, where the metal is considered to be
PEC, kxmn must be allowed to be nonzero and the plasmon
dispersion relation must be used to find kxmn and ωmn. In the
metal, the fields follow the same y,z dependence as Eq. (3),
but with an exponential decay of e−κmn|x| into the metal.
The plasmon dispersion relation for an infinite parallel plate
metal-insulator-metal waveguide, together with the Helmholtz
equation evaluated in the gap and in the metal, provide
three equations that can be simultaneously solved for three
unknowns {kxmn,κmn,ωmn}:

tan

(
kxmnh

2

)
+ jκmn

kxmnRe{ε(ωmn)} = 0 (4a)

(
mπ

W

)2

+
(

nπ

W

)2

+ k2
xmn = ω2

mn

c2
(4b)
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(
mπ

W

)2

+
(

nπ

W

)2

− κ2
mn = Re{ε(ωmn)}ω

2
mn

c2
, (4c)

where the real part of the permittivity was used to keep
the modes lossless. If the permittivity is real then kxmn

must be purely imaginary, as has been shown in previous
work developing a transmission line model for nanocube
resonances [14].

The modes introduced in Eq. (3) are lossless and orthog-
onal, and their orthogonality makes them a convenient basis
to use when expanding the field in the gap. However, the
expansion in terms of Eq. (3) would not allow the losses of the
real nanocube system to be taken into account. Therefore we
will also need an expansion in terms of lossy eigenmodes,

E =
∑

μ

ẽμ(ω)Ẽμ(r) (5a)

H =
∑

μ

h̃μ(ω)H̃μ(r), (5b)

which are defined by the source-free solution to Maxwell’s
equations in the exact nanocube geometry,

∇ × H̃μ = jω̃με(r,ω̃μ)Ẽμ (6a)

∇ × Ẽμ = −jω̃μμ0H̃μ, (6b)

including the full complex permittivity and radiative boundary
conditions on the slots. Although the exact solution to this
eigenvalue problem is unknown, the solution inside the gap
and sufficiently far from the slots must converge to Eqs. (3)
and (4), with the exception that the complex permittivity must
be used in Eq. (4).

Using the lossless eigenmode expansion of the fields, we
seek to solve the inhomogeneous Maxwell’s equations, or

∇ × H = jωε0E + Je (7a)

∇ × E = −jωμ0H − Jm. (7b)

The arbitrary field distribution can be expanded into a sum
of lossless eigenmodes as in Eqs. (5a) and (5b), where the
mode amplitudes and fields are indexed with the single variable
μ rather than the pair mn for convenience, but without loss
of generality. Note that the mode amplitudes are functions
of frequency. We take the inner product of the electric curl
equation with E∗

μ:

∫
E∗

μ · (∇ × H)dV = jωε0

∫
E∗

μ · EdV +
∫

E∗
μ · JedV .

(8)

Using standard vector identities and substitution of the
homogeneous Maxwell’s equations given in Eqs. (6a) and (6b),
we obtain

E∗
μ · (∇ × H) = H · (∇ × E∗

μ) − ∇ · (E∗
μ × H) (9)

= jωμμ0H · H∗
μ − ∇ · (E∗

μ × H). (10)

Substituting these equations, we obtain

jωμμ0

∫
H · H∗

μdV −
∫

(E∗
μ × H) · ndS

= jωε0

∫
E∗

μ · EdV +
∫

E∗
μ · JedV, (11)

where the surface integral is evaluated over the boundary of the
gap region V , and n is the normal vector to the surface. Using
the orthogonality of the lossless eigenmodes and substituting
Eqs. 5(a) and 5(b), the equation simplifies to

jωeμ − jωμhμ + 1

2Uμ

∫
(E∗

μ × H) · ndS

= − 1

2Uμ

∫
E∗

μ · JedV, (12)

where

Uμ = ε0

2

∫
|Eμ|2dV = μ0

2

∫
|Hμ|2dV (13)

are the normalization constants for the electric and magnetic
energy in the cavity, respectively. The uniqueness theorem
ensures that the electric and magnetic field energies are equal
for the lossless eigenmodes [25].

Although we have used the lossless magnetic eigenmodes
to reduce the first volume integral in Eq. (11), we have not
reduced the surface integral term in the same manner, as it
requires more care. Because the boundary conditions on the
fields at the slots are open rather than PMC, the tangential
component of the magnetic field at the slots is not precisely
zero, as is the case for the lossless eigenmodes in Eq. (3).
Therefore, a field expansion on the slot surface in terms of
the lossless magnetic modes Hμ cannot be performed since
this expansion could never reproduce the appropriate radiation
boundary condition. Instead, we expand the field on the surface
in terms of lossy modes, H = ∑

ν h̃νH̃ν . Then the surface
integral in Eq. (12) can be expressed as

1

2Uμ

∫
(E∗

μ × H) · ndS =
∑

ν

h̃ν(ω)

2Uμ

∫
(E∗

μ × H̃ν) · ndS

=
∑

ν

h̃ν(ω)P rad
μν . (14)

The matrix P rad
μν = ∫

(E∗
μ × H̃ν) · ndS/2Uμ is representative

of losses, but is normalized by the mode energy to have units of
frequency. It includes a contribution from both Ohmic losses
and radiative losses, with Ohmic losses resulting when the
integral is evaluated on the metal surfaces and radiative losses
when it is evaluated on the slots. However, the Ohmic loss
contribution in this integral is vanishing when kxμh/2 is small
and can be neglected when the gap size is small. Therefore
we use this matrix to include only the radiative losses by
evaluating the surface integral only over the slots. The main
contribution to Ohmic losses will be included later by con-
sidering the analogous equation derived from the electric curl
equation.

Even though the magnetic fields of the lossy eigenmodes
are unknown in the slots, if the total tangential electric field
on the edge of the cube is well approximated by a sum
of the electric fields of the lossless eigenmode fields, then
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a Fourier transform method can be used to solve for the
magnetic field in the slot due to the electric field from each
eigenmode. In this method, the lossy eigenmode magnetic field
is approximated in the slots by the magnetic field that must
exist in each slot given the radiative boundary condition and
the existence of an electric field Eν in the gap, where Eν is
the electric field from the lossless eigenmode. The method
is outlined in Appendix B, where coefficients of the form
1
2

∫
(E∗

μ × H̃ν) · ndS are evaluated based on the expression for
Eμ given by the lossless eigenmode problem. The fundamental
resonance of the film-coupled nanocube radiates particularly
strongly, and so the radiative losses must be taken into
account [26] despite the deeply subwavelength scale of the
structure [27].

We note that the surface integral in Eq. (14) is also
representative of the extent to which mode orthogonality has
been broken by the existence of losses. The diagonal elements
of P rad

μν represent the losses of the individual eigenmodes, and
the off-diagonal elements will be shown later to function as a
cross coupling between the modes.

This expansion, left as it is, remains unuseful because the
introduction of the coefficients h̃μ will yield more variables
than equations. However, if the losses included in the lossy
eigenvalue problem are sufficiently small, then Hμ ≈ H̃μ in
the volume of the gap. In this case, the expansion of the field
into lossless and lossy eigenmodes will yield approximately
the same coefficients, so that hμ ≈ h̃μ. Applying that approx-
imation yields the first of two coupled equations needed to
solve the system:

jωeμ − jωμhμ +
∑

ν

hν(ω)P rad
μν = − 1

2Uμ

∫
E∗

μ · JedV .

(15)

The second equation for the electric and magnetic coefficients
can be derived using the curl equation for the electric field and
following a similar procedure:

jωhμ − jωμeμ + 1

2Uμ

∫
(E × H∗

μ) · ndS

= − 1

2Uμ

∫
H∗

μ · JmdV. (16)

To derive this equation, both sides of the curl equation were
multiplied by the mode magnetic field Hμ, and then mode
orthogonality was applied. The electric field in the surface
integral can be expanded into a sum of lossy eigenmodes, E =∑

ν ẽνẼν ≈ ∑
ν eνẼν , that satisfy the boundary conditions of

the lossy metal film

jωhμ − jωμeμ +
∑

ν

eν

1

2Uμ

∫
(Ẽν × H∗

μ) · ndS

= − 1

2Uμ

∫
H∗

μ · JmdV. (17)

The lossless eigenmode field H∗
μ has zero tangential compo-

nent on the surfaces of the slot, and therefore the surface
integral vanishes on the edges of the cube and doesn’t
contribute to radiative loss. It does not, however, vanish on
the metal surface, so Ohmic losses may be included in this

surface integral:

jωhμ − jωμeμ +
∑

ν

eν(ω)P �
μν = − 1

2Uμ

∫
H∗

μ · JmdV

(18)

P �
μν = 1

2Uμ

∫
(Ẽν × H∗

μ) · ndS. (19)

A detailed evaluation of the Ohmic losses is given in
Appendix A. It is also shown that the Ohmic loss matrix is zero
for the film-coupled nanocube system if μ �= ν, so Eq. (18) can
be further simplified as

jωhμ − (
jωμ − P �

μ

)
eμ = − 1

2Uμ

∫
H∗

μ · JmdV. (20)

Equations (15) and (20) form a set of linear equations that can
be solved for the coefficients {eμ(ω),hμ(ω)}.

Note that a simpler, alternative formulation to evaluating
the far-field coupling in Eq. (12) may be found by assuming
a gap admittance so that, at every point along the edge of the
cube, we have that

Ht = YgE × n. (21)

If Eq. (21) is used in Eq. (15), then the boundary term becomes
a sum over electric field coefficients instead of magnetic field
coefficients. The equivalent matrix equation becomes

jωeμ − jωμhμ +
∑

ν

eνP
rad
μν = − 1

2Uμ

∫
E∗

μ · JedV, (22)

where the surface integral becomes a surface overlap integral
of the tangential electric fields:

P rad
μν = Yg

2Uμ

∫
(E∗

μ × n) · (Eν × n)dS. (23)

Depending on the frequency dependence of the gap admit-
tance, this system will behave slightly differently as a function
of frequency than Eq. (15), since the radiative losses are now
coupled through the electric eigenmode amplitudes rather than
the magnetic eigenmode amplitudes.

III. COUPLING TO THE FAR-FIELD

Equations (15) and (16) include source terms that relate
to electric currents [Eq. (14)] and effective magnetic currents
[Eq. (18)]. To investigate the scattering from the film-coupled
nanocube illuminated by an external driving field, (E0,H0),
our strategy is to compute the effective source terms based
on the application of one of Schelkunoff’s equivalence princi-
ples [24,25,28]. Consider the surface defined by the eigen-
mode problem, but excluding the PMC at the slots. The
total electric and magnetic fields inside this surface can be
found through the scattering of an equivalent electric and an
equivalent magnetic surface current, which are given by the
tangential magnetic and electric fields at the slot, respectively.
The electric and magnetic surface currents are given by

Ke = n × H r ∈ ∂V (24a)

Km = E × n r ∈ ∂V, (24b)
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where H and E are the total tangential electric and magnetic
fields, including both the incident and scattered fields. The
coupling of the incident electric and magnetic fields into a
particular eigenmode is given by∫

E∗
μ · JedV =

∫
E∗

μ · KedS = −
∫

(E∗
μ × H) · ndS (25a)∫

H∗
μ · JmdV =

∫
H∗

μ · KmdS = −
∫

(E × H∗
μ) · ndS.

(25b)

We seek to evaluate these expressions for the special case
where the system is excited by a plane wave at normal
incidence, and in the long-wavelength limit where the incident
field {E0,H0} can be considered a constant vector field over
the film-coupled nanocube system.

The electric current coupling in Eq. (25a) must be zero on
the metal surfaces, since the overlap integral of the tangential
part of the lossless modes with a normally incident plane wave
is zero on those surfaces. On the slots, the mode’s lossless
magnetic field is zero, and so the total magnetic field on the slot
is approximated by the incident magnetic field. The incident
magnetic field is symmetric, while the normal vector to any two
opposing slots is asymmetric. Therefore the incident magnetic
field can only couple to modes that are asymmetric in the
electric field.

The magnetic current coupling must likewise be zero in
the slots, where the lossless mode’s tangential magnetic field
is zero. On the bottom of the cube and the top of the film,
the electric field of the lossless eigenmode is symmetric, and
the incident electric field is also very nearly symmetric on the
bottom of the cube and top of the metal film when applied at
normal incidence. Therefore the total incident and scattered
field will be very nearly symmetric on the two metal surfaces.
Since the electric field is symmetric, the mode’s magnetic
field is symmetric, and the normal vector is asymmetric, the
equivalent magnetic current (and hence the incident electric
field) does not couple to the cube system at normal incidence.
Then the coupling into the modes reduces to∫

E∗
μ · JedV = −2

∫
slots

(E∗
μ × H0) · ndS (26)

∫
H∗

μ · JmdV = 0, (27)

where H0 is the incident magnetic field, and the additional
factor of two is due to the reflection of the incident field off of
the metal film [24].

IV. RESULTS

A. No modal cross-coupling approximation

If the radiative loss rate matrix P rad
μν is diagonal, then the two

equations for the electric and magnetic field present a coupled
system of oscillators:

jωeμ − (
jωμ − P rad

μ

)
hμ = − 1

2Uμ

∫
Eμ · JedV (28)

jωhμ − (
jωμ − P �

μ

)
eμ = − 1

2Uμ

∫
Hμ · JmdV. (29)

We can immediately gain insight into the mechanism of
the interaction between elements in the system from the
equations of motion above. The magnetic field and electric
field are coupled to one another through the constant coupling
coefficients of jωμ. The electric current drives the electric
mode, while the magnetic current drives the magnetic mode.
Because of the way in which the lossy eigenmodes were
introduced, energy in the form of radiative losses exits the
system through the magnetic field, and ohmic losses exit
the system through the electric field. The solution to the
coupled system is

eμ =
−jω 1

2Uμ

∫
E∗

μ · JedV − (
jωμ − P rad

μ

)
1

2Uμ

∫
H∗

μ · JmdV(
jωμ − P rad

μ

)(
jωμ − P �

μ

) + ω2

(30)

hμ =
−(

jωμ −P �
μ

)
1

2Uμ

∫
E∗

μ · JedV − jω 1
2Uμ

∫
H∗

μ · JmdV(
jωμ − P rad

μ

)(
jωμ − P �

μ

) + ω2
.

(31)

The system can be simplified by applying the coupling
coefficients for the incident field:

eμ = jω
∫

(E∗
μ × H0) · ndS/Uμ(

jωμ − P rad
μ

)(
jωμ − P �

μ

) + ω2
(32a)

hμ = (
ωμ/ω − jP �

μ /ω
)
eμ. (32b)

If the fundamental mode, (m,n) = (1,0), is assumed to be the
only important mode within the frequency range of interest
and kxμh/2 is sufficiently small, then Eq. (32a) leads to a
very simple expression for the enhancement factor near the
fundamental resonance:

E(r,ω)/E0 = e1,0(ω)E1,0(r) (33)

≈ (j8ωc/W ) cos(πy/W )

ω2 − ω2
1,0 − jω1,0

(
P rad

1,0 + P �
1,0

) + P �
1,0P

rad
1,0

(34)

≈ (j8ωc/W ) cos(πy/W )

ω2 − ω2
1,0 − jω1,0

(
P rad

1,0 + P �
1,0

) . (35)

Hence, the imaginary part of the slot impedance functions as
a frequency shift of the mode, and the real part contributes to
losses. Similar equations to Eq. (35) can be easily derived for
all of the higher order modes.

The primary difficulty from here is in determining the
imaginary part of the radiative loss. The electric field is very
uniform across the slots, and for the lowest order mode it is
also constant along one of the dimensions of the cube. This
suggests that the impedance for an infinitely wide slot with a
constant field could be used [24]:

Yg = hk

2
(1 − (kh)2/24 + j [1 − 0.636 ln(kh)]), (36)

where k = ω/c. The real part of the radiative loss can be accu-
rately fixed using the radiation resistance from patch antenna
theory. The radiation resistance Rr (ω) for the fundamental
mode is well known and is given in many textbooks [14,24].
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The radiated power can then be written as

P rad
1,0 = h2E2

0

2Rr (ω)
+ j

Im{Yg}
2

∫
|n × E1,0|2dS. (37)

The above analytical equations were tested against full-wave
FEM simulations in CST Microwave Studio of a nanocube of
dimension 80 nm and separated 5 nm air gap from the metal
substrate. The nanocube and metal film were composed of
silver using data from Johnson and Christy [29]. The edges
of the nanocube were given a radius of curvature of 3 nm
to accommodate the tetrahedral mesh. A mode amplitude
spectrum was extracted from the electric fields obtained from
the simulation by taking the overlap integral of the simulated
fields in the gap with the lossless eigenmode fields:

esim
μ (ω) =

∫
Esim(r,ω) · E∗

μdV∫
Eμ · E∗

μdV
, (38)

where Esim(r,ω) is the field sampled from the simulation in the
gap between the cube and the substrate, and V is the volume
of the gap where the lossless eigenmodes are defined.

Based on the simulation results shown in Fig. 3, it is
apparent that there are only two lossless eigenmodes that
play a significant role when the cube is illuminated under
normal incidence. The fundamental mode e1,0 appears as
expected. This mode is a bright mode, and is commonly used
in fluorescence enhancement and other applications where a
high quantum yield is desired [4].

An additional higher order mode e1,2 also has a small peak
near 430 nm. This mode may be called a “dark mode,” since
it exhibits nearly zero radiative loss. The appearance of this
mode is surprising, since the integral in Eq. (32a) would require
that the mode e1,2 has zero coupling to the incident field when
excited at normal incidence. It will be shown in Secs. IV B
and IV C that the excitation of this mode can be explained by
allowing for the eigenmodes of the system to be nonorthogonal
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FIG. 3. (Color online) The eigenmode amplitude spectrum ex-
tracted from full-wave simulation of an 80 nm cube using Eq. (38).
The fundamental, bright mode is |esim

1,0 (ω)|, while |e1,2(ω)| is a higher
order dark mode.
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FIG. 4. (Color online) (a) The amplitude of the bright mode is
plotted as the radius of curvature of the corners of the cube is varied.
(b) The amplitude of the dark mode is plotted as the radius of
curvature is varied. The resonance frequency of both modes shifts
roughly linearly in wavelength as the radius of curvature is varied,
and the coupling to the dark mode increases with increasing radius
of curvature.

due to the radiative losses. A modal cross coupling between
the bright and dark modes is also consistent with the strong
amplitude transition of the bright mode at the dark mode
resonance frequency, and the small peak in the dark mode
at the bright mode resonance frequency (see Fig. 4). This
modal cross coupling can be captured using the formalism
developed in Sec. IV A by allowing the radiative loss matrix
to have nonzero off-diagonal matrix elements, which will be
demonstrated in Secs. IV B and IV C.

The quality factor and maximum excitation of the bright
mode amplitude can be very accurately predicted using
Eq. (32a). Unfortunately, the imaginary part of the surface
impedance in Eq. (36) does not give the correct frequency
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FIG. 5. (Color online) Comparison of the magnitude of the fun-
damental mode extracted from full-wave simulation, |esim

1,0 (ω)|, with
the magnitude of the fundamental mode analytically computed from
Eq. (32a), |e1,0(ω)|. A correction factor of 0.3 is included in the
imaginary part of the impedance to accommodate the frequency shift.

shift for the fundamental mode. Some disagreement is to be
expected since it doesn’t take into account the finite size of
the cube, the nonconstant distribution of the field on two of
the sides, or the interactions between the various sides of the
cube. However, good agreement with simulation is obtained
if the imaginary part of the impedance given in Eq. (36) is
multiplied by a constant factor of 0.3, as shown in Fig. 5.
We note that this correction factor is dependent on the radius
of curvature of the edges of the cube and the height of gap,
not unlike the corrections used when computing the effective
resonance wavelength of optical nanorod antennas [30].

In Fig. 4 we study the impact of the radius of curvature
on the resonance frequency of the modes and the correction
factor for the imaginary part of the surface impedance. Based
on the simulation results in Fig. 4, as the radius of curvature
increases, the resonance frequency of both the bright and dark
modes increases while the excitation of the dark mode also
increases. The effects of increasing the correction factor in the
coupled-mode theory model are that the resonance frequency
of each of the modes decreases, and the cross coupling
between modes with nonzero surface integrals increases. For
this reason, the finite radius of curvature cannot be modeled
by only modifying the effective imaginary surface impedance,
but the effective width of the cube should also be decreased
as the radius of curvature is increased so that the resonance
frequency is increased in a way that is consistent with Fig. 4.
This idea of an effective cube width has also been used in both
optical [14] and RF patch antenna theory [24] to account for
the shift in resonance frequency of the modes from the ideal
value computed by the dispersion relation. In this paper we
choose to analyze cubes with a radius of curvature of 2 nm,
where the effective width is identical with the width of the
cube and the correction factor on the surface impedance is 0.3.
A larger radius of curvature could be modeled by changing
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FIG. 6. (Color online) Normalized scattering cross section, de-
fined by SCS = Pscatt/W 2Iinc, where Iinc is the intensity of the
normally incident beam.

both the effective width of the cube and the imaginary surface
impedance accordingly.

The eigenmode expansion formalism has also given an
easy, intuitive approach to calculating various experimentally
measurable parameters. As an example, we consider the total
scattered power of the cube, which can be intuitively calculated
from the radiative loss matrix. In the orthogonal case, the
scattered power is given by

Pscatt = 1

2

∫
slots

Re{E × H∗} · ndS =
∑

μ

Re
{
eμh∗

μUμP rad∗
μ

}
,

(39)

which gives excellent agreement with the scattered power
found from the simulation results in Fig. 6.

B. Modal cross coupling due to radiation damping:
surface impedance approach

In the nanocube system, and in lossy systems in general,
the loss matrices are not diagonal, even though in this case the
ohmic losses are well approximated by a diagonal matrix. The
cross coupling in the radiation matrix can be seen by looking
at the impedance-boundary form of P rad

μν and comparing with
the eigenmode fields defined in Eq. (3). The overlap integral
of the tangential components,

P rad
μν (ω) = −Yg(ω)

2

∫
(E∗

μ × n) · (Eν × n)dS, (40)

will not always be zero for different modes. Using this form
for the radiative loss matrix, together with Eqs. (22) and (18),
the mode amplitude equations become

hμ = (ωμ/ω − jP �
μ /ω)eμ (41)

∑
ν

[
j

(
ω − ωμ

ω

(
ωμ − jP �

μ

))
δμν + P rad

μν

]
eν

= −
∫

(E∗
μ × H0) · ndS/Uμ. (42)
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FIG. 7. (Color online) Magnitude of the main bright mode e1,0

and the dark mode e1,2 found analytically using Eqs. (41) and (42).
The magnitudes of the corresponding modes were extracted from
simulation and are shown in the dotted lines.

The left-hand side of the electric mode amplitude equation
forms a matrix that may be inverted to solve the system. The
array factor is included as outlined in Sec. IV A. With these
assumptions, and using the correction factor on the surface
impedance of 0.3 that was determined in IV A, the model
gives the results shown in Fig. 7.

Although this is a crude approach to deterring the exact el-
ements of the radiative loss matrix, it does give an explanation
for why the E21 eigenmode is excited. For many eigenmodes of
the structure, the surface integral of the tangential component
of the fields is zero across the gap for the lossless eigenmode
fields. However, for the modes E10 and E12, the surface overlap
integral is large and nonzero on two opposite sides of the cube.
Therefore these modes become coupled through the surface
admittance of the gap.

Since the surface impedance given in Eq. (36) comes from
an expression that assumes an infinitely wide slot with constant
electric field, using this approximation in Eq. (40) greatly
overestimates the radiative losses due to slots that do not have
a constant electric field. The result is that both the bright mode
and the dark mode appear to be much more damped than is
seen in simulation.

C. Modal cross-coupling due to radiation damping:
Fourier method

If the impedance assumption is not made, then the radiative
loss matrix is given by

P rad
μν (ω) = 1

2

∫
(E∗

μ × Hν) · ndS, (43)

where Eμ is the exact eigenmode field, and the tangential
component of Hν on the surface is given by the Fourier
method presented in the Appendix. These matrix elements
will again be a function of frequency. The real part of the
radiative loss matrix may be determined by this method, but
the imaginary part is shown in the appendix to not converge.
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FIG. 8. (Color online) Magnitude of the main bright mode and
the dark mode using an analytically evaluated radiative loss matrix,
and compared to full-wave simulation results. A correction factor of
0.29 was included in the imaginary part of the radiation impedance
to accommodate the resonance frequency shift.

Therefore the imaginary part will remain approximated by a
surface impedance as it was in Sec. IV C.

In this formulation of the problem, the system solution is
given by the linear system

hμ = (ωμ/ω − jP �
μ /ω)eμ (44)

∑
ν

[
j

(
ω − ωμ

ω

(
ωμ − jP �

μ

))
δμν

+ ((
ωμ − jP �

μ

)/
ω

)
P rad

μν

]
eν

= −
∫

(E∗
μ × H0) · ndS/Uμ, (45)

where the matrix on the left hand side must be inverted to
solve the system. Solving this system using eigenmodes with
(m,n) ranging from (0,0) to (2,2) gives excellent agreement
with simulation results shown in Fig. 8.

The solution to this equation works very well compared
to the simulation results for the fundamental mode, and it
reproduces the main features of the dark mode. The resonance
frequency does appear to be shifted for the dark mode, and
this disagreement is likely because the imaginary part of
the radiation matrix is still used to compute the radiation
loss matrix, which determines the resonance frequency shift
of the modes. The imaginary part assumes that the mode
profile is constant across the gap, and this approximation
is worse for higher order modes. Therefore we do not
expect as good agreement for the higher order modes, but
it qualitatively reproduces their behavior and cross coupling
to the fundamental mode.
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V. CONCLUSION

We have presented a semianalytic perturbed eigenmode
approach to solving for the fields in the gap of a film-
coupled nanocube. The approach is able to accurately predict
simulation results, predict scattering spectra, and provide
insight into why specific modes become coupled, despite
only approximately accounting for the cross coupling between
modes due to losses and the resonance frequency shift due to
reactive power. Full-wave simulations will always be needed
to verify analytical efforts, but the overall approach provides
powerful insight into the field interactions in the gap. Using this
eigenmode approach ultimately allows an effective Green’s
function of the cube to be constructed, which can then be
further used to predict coupling due to arbitrary far-field
sources or dipolar sources within the gap.
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APPENDIX A: OHMIC LOSSES

Unlike the radiative loss matrix, where a closed-form
expression for the exact, lossy magnetic field is unknown in the
slots, the electric field of the lossy eigenmodes can be found
analytically on the bottom of the cube and top of the film using
Eq. (3) and allowing kx to be the value found by solving the
dispersion relation in Eq. (4) using a complex permittivity.
Then it can be seen by inspection of Eq. (3) that this overlap
surface integral is only nonzero for μ = ν, and therefore the
modes do not couple to each other due to Ohmic losses. This
result can be used to simplify Eq. (18) by requiring that the
Ohmic loss matrix in Eq. (19) is purely diagonal,

jωhμUμ − jωμeμUμ + eμP �
μ = 1

2

∫
H∗

μ · JmdV, (A1)

where P �
μ = 1

2Uμ

∫
(Ẽμ × H∗

μ) · ndS and is given by

P �
μ(m,n) = 2cW 2

π2h(m2 + n2)
Re{−ikxmn sin(kxmnh/2)ωmn/c}.

(A2)

In this equation, the single index μ has been given an arbitrary
mapping to a double index mn using the notation μ(m,n).

APPENDIX B: FOURIER METHOD FOR EVALUATING
COUPLING COEFFICIENTS

To find the radiative losses due to the gap between the cube
and the substrate, radiative boundary conditions need to be
taken into account to fix the integral of the Poynting vector
over the gap. To do this, we apply a Fourier transform method,
following the approach commonly used to examine radiation
patterns by aperture antennas [24]. We are considering matrix
elements of the form

P rad
μν (ω) = 1

2

∫
(E∗

μ × Hν) · ndS, (B1)

where the surface integral is applied all four sides of the cube-
substrate gap. Even though the lossless eigenmode fields Eμ

and Hμ are not functions of frequency, the radiation loss is a

function of frequency, and therefore the overlap integral of the
lossy eigenmode fields may also be a function of frequency.

The heart of the Fourier method is the assumption that the
electric field in the slot is equal to the lossless eigenmode field.
The method then uses Fourier transforms to deter the magnetic
field in the slot the given electric field profile. However,
because this method assumes that the electric field is equal
to the lossless eigenmode field, it will only be valid as long as
that approximation holds.

The subscripts for the modes will temporarily be ignored
in order to outline the method and then will be reintroduced
later. According to Parseval’s theorem, the surface integral of
the Poynting vector over any particular slot can be rewritten as∫∫

A1

(E × H∗) · ndS = 1

8π2

∫∫ ∞

−∞
(E × H∗) · ndSk, (B2)

where Eμ and H are the spatially Fourier transformed fields
across one of the apertures, and dSk is an area element in the
k space of the tangential coordinates to the aperture. To make
the formulation a bit more clear, let r = {x,y,z} be arranged
such that the z coordinate be defined as normal to the aperture,
the x coordinate as normal to the metal film, the y coordinate
tangential to the aperture, and the origin lie in the center of the
aperture. Then E and H are given by

E(kx,ky,0) =
∫∫

E(x,y,0)ei(kxx+kyy)dxdy (B3)

H(kx,ky,0) =
∫∫

H(x,y,0)ei(kxx+kyy)dxdy. (B4)

Notice that these are only transformed into Fourier space along
the aperture dimensions, but the function is dependent on real
space in the third dimension. The spatially Fourier transformed
Ampere’s law requires that the total magnetic field be related
to the total electric field by

H = 1

kZ0
(k × E). (B5)

The Fourier transformed Gauss’s law also requires that

k · E = 0 (B6)

Ez = −kx

kz

Ex − ky

kz

Ey. (B7)

Therefore, if the total tangential electric field is known at the
aperture, then the normal component of the electric field and all
three components of the magnetic field can be determined. It
was shown in previous work that, for small gap heights, |Ey |

|Ex | =
|ky |
|kx | tan(kxh/2) ≈ 0, where h is the height of the gap. The
electric field is therefore dominated by the x component when
the gap size is sufficiently small [14]. Applying these approx-
imations, the Fourier transformed field components become

Ex =
∫∫

A1

Ex(x,y,0)ei(kxx+kyy)dxdy (B8)

Ey = 0 (B9)

Ez = −kx

kz

Ex (B10)
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A1

A2

A3A4

FIG. 9. Labeling convention for sides of the cube.

Hx = 0 (B11)

Hy = 1

kZ0

(
k2 − k2

y

kz

)
Ex. (B12)

These components could be used to evaluate Eq. (B2). How-
ever, since the method outlined here is only set up to calculate
the integral over single planar surface, a correction factor (i.e.,
array factor) needs to be included to take the interaction of the
various sides of the cube into account. To take the array factor
into account, we consider sides of the cube in pairs.

P rad
μν = 1

2

∫∫
A1∪A2∪A3∪A4

(E × H∗) · ndS (B13)

= 1

2

∫∫
A1∪A2

(E × H∗) · ndS

+ 1

2

∫∫
A3∪A4

(E × H∗) · ndS, (B14)

where A1 and A2 are two slots on opposite sides of the cube,
and A3 and A4 are the other pair of parallel slots, as illustrated
in Fig. 9.

The total power radiated out of two oppositely facing
apertures is then written as

∫∫
A1∪A2

(E × H∗) · ndS (B15)

= 1

8π2Z0

∫∫ ∞

−∞
|AF |2

(
1 − (ky/k)2√

1 − (kx/k)2 − (ky/k)2

)

× |Ex |2dkxdky, (B16)

where AF is the array factor, and kz =
k
√

1 − (kx/k)2 − (ky/k)2 has been used. Only the real
part of the surface integral term should be modified by the
array factor, because the imaginary part represents evanescent
fields that do not interact over long distances. The array factor
itself is a function of frequency and depends on the direction
of radiation under consideration. However, for smaller cubes,
the array factor is well approximated as zero if the electric
field of the eigenmode is even across two oppositely facing
apertures, and two if the electric field of the eigenmode is odd
across two oppositely facing apertures.

Now, we consider matrix elements of the form∫∫
A1∪A2

(Eμ × H∗
ν) · ndS (B17)

= 1

8π2Z0

∫∫ ∞

−∞
|AF |2

(
1 − (ky/k)2

(kz/k)

)
EμE∗

ν dkxdky,

(B18)

where Eμ is the Fourier transform of the x component of the
electric field of the μth mode.

The Fourier transformed field can be found analytically to
be

Eν = hW sinc(kxh/2) sin(kyW/2)
kyW/2

(νπ/2)2 − (kyW/2)2

(even ν) (B19)

Eν = hW sinc(kxh/2) cos(kyW/2)
kyW/2

(νπ/2)2 − (kyW/2)2

(odd ν). (B20)

Compiling these equations together will give the solution for
the radiated power. The difficulty here, however, is that the
imaginary part diverges. The real part is given by integrating
over the open disk D0(k) = {(kx,ky)|

√
k2
x + k2

y < k2}. How-
ever, the imaginary part of the integral involves integrating
over the rest of k space, and the integrand goes as 1/ky for
large ky , so the ky part of the integral will not converge.

In order to fix the imaginary component, one must either
obtain a better approximation for the fields in the slot, or
else resort to an approximation. Here we resort again to the
imaginary part of the surface admittance for an open-ended
parallel-plate waveguide.

Im
{
P rad

μν (ω)
} = − Im{Yg(ω)}

2

∫
(E∗

μ × n) · (Eν × n)dS,

(B21)

where Yg(ω) is given in Eq. (36).
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