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We explore the static longitudinal and dynamic transverse spin susceptibilities in quantum dots and
nanoparticles within the framework of the Hamiltonian that extends the universal Hamiltonian to the case of
uniaxial anisotropic exchange. For the limiting cases of Ising and Heisenberg exchange interactions, we ascertain
how fluctuations of single-particle levels affect the Stoner instability in quantum dots. We reduce the problem
to the statistics of extrema of a certain Gaussian process. We prove that, despite possible strong randomness of
the single-particle levels, the spin susceptibility and all its moments diverge simultaneously at the point which is
determined by the standard criterion of the Stoner instability involving the mean level spacing only.
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I. INTRODUCTION

The physics of quantum dots continuously attracted a lot
of experimental and theoretical interest [1–5]. Within the
assumption that the Thouless energy (ETh) is much larger than
mean single-particle level spacing (δ), ETh/δ � 1, an effective
zero-dimensional Hamiltonian has been derived [6]. In this so-
called universal Hamiltonian, the electron-electron interaction
that involves a set of matrix elements in the single-particle
basis is reduced to just three parameters: the charging energy
(Ec), the ferromagnetic Heisenberg exchange (J > 0), and the
interaction in the Cooper channel. The single-particle energies
are random quantities with Wigner-Dyson statistics. Thus, the
universal Hamiltonian provides a convenient framework for
the theoretical description of quantum dots.

The charging energy (typically Ec � δ) restricts the prob-
ability of real electron tunneling through a quantum dot at low
temperatures T � Ec [7]. This phenomenon of the Coulomb
blockade leads to suppression of the tunneling density of
states in quantum dots at low temperatures [8,9]. As it is well
known, strong enough exchange interaction in bulk materials
leads to a Stoner instability at the value of the Fermi-liquid
interaction parameter Fσ

0 = −1 and a corresponding quantum
phase transition between a paramagnet and a ferromagnet.
For a quantum dot of size L � λF (λF stands for the Fermi
wavelength) the exchange interaction can be estimated by bulk
value of the Fermi-liquid interaction parameter: J/δ = −Fσ

0 .
Therefore, for such quantum dots one can expect that at
J = δ the ground state becomes fully spin polarized. In
addition, in quantum dots it is possible to realize an interesting
situation in which the ground state has a finite total spin, i.e.,
partial spin polarization [6]. In the case of the equidistant
single-particle spectrum, partial spin polarization occurs in
the range δ/2 � J < δ. As J increases towards δ, the total
spin in the ground state increases and at J = δ all electrons in
a quantum dot become spin polarized. We emphasize that the
mesoscopic Stoner instability is specific to finite-size systems
and disappears in the thermodynamic limit δ → 0.

The finite value of the total spin in the ground state results
in the Curie-type behavior of the static spin susceptibility at
low temperatures. The dynamic spin susceptibility is trivial
and its imaginary part reduces to the Dirac delta function. Due
to the entanglement of the charge and spin degrees of freedom

within the universal Hamiltonian, the mesoscopic Stoner
instability affects the electron transport through a quantum
dot. For example, it leads to an additional nonmonotonicity
of the energy dependence of the tunneling density of states
[10–12] and to the enhancement of the shot noise [13].
Although it was demonstrated [14] that exchange interaction
J � δ/2 is important for a quantitative description of the
experiments on low-temperature (T � δ) transport through
quantum dots fabricated in a two-dimensional electron gas, we
are not aware of experiments indicating the mesoscopic Stoner
instability.

The case of Heisenberg exchange in the universal Hamilto-
nian can be contrasted with the case of Ising exchange. Such
situation is realized in a quantum dot in a two-dimensional
electron gas with strong spin-orbit coupling. In the presence
of a spin-orbit coupling, the description of a quantum dot in the
framework of the universal Hamiltonian breaks down. Even for
a weak spin-orbit coupling (large spin-orbit length λSO � L),
fluctuations of the matrix elements of the electron-electron
interaction cannot be neglected in spite of the condition
δ/ETh � 1 [15,16]. For a quantum dot in a two-dimensional
electron gas, the orbital degrees of freedom are coupled to in-
plane components of the spin. Then, in the regime (λSO/L)2 �
(ETh/δ)(L/λSO)4 � 1, the low-energy description is again
possible in terms of the universal Hamiltonian but with the
Ising exchange interaction (Jz > 0) [15,17]. In this case,
mesoscopic Stoner instability is absent for the equidistant
single-particle spectrum: the total spin in the ground state is
zero for Jz < δ [6]. As a consequence, the tunneling density of
states is almost independent of Jz while the longitudinal spin
susceptibility χzz is independent of T as in a clean Fermi liquid
[10,18]. However, the transverse dynamical spin susceptibility
χ⊥(ω) is nontrivial. Its imaginary part is odd in frequency and
has the maximum and the minimum [18].

The simplest model (albeit not microscopically justified)
interpolating between the cases of the Heisenberg and Ising ex-
change interactions is extension of the universal Hamiltonian
to the case of an anisotropic exchange interaction. Within this
model with the equidistant spectrum the mesoscopic Stoner in-
stability should disappear as the exchange interaction becomes
anisotropic. We note that the experiments on tunneling spectra
in nanometer-scale ferromagnetic nanoparticles revealed the
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presence of an exchange interaction with significant anisotropy
[19]. The simplest model which allows us to explain the main
features of experimentally measured excitation spectra of fer-
romagnetic nanoparticles resembles the universal Hamiltonian
with uniaxial anisotropy in exchange interaction [20]. Such
modification of exchange interaction can arise due to shape,
surface, or bulk magnetocrystalline anisotropy. In addition,
in the presence of spin-orbit scattering, the anisotropic part
of the exchange interaction can experience large mesoscopic
fluctuations [21,22]. The alternative reason for appearance of
anisotropy in the exchange interaction in quantum dots is the
presence of ferromagnetic leads [23].

So far, we avoid discussion of randomness of the single-
particle levels in the universal Hamiltonian due to disorder in a
quantum dot. As known, in low dimensions d � 2 interaction
and disorder can induce a transition between paramagnetic
and ferromagnetic phases at a finite temperature T [24,25].
In d = 3, the Stoner instability can be promoted by disorder
and occurs at smaller values of exchange interaction [26].
Within the universal Hamiltonian [6,12], level fluctuations
affect the temperature dependence of the average static spin
susceptibility χzz in the case of the Heisenberg exchange. For
the case of the Ising exchange, the role of disorder is even
more dramatic. Due to level fluctuations, the average spin
susceptibility acquires a Curie-type T dependence dominating
at low enough T and for δ − Jz � δ [6]. However, in this
regime of strong (with respect to the small distance δ − Jz � δ

to the average position of the Stoner instability at Jz = δ) level
fluctuations it is far from being obvious why the average spin
susceptibility is an adequate quantity for characterization of
the spin state of a quantum dot. At δ − Jz � δ, a quantum dot
is in the paramagnetic phase on average but, for example, it
can be fully spin polarized for a particular realization of the
single-particle levels. Such fully spin-polarized realizations
might affect the spin susceptibility distribution function such
that it becomes wide and non-Gaussian. At zero temperature,
the level fluctuations might shift the position of the Stoner
instability from its average position Jz = δ and lead to
the existence of a finite-temperature transition between the
paramagnetic and the ferromagnetic phases in quantum dots.
Of course, the very same scenario might be relevant for the
case of the Heisenberg exchange.

In this paper, we study the universal Hamiltonian extended
to the case of exchange interaction with uniaxial anisotropy.
Within this model we derive exact analytical results for the
longitudinal static and transverse dynamic spin susceptibilities
for arbitrary single-particle spectrum, temperature, exchange,
and Coulomb interactions. This allows us to answer the
following questions:

(1) Does the total spin in the ground state vanish continu-
ously or discontinuously as the anisotropy increases?

(2) How is the delta function in the imaginary part of
the dynamical spin susceptibility broaden with increase of
exchange anisotropy?

(3) How is the distribution function for the spin sus-
ceptibility (in the cases of Heisenberg and Ising exchange
interactions) changed with increase of exchange towards the
Stoner instability?

(4) Might it be possible that at zero temperature the
level fluctuations shift the position of the Stoner instability

from its average position determined by the mean level
spacing?

To answer the question (i), we compute the temperature
and magnetic field dependence of the static longitudinal spin
susceptibility χzz for equidistant single-particle spectrum.
Except the case of the Ising exchange it always has a nonzero
temperature-dependent contribution of Curie type (1/T ) or of
1/

√
T type. This indicates that destruction of the mesoscopic

Stoner instability by uniaxial anisotropy is not abrupt.
To resolve the issue (ii), we also compute the transverse

spin susceptibility for equidistant single-particle levels. Its
imaginary part as a function of frequency has always the
maximum and the minimum whose positions tend to zero
linearly with decrease of anisotropy.

To answer the questions (iii) and (iv), we utilize that at
low temperatures and for δ − Jz � δ, the statistical properties
of the longitudinal spin susceptibility (both for the Ising and
Heisenberg exchanges) are determined by the statistics of the
extrema of a certain Gaussian process with a drift. This random
process resembles locally a fractional Brownian motion with
the Hurst exponent H = 1 − ε where ε → 0. We recall that
the fractional Brownian motion with the Hurst exponent H is
the Gaussian process BH (t) with zero mean BH (t) = 0 and
the two-point correlation function [BH (t) − BH (t ′)]2 = |t −
t ′|2H . We rigorously prove that in the case of Ising (Heisenberg)
exchange, all moments of static longitudinal spin susceptibility
χzz are finite for Jz < δ (J < δ). For the Ising exchange,
we argue also that all moments of dynamic transverse spin
susceptibility χ⊥(ω) do not diverge for Jz < δ. We estimate
the tail of the complementary cumulative distribution function
for χzz for both Ising and Heisenberg exchange interactions.
Our results mean that the level fluctuations do not shift the
Stoner instability from its average position and do not induce
a finite-temperature transition between the paramagnetic and
the ferromagnetic phases.

In our study, we omit the Cooper channel interaction which
within the universal Hamiltonian framework is responsible for
superconducting correlations in quantum dots [27]. This is
possible under assumption that the Cooper channel interaction
is repulsive and, therefore, renormalizes to zero [6]. We
also neglect corrections to the universal Hamiltonian due
to the fluctuations in the matrix elements of the electron-
electron interaction [28,29]. They are small in the regime
δ/ETh � 1 but lead to interesting physics beyond the universal
Hamiltonian [5]. Finally, we mention that although we report
the exact analytical results for static and dynamical spin
susceptibilities for a given single-particle spectrum valid
for arbitrary temperature, further analysis is performed for
temperatures T � δ.

The outline of the paper is as follows. In Sec. II, we
introduce the model Hamiltonian, and derive exact analytical
expressions for the corresponding grand canonical partition
function and longitudinal static spin susceptibility. In Sec. III,
we analyze the temperature and magnetic field dependence of
longitudinal static spin susceptibility in the case of equidistant
single-particle spectrum and anisotropic exchange interaction.
In Sec. IV, we present a detailed analysis of the effect of level
fluctuations on the longitudinal static spin susceptibility for the
cases of Ising and Heisenberg exchange interactions. In Sec. V,
we compute the transverse dynamical spin susceptibility in the
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case of equidistant single-particle spectrum and anisotropic ex-
change interaction and analyze the effect of level fluctuations
in the case of Ising exchange interaction. We conclude the
paper with summary of the main results and discussion of how
our predictions can be experimentally verified (Sec. VI). Some
of the results were published in a brief form in Ref. [30].

II. HAMILTONIAN AND PARTITION FUNCTION

A. Hamiltonian

We consider the following Hamiltonian with direct
Coulomb and anisotropic exchange interactions:

H = H0 + HC + HS. (1)

The noninteracting Hamiltonian

H0 =
∑
α,σ

εα,σ a†
ασ aασ (2)

is given as usual in terms of the single-particle creation
(a†

ασ ) and annihilation (aασ ) operators. It involves the spin-
dependent (σ = ±) single-particle energy levels εα,σ . In what
follows, we assume that they depend on applied magnetic field
B via the Zeeman splitting εα,σ = εα + gLμBBσ/2. Here, gL

and μB stand for the Landé g factor and the Bohr magneton,
respectively. The charging interaction part of the Hamiltonian

HC = Ec(n̂ − N0)2 (3)

describes the direct Coulomb interaction in a quantum dot in
the zero-dimensional approximation ETh/δ � 1. Here,

n̂ =
∑

α

nα =
∑
α,σ

a†
α,σ aα,σ (4)

denotes the particle-number operator, and N0 is the back-
ground charge. The term

HS = −J⊥
(
Ŝ2

x + Ŝ2
y

)− JzŜ
2
z (5)

represents the anisotropic exchange interaction within the
quantum dot (QD). The total spin operator

Ŝ = 1

2

∑
σσ ′

a†
ασ σ σσ ′aασ ′ (6)

is defined in terms of the standard Pauli matrices σ .
In the case of isotropic Heisenberg exchange J⊥ = Jz, the

Hamiltonian (1) reduces to the universal Hamiltonian which
describes a quantum dot in the limit ETh/δ � 1 [6]. In this
case, the single-particle levels εα are random. Their statistics
(in the absence of magnetic field B = 0) is described by
the orthogonal Wigner-Dyson ensemble. The Hamiltonian (1)
with the Ising exchange J⊥ = 0 and B = 0 can be used for
description of lateral quantum dots with spin-orbit coupling
[15,17]. In this case, the statistics of εα is described by the
unitary Wigner-Dyson ensemble.

B. Exact expression for the grand canonical partition function

The grand canonical partition function for the Hamiltonian
(1) is defined as Z = Tr e−βH+βμn̂ (μ denotes the chemical
potential). It can be found by using the following trick. Let us

separate HS into the Heisenberg and Ising parts:

HS = −J⊥ Ŝ
2 − (Jz − J⊥)Ŝ2

z . (7)

Then, the time-evolution operator in the imaginary time can
be rewritten as

e−τHS =
√

τ

2
√

π |Jz − J⊥|
∫ ∞

−∞
dB exp

(
− τB2

4|Jz − J⊥|
)

× eτJ⊥ Ŝ
2−ηBŜz , (8)

where η = √
sgn(Jz − J⊥). The exponent in the second line

of Eq. (8) indicates that the grand canonical partition function
for the Hamiltonian (1) can be found in two steps. At first,
one can use well-known results for the partition function for
the case of isotropic exchange and effective magnetic field
B + ηB/(gLμB) [12,31]. Second, one needs to integrate over
the effective magnetic field B with the kernel given in the first
line of Eq. (8). Thus, we obtain the following exact result for
the grand canonical partition function of Hamiltonian (1):

Z(b) =
∑
n↑,n↓

Zn↑Zn↓e
−βEc(n−N0)2+βJ⊥m(m+1)+βμn

× sgn(2m + 1)
|m+1/2|−1/2∑

l=−|m+1/2|+1/2

eβ(Jz−J⊥)l2−βbl . (9)

Here, b = gLμBB/2. The integers n↑ and n↓ represent the
number of spin-up and spin-down electrons, respectively.
The total number of electrons is n = n↑ + n↓, and m =
(n↑ − n↓)/2. We note that for a configuration with given n↑ and
n↓ electrons the total spin equals S = |m + 1/2| − 1/2. The
integers l denote z projection of the total spin S. The factors
Zn↑ and Zn↓ are canonical partition functions for n↑ and n↓
noninteracting spinless electrons, respectively. The canonical
partition function takes into account the contributions from the
single-particle energies and is given by Darwin-Fowler integral

Zn =
∫ 2π

0

dθ

2π
e−inθ

∏
γ

(1 + eiθ−βεγ ). (10)

For the Heisenberg exchange interaction J⊥ = Jz our result
(9) coincides with the result known in the literature [11,12,31].
In the case of purely Ising exchange interaction J⊥ = 0, our
result (9) agrees with the result obtained in Ref. [18]. We note
that the result (9) can be also derived directly from Hamiltonian
(1) with the help of Wei-Norman-Kolokolov transformation
(see Appendix A).

In order to analyze the exact result (9) for the grand
canonical partition function, it will be convenient to use the
following completely equivalent integral representation:

Z(b) = e−βJ⊥/4

2π
√

J⊥|Jz − J⊥|
∫ ∞

−∞
dh dB e

− h2

βJ⊥ e
− β(b+ηB)2

4J⊥

× sinh(h) sinh[(b + ηB)h/J⊥]

sinh[β(b + ηB)/2]

∑
k∈Z

e−βEc(k−N0)2

× e
− βB2

4|Jz−J⊥|

∫ π

−π

dφ0

2π
eiφ0k

∏
σ

e−β�0(μ−iφ0T +σhT ).

(11)
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The grand canonical partition function for noninteracting
spinless electrons is defined in a standard way:

�0(μ) = −T ln
∏
γ

(1 + e−β(εγ −μ)). (12)

The variables φ0 and h have the meaning of the zero-frequency
Matsubara components of an electric potential and a magnetic
field which can be used to decouple the direct Coulomb [8]
and exchange interaction [18,32] terms, respectively.

C. Longitudinal spin susceptibility

The general expressions (9) and (11) for the grand partition
function Z allow us to extract the results for the longitudinal
spin susceptibility:

χzz(T ,b) = T
∂2

∂b2
ln Z. (13)

It is worthwhile to mention that in zero magnetic field one can
use the equivalent formula

χzz(T ,b = 0) = ∂ ln Z/∂Jz (14)

to simplify calculations. As it is well known [8,33], at T � δ

(the regime we are interested in) we can perform integration
over φ0 in Eq. (11) in the saddle-point approximation. Then,
the grand canonical partition function is factorized into two
multipliers:

Z = ZCZS, (15)

where

ZC =
√

β�

4π

∑
n∈Z

e−βEc(n−N0)2+β(μ−μn)n−2β�0(μn) (16)

describes the effect of charging energy. Here, μn is the solution
of the saddle-point equation n = −2∂�0(μ)/∂μ and

�−1 = −∂2�0(μ)

∂μ2

∣∣∣
μ=μn

(17)

stands for the thermodynamic density of states at the Fermi
level. We note that in the regime T � Ec (which we are
interested in) one can approximate μn by μ̃ = μN0 . The term

ZS = e−βJ⊥/4

2π
√

J⊥|Jz − J⊥|
∫ ∞

−∞
dh dB e

− 1
4βJ⊥ [4h2+β2(b+ηB)2]

× sinh(h) sinh[(b + ηB)h/J⊥]

sinh[β(b + ηB)/2]
e
− βB2

4|Jz−J⊥| ]

×
∏
σ

eβ�0(μ̃)−β�0(μ̃+hσ/β) (18)

describes the contribution due to exchange interaction. The
function

β
∑

σ

[�0(μ̃) − �0(μ̃ + hσ/β)]

=
∫ ∞

−∞
dE ν0(E) ln

[
1 + sinh2(h/2)

cosh2(E/2T )

]
(19)

that appears in Eq. (18) depends on a particular realization of
the single-particle spectrum via the single-particle density of

states ν0(E) =∑α δ(E + μ̃ − εα). Provided h2 � exp(βμ̃),
we can write

β
∑

σ

[�0(μ̃) − �0(μ̃ + hσ/β)] = h2

βδ
− V (h), (20)

where

V (h) = −
∫ ∞

−∞
dE δν0(E) ln

[
1 + sinh2(h/2)

cosh2(E/2T )

]
. (21)

Here, δν0(E) stands for the deviation of the single-particle
density of states ν0(E) from its average (over realizations of
the single-particle spectrum) value: 1/δ = 1/� = ν0(E).

The charging energy contribution ZC is independent of
the magnetic field and therefore does not affect the spin
susceptibility. We note that the normalization is such that
ZS = 1 for b = J⊥ = Jz = 0. In what follows, we will discuss
ZS only.

III. LONGITUDINAL SPIN SUSCEPTIBILITY:
EQUIDISTANT SINGLE-PARTICLE SPECTRUM

We start our analysis from the case of the equidistant single-
particle spectrum, i.e., we completely neglect the effect of level
fluctuations [we set V (h) in Eq. (20) to zero]. We discuss the
role of level fluctuations in Sec. IV.

A. Case of an easy axis: Jz � J⊥

Using the integral representations (18) and (20) we can
perform integration over h and find

ZS =
(

δ

δ − Jz

)1/2

e
βJ2⊥

4(δ−J⊥) e
− βb2

4(Jz−J⊥)

× 1

2

∑
p=±

F1

(
δ

δ − J⊥
+ pb

Jz − J⊥
,
√

βJ∗

)
. (22)

Here, J∗ = (δ − J⊥)(Jz − J⊥)/(δ − Jz) is the energy scale
specific for the anisotropic problem that interpolates between
0 (for Jz = J⊥) and δJz/(δ − Jz) (for J⊥ = 0). The function
F1(x,y) is defined as follows:

F1(x,y) =
∫ ∞

−∞

dt√
π

sinh(xyt)

sinh(yt)
e−t2

. (23)

With the help of Eqs. (13) and (22) one can find dependence of
the longitudinal static spin susceptibilities on magnetic field
and temperature. For a given values of Jz and J⊥ it is shown
in Fig. 1.

Using Eq. (14), the zero-field longitudinal spin susceptibil-
ity can be written as

χzz(T ) = 1

2(δ − Jz)
+ 1

2

(
δ − J⊥
δ − Jz

)2

× ∂

∂J∗
ln F1

(
δ

δ − J⊥
,
√

βJ∗

)
. (24)

At high temperatures T � max{δ, δ2(Jz−J⊥)
(δ−J⊥)(δ−Jz) }, the result

(24) for the zero-field longitudinal static spin susceptibility
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FIG. 1. (Color online) Dependence of the relative correction
[2(δ − Jz)χzz − 1] to the Fermi-liquid-like result on dimensionless
magnetic field and inverse temperature b/Jz and δJz/(δ − Jz)T . We
chose Jz = 0.94δ and J⊥ = 0.3δ.

can be simplified [cf. Eq. (B1)]. Then, we obtain

χzz(T ) = 1

2(δ − Jz)
+ β

12

(2δ − J⊥)J⊥
(δ − Jz)2

. (25)

Away from the isotropic case (Jz = J⊥) a set of tem-
perature intervals with different temperature behavior of the
longitudinal spin susceptibility exists. Following, we use the
asymptotic result (B2) from Appendix B. At temperatures
max{δ, δ(Jz−J⊥)

(δ−Jz) } � T � δ2(Jz−J⊥)
(δ−J⊥)(δ−Jz) , we find

χzz(T ) = 1

2(δ − Jz)
+ β

4

δ2

(δ − Jz)2
. (26)

For the temperature range max{δ, (δ−J⊥)(Jz−J⊥)
(δ−Jz) } � T �

δ(Jz−J⊥)
(δ−Jz) , we obtain

χzz(T ) = 1

2(δ − Jz)
+ β

4

J 2
⊥

(δ − Jz)2
. (27)

If the temperature is within the interval max{δ, J 2
⊥(Jz−J⊥)

(δ−J⊥)(δ−Jz) } �
T � (δ−J⊥)(Jz−J⊥)

(δ−Jz) , the zero-field longitudinal static spin sus-
ceptibility becomes

χzz(T ) = 1

2(δ − Jz)
+ 1

2
√

π

J⊥
√

βJ∗
(δ − Jz)(Jz − J⊥)

. (28)

Finally, for the lowest-temperature range δ � T �
min{ J 2

⊥(Jz−J⊥)
(δ−J⊥)(δ−Jz) ,

(δ−J⊥)(Jz−J⊥)
(δ−Jz) } we find [cf. Eq. (B3)]

χzz(T ) = 1

2(δ − Jz)
+ β

4

J 2
⊥

(δ − Jz)2
. (29)

We mention that χzz consists of two contributions [see
Eqs. (25)–(27) and (29)]: the one which resembles the Fermi-
liquid result for spin susceptibility, ∝ 1/(δ − Jz), and the other
which is of Curie type, ∝ βδ2/(δ − Jz)2. Such behavior is
illustrated in Fig. 2 where the dependence of longitudinal spin
susceptibility (24) on temperature and Jz at a fixed ratio J⊥/δ

0 2 4 6 8 10
0

2

4

6

8

10

2.0

1.7

Intermediate

Curie

FL

ln
[
/(

)] zJ
δ

δ
δ

δ
−

ln[ / ]T δ

FIG. 2. (Color online) Dependence of − d ln[χzz− δ
2(δ−Jz ) ]

d(δ−Jz) on ln T

δ

and ln δ

δ−Jz
for J⊥ = 0.3δ. In the left upper region, the Curie-type

behavior dominates the Fermi-liquid-like result. In the right lower
region, the Curie-type correction to the Fermi-liquid-like result
[χzz − δ

2(δ−Jz) ] ∝ 1
(δ−Jz)2 is small. Red region corresponds to the

intermediate regime in which there is a correction [χzz − δ

2(δ−Jz) ] ∝
1

T 1/2(δ−Jz)3/2 to the Fermi-liquid result due to transverse degrees of
freedom.

is shown. We emphasize that longitudinal spin susceptibility
diverges at Jz = δ regardless of the value of J⊥.

To understand the origin of such interesting behavior of the
zero-field longitudinal spin susceptibility, it is useful to rewrite
Eq. (18) in terms a series form again:

ZS =
√

βδ

π
e

βJ2⊥
4(δ−J⊥)

∞∑
Sz=−∞

∞∑
S=|Sz|

(
e
−β(δ−J⊥)(S− J⊥

2(δ−J⊥) )2

− e
−β(δ−J⊥)(S+1+ J⊥

2(δ−J⊥) )2)
eβ(Jz−J⊥)S2

z . (30)

Here, we used the following result:

Zn↑Zn↓ ≈
√

βδ

4π
e−βμnn−2β�0(μn)

√
βδ

π
e−βδm2

(31)

which is valid provided the following conditions hold: δ � T

and n � |m| (see Appendix C).
In the case of large temperatures T � J 2

⊥/(δ − Jz), our
results (25)–(29) imply the Fermi-liquid behavior of χzz(T ).
In this temperature range, all terms except the first one with
S = |Sz| in the sum over S in Eq. (30) cancel each other. Then,
we find

ZS =
√

βδ

π

∞∑
Sz=−∞

e−β(δ−Jz)S2
z =

(
δ

δ − Jz

)1/2

(32)

and, consequently, χzz(T ) = 1/[2(δ − Jz)]. This result implies
that the average value of S2

z is of the order of 1/[2β(δ − Jz)] �
1 regardless of J⊥. At the same time, the average value of
the squared total spin S2 is of the order of 1/[2β(δ − Jz)] +
1/[β(δ − J⊥)]. Therefore, at J⊥ � Jz, the total spin strongly
fluctuates in all three directions so that S2 ≈ 3S2

z whereas for
J⊥ � Jz the total spin fluctuates along the z axis only so that
S2 ≈ S2

z .
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We mention the unusual (inverse square-root) tempera-
ture dependence of the longitudinal spin susceptibility in
Eq. (28). However, the result (28) is valid in a temperature
range that exists only if J⊥ � Jz � δ. Then, the restric-
tions for the temperature become max{δ,J 2

⊥/(δ − Jz)} � T �
δ2/(δ − Jz). Therefore, we can use the arguments from the
previous paragraph. In order to explain the

√
β dependence

of χzz, one needs to perform the perturbation expansion in
J⊥|Sz| ∼ J⊥/

√
β(δ − Jz) for Eq. (30).

At low temperatures T �
J 2

⊥/(δ − Jz), our results (25)–(27)
and (29) imply a Curie-type longitudinal spin susceptibility.
In this case, the second term in brackets in the right-hand side
of Eq. (30) can be neglected. The sum over S can be estimated
by the integral which is dominated by S ∼ |Sz|. Then, we find

ZS =
√

βδ

π
e

βJ2⊥
4(δ−Jz )

∞∑
Sz=−∞

e
−β(δ−Jz)(|Sz|− J⊥

2(δ−Jz ) )2

2β(δ − J⊥)|Sz| − βJ⊥
. (33)

This estimate yields the typical value of |Sz| = J⊥/[2(δ − Jz)]
and, thus, the Curie-type behavior of the longitudinal spin
susceptibility: χzz = β|Sz|2 = βJ 2

⊥/[2(δ − Jz)]2. Therefore,
at relatively low temperatures δ � T � J 2

⊥/(δ − Jz), the con-
figuration with a nonzero total spin S = |Sz| = J⊥/[2(δ − Jz)]
gives the main contribution to the thermodynamic quantities.

For small magnetic fields b � δ(Jz − J⊥)/(δ − J⊥), the
longitudinal spin susceptibility χzz(T ,b) can be well approx-
imated by the zero-field result. For larger magnetic fields
b � δ(Jz − J⊥)/(δ − J⊥), there are two regions of tempera-
ture with different behavior. In the range of temperatures b(δ −
J⊥)/(δ − Jz) � T � bδ/(δ − Jz), the longitudinal spin sus-
ceptibility becomes linear in temperature [cf. Eq. (B1)]:

χzz(T ,b) = 1

2(δ − Jz)
+ T

b2
. (34)

At higher temperatures T � bδ/(δ − Jz), the temperature
dependence of the longitudinal spin susceptibility saturates:

χzz(T ,b) = 1

2(δ − Jz)
. (35)

In the limit of large magnetic fields, the ground-state energy
for the configuration with the total spin projection Sz is equal to
(δ − Jz)S2

z − bSz. Thus, the projection of the total spin in the
ground state is Sz = b/[2(δ − Jz)]. It allows us to estimate the
longitudinal spin susceptibility as χzz=dSz/db=1/[2(δ − Jz)]
in agreement with Eq. (35).

B. Case of the easy plane ( Jz < J⊥)

Using the integral representations (18) and (20), we
integrate over h and obtain

ZS =
(

δ

δ − Jz

)1/2

e
β(J2⊥+b2)

4(δ−J⊥)

∫ π/2

−π/2

dt√
π

e
− t2

β|J∗| + ibt
δ−J⊥

×
sinh

(
δ(βb+2it)
2(δ−J⊥)

)
√

β|J∗| sinh
(

βb+2it

2

)ϑ3

(
e
− π2

β(J⊥−Jz ) ,
iπt

β(J⊥ − Jz)

)
.

(36)

Here, ϑ3(q,z) =∑m qm2
e2imz stands for the Jacobi theta

function. Since T � δ � J⊥ − Jz, the Jacobi theta function
ϑ3 becomes equal to unity. Then, for b = 0 we find

Z =
(

δ

δ − Jz

)1/2

e
βJ2⊥

4(δ−J⊥) F2

(
δ

δ − J⊥
,
√

β|J∗|
)

, (37)

where

F2(x,y) =
∫ π/2y

−π/2y

dt√
π

sin(xyt)

sin(yt)
e−t2

. (38)

At temperatures T � max{δ, δ2(J⊥−Jz)
(δ−J⊥)(δ−Jz) }, with the help of

Eq. (B5) we obtain that the longitudinal spin susceptibility
is given by Eq. (25). In the temperature range δ � T �

δ2(J⊥−Jz)
(δ−J⊥)(δ−Jz) , the behavior of χzz is described by Eq. (26). In
the case of an easy-plane anisotropy, the interplay between
Fermi-liquid and Curie-type temperature dependencies of the
longitudinal spin susceptibility can be explained in exactly the
same way as it was done for the case of an easy-axis anisotropy.

The longitudinal static spin susceptibility is almost insen-
sitive to the presence of a small magnetic field b � δ(J⊥ −
Jz)/(δ − Jz). In the opposite case b � δ(J⊥ − Jz)/(δ − Jz),
one can neglect t in the sinh’s arguments in Eq. (36). Then, at
b � δ(J⊥ − Jz)/(δ − Jz) we find

ZS =
(

δ

δ − Jz

)1/2

e
βJ2⊥

4(δ−J⊥) + βb2

4(δ−Jz )
sinh δβb

2(δ−J⊥)

sinh βb

2

. (39)

The result (39) implies that for magnetic fields in the range
(δ − J⊥)T/δ � b � T , the longitudinal spin susceptibility is
described by Eq. (34) whereas for b � T , χzz is given by
Eq. (35).

IV. LONGITUDINAL SPIN SUSCEPTIBILITY:
THE EFFECT OF LEVEL FLUCTUATIONS

As it was explained above, the Hamiltonian (1) describes
a quantum dot in the zero-dimensional limit for the Ising
and Heisenberg exchange interactions only. Therefore, it is
reasonable to study the effect of level fluctuations on the results
obtained above for J⊥ = 0 and Jz. We start with the case of
Ising exchange.

A. Ising exchange

To simplify the general result (18) in the case of the Ising
exchange, it is convenient to make a change of variable B →
B − 2h(Jz − J⊥)T/Jz, to take the limit J⊥ → 0, and then to
integrate over B. Thus, we find

ZS =
(

δ

δ − Jz

)1/2

e
βb2

4(δ−Jz ) �

(
b

Jz

,
βJzδ

δ − Jz

)
, (40)

where

�(x,y) =
∫ ∞

−∞

dh√
π

e−h2−V (h
√

y+xy/2). (41)

The information on fluctuations of single-particle levels is
encoded in the even random function V (h) via the density of
states [see Eq. (21)]. We remind that the single-particle density
of states ν0(E) has non-Gaussian statistics [34]. However, for
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max{|h|,T /δ} � 1 the function V (h) is a Gaussian random
variable with zero mean value (see, e.g., Ref. [35]). The
two-point correlation function of V can be written as follows
(see Appendix D):

V (h1)V (h2) =
∑
σ=±

L(h1 + σh2) − 2L(h1) − 2L(h2),

L(h) = 2

π2β

∫ |h|

0
dt t

[
Re ψ

(
1 + it

2π

)
+ γ

]
.

(42)

Here, ψ(z) is the Euler digamma function and γ = −ψ(1)
is the Euler-Mascheroni constant. In the case of the Ising
exchange, the parameter β in Eq. (42) is equal to β = 2
since the energy levels εα in the Hamiltonian (1) are described
by the unitary Wigner-Dyson ensemble (class A) [17]. The
asymptotics of L(h) are as follows [12]:

L(h) = 4

β

(
h

2π

)2
{

ζ (3)
2

(
h

2π

)2 − ζ (5)
3

(
h

2π

)4
,

|h|
2π

� 1

ln |h|
2π

+ γ − 1
2 ,

|h|
2π

� 1.

(43)

1. Perturbation expansion for χ zz

According to Eq. (40), the average longitudinal spin
susceptibility χzz is determined by the quantity ln �(x,y).
Although V (h) is a Gaussian random variable, exact evaluation
of ln �(x,y) for arbitrary values of x and y is a complicated
problem. We start from the perturbation theory in the cor-
relation function V (h)V (h′). Expanding expression (40) for
�(x,y) to the second order in V and performing the averaging
of ln �(x,y) with the help of Eq. (42), we find

ln �(x,y) =
∫ ∞

0

du√
π

e−u2
[e−x2y/4 cosh(ux

√
y)L(2u

√
y)

− (e−x2y/2 cosh(ux
√

2y) + 1)L(u
√

2y)]. (44)

There exist four regions of different behavior of ln �(x,y).
They are shown in Fig. 3. It is convenient to introduce the
renormalized exchange J̄z = δJz/(δ − Jz).

In the region I, J̄z max{1,(b/Jz)} � T , the arguments
of �(x,y) satisfy the condition y � min{1,1/x}. The latter
allows one to use the asymptotics of L(h) for |h|�1 [see
Eq. (43)]. Then, we find

ln �(x,y) = 3ζ (3)y2

8π4β

[
1 + yx2 − 5ζ (5)y

2π2ζ (3)

×
(

1 + 3

2
yx2 + y2x4

6

)]
. (45)

Hence, we obtain the following result for the aver-
age longitudinal spin susceptibility at temperatures T � J̄z

max{1,(b/Jz)}:

χzz = 1

2(δ − Jz)
+ 3ζ (3)

4π4β

δ3Jz

(δ − Jz)3T 2

− 45ζ (5)

16π6β

δ4J 2
z

(δ − Jz)4T 3

[
1 + 2

3

δb2

JzT (δ − Jz)

]
. (46)
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FIG. 3. (Color online) Different regions of behavior of the rela-
tive correction to χzz due to fluctuations for the case of Ising exchange
in the plane of dimensionless magnetic field and inverse temperature
b/Jz and δJz/T (δ − Jz). Note that in our analysis we assume T � δ.

In the region I, the corrections to the longitudinal spin
susceptibility are always small and, therefore, the perturbation
theory is well justified. We present a more transparent way
for derivation of Eq. (46). At first, one can substitute 1/� for
1/δ in the expression (25) (with J⊥ = 0) for the equidistant
spectrum. Second, we expand χzz to the second order in the
deviation � − δ. Finally, one can perform averaging with the
help of the relation [12]

(� − δ)2 = 3ζ (3)

2π4β

δ4

T 2
, δ � T (47)

and obtain the result (46) (with b = 0).
In the region II, J̄z � T � max{δ,J̄z(b/Jz)2}, one can

perform an expansion in x2y in the right-hand side of
Eq. (44) since the condition 1 � y � 1/x2 holds. However,
the argument of L is typically large and we need to use its
asymptotics for |h| � 1 [see Eq. (43)]. Then, we obtain

ln �(x,y) = y ln 2

4π2β
(2 + yx2) − y3x4

48π2β
. (48)

Therefore, the average longitudinal spin susceptibility in the
region II [J̄z � T � max{δ,J̄z(b/Jz)2}] is as follows:

χzz = 1

2(δ − Jz)
+ ln 2

2βπ2

δ2

T (δ − Jz)2

− 1

4π2β

δ3b2

Jz(δ − Jz)3T 2
. (49)

At zero magnetic field, we check that the contribution of the
second order in L to ln �(0,y) is of order of [y/(π2β)]2 (see
Appendix E). Therefore, the perturbation theory in the two-
point correlation function of V is justified for T � J̄z/(π2β)
only. In this regime, the variance of χzz is small [(χzz)2 − χ2

zz]/
χ2

zz ∼ J̄z/(π2βT ) � 1 (see Appendix E). Therefore, at T �
J̄z/(π2β) one can expect the normal distribution of χzz.

Finally, in the region III, δ � T � J̄z min{(b/Jz),(b/Jz)2},
the typical value of u contributing to the integral in the
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right-hand side of Eq. (44) can be not only of the order unity
but also of the order of x

√
y � 1. In the latter case, since

yx � 1 one needs to use the asymptotics of L(h) for |h| � 1
[see Eq. (43)]. Then, we find

ln �(x,y) = y

2π2β

(
ln

|x|y
2

+ c2

)
−
∫ ∞

0

du√
π

e−u2
L(u
√

2y). (50)

We thus obtain the average longitudinal spin susceptibility in
the region III [δ � T � J̄z min{(b/Jz),(b/Jz)2}]:

χzz = 1

2(δ − Jz)
− 1

2βπ2

δJz

(δ − Jz)b2
. (51)

For magnetic fields b � Jz, the effect of level fluctuations
is suppressed and the perturbation theory is justified. At
b ∼ Jz

√
T/J̄z � Jz, the result (51) agrees with the result

(46) whereas at T ∼ J̄zb/Jz � J̄z the corrections due to level
fluctuations in (51) and (49) become of the same order.

Results (49) and (51) imply nonmonotonous behavior of
the average longitudinal spin susceptibility with magnetic
field b in the temperature range J̄z/(π2β) � T � J̄z (see
Fig. 4). The susceptibility χzz(b) as a function of b has a
minimum at b ∼ T Jz/J̄z. In the region of strong fluctuations
δ � T � J̄z/(π2β), we expect similar behavior of the average
longitudinal spin susceptibility.

Although the result (51) is derived for T � δ, for δ − Jz �
Jz it can be obtained from the following zero-temperature
arguments. The difference in the ground-state energies for the
state with projections Sz + 1 and Sz of the total spin can be
estimated as

Eg(Sz + 1) − Eg(Sz) = 2(δ − Jz)Sz − bSz + �E2Sz
. (52)

Here, �E2Sz
is the fluctuation of the energy window in which

there are 2Sz levels on average. It can be expressed as �E2Sz
=

δ �n2Sz
where �n2Sz

is the fluctuation of the number of single-
particle levels in the strip with 2Sz levels in average. From the
random matrix theory it is well known that [34]

(�n2Sz
)2 = 2

π2β
[ln 2Sz + const]. (53)

0.05

0.1

0.2

1.0 2.0 3.0

zzχ

/ zb J

FIG. 4. Dependence of relative correction δχzz = χzz − 1/

[2(δ − Jz)] due to fluctuations on b/Jz [see Eqs. (49) and (51)]. The
temperature T = δJz/[6(δ − Jz)].

Comparing the energies of the ground states with total spin
projections Sz + 1 and Sz, we find from Eq. (52) that

Sz = 1

2(δ − Jz)
[b − δ �n2Sz

]. (54)

Hence, the average longitudinal spin susceptibility can be
estimated as

χzz ∼ ∂Sz

∂b
= 1

2(δ − Jz)

[
1 + δ2

2(δ − Jz)2

d2(�nz)2

dz2

]
, (55)

where z = 2Sz ≈ b/(δ − Jz). Using Eq. (53), we reproduce
the result (51).

2. Distribution function for χzz

The average longitudinal spin susceptibility is mostly
affected by the level fluctuations in the region II [J̄z � T �
J̄z(b/Jz)2]. The perturbative result (46) loses its validity at
J̄z/(π2β) � T � δ. Such a regime is realized in the close
vicinity of the Stoner instability δ − Jz � δ/(π2β). In this
case of strong fluctuations it is useful to know the distribution
function of χzz rather than the average value.

In the range of temperatures δ � T � J̄z, the integral in
the right-hand side of Eq. (41) is dominated by large values of
|h|. Then, using the asymptotic expression (43), one can check
that for |h1|,|h2| � 1 the two-point correlation function (42)
is homogeneous of degree two [6]:

V (uh1)V (uh2) = u2V (h1)V (h2). (56)

With the help of Eq. (56), at zero magnetic field b = 0 and for
δ � T � J̄z/(π2β), Eqs. (40) and (41) can be simplified to

ZS =
(

δ

δ − Jz

)1/2 ∫ ∞

−∞

dh√
π

e−h2−zv(h). (57)

We remind that the normalization is such that ZS=1 at Jz=0.
According to Eq. (9) for J⊥ = b = 0, the grand canonical
partition function increases as Jz increases. Hence, it follows
that ZS � 1. According to Eq. (57), the statistics of the zero-
field longitudinal spin susceptibility is determined by the single
parameter z = [βJ̄z/(π2β)]1/2. The Gaussian random process
v(h) has zero mean and is even in h, v(h) = v(−h). Its two-
point correlation function reads as

v(h1)v(h2) = 1

2

∑
σ=±

(h1 + σh2)2 ln(h1 + σh2)2

−h2
1 ln h2

1 − h2
2 ln h2

2. (58)

Hence, we find that

[v(h + u) − v(h)]2 = −2u2 ln |u| + O(u2) = O(u2H ) (59)

for any H = 1 − ε < 1. Thus, the trajectories of v(h) are con-
tinuous and its increments are strongly positively correlated
(see Fig. 5). In fact, the process v(h) is in many aspects close to
the ballistic one ṽ(h) = ξ |h| with ξ being a Gaussian random
variable recall that ṽ(h) is the unique process with H = 1].
The process v(h) has arisen before in a seemingly unrelated
context [36].
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FIG. 5. (Color online) Several realizations of the process v(h);
dashed lines ±2h

√
ln 2 are guides for the eye.

We are interested in the complementary cumulative dis-
tribution function P(W ), i.e., the probability that ln ZS

exceeds W : P(W ) ≡ Prob{ln ZS > W }. It has the following
properties: P(0) = 1, P(∞) = 0, and P(W ) is monotonously
decreasing as W increases. The average moments of ln ZS can
be conveniently written as [ln ZS]k = k

∫∞
0 dW Wk−1P(W ).

Although a closed analytical expression for the complementary
cumulative distribution function is not known, we bound
P(W ) from above to prove that all moments of ln ZS (and
consequently all moments of χzz) are finite for Jz < δ. At
first, we split the Gaussian weight exp(−h2) in the integral in
the right-hand side of Eq. (40) and obtain (0 < γ < 1 is an
arbitrary splitting parameter)

ZS � 2
√

J̄z√
πγJz

∫ ∞

0
dh e−(1−γ )h2/γ max

h�0
{e−h2−zv(h)/

√
γ }. (60)

The inequality (60) allows us to reduce the problem of finding
an upper bound for P(W ) to the statistics of the maxima of the
Gaussian process Yγ (h) = −h2 − (z/

√
γ )v(h) which locally

resembles a fractional Brownian motion with a drift. Indeed,
from Eq. (60) we find

P(W ) � Prob

{
max
h�0

Yγ (h) > W + 1

2
ln

(1 − γ )Jz

J̄z

}
. (61)

To give an upper bound for the probability
Prob{maxh�0 Yγ (h) > w} we employ the Slepian’s inequality
[37]. Let us consider an auxiliary Gaussian process
X(h) = −h2 + (2z

√
ln 2/

√
γ )B(h2) where B(h) is the

standard Brownian motion [B(h) = 2h; the Hurst exponent
H = 1/2]. For any interval T the sample paths {X(h),h ∈ T }

and {Yγ (h),h ∈ T } are bounded. The following relations hold:

X(h) = Yγ (h), X2(h) = Y 2
γ (h),

[X(h1) − X(h2)]2 � [Yγ (h1) − Yγ (h2)]2. (62)

The first two equalities are trivially satisfied while the
last inequality follows from an easily verifiable inequality
[v(1/2 + r) − v(1/2 − r)]2 � 8r ln 2 for |r| � 1/2. Then, the
processes Yγ (h) and X(h) satisfy the Slepian’s inequality

Prob
{

max
h�0

Yγ (h) > w
}

� Prob{max
h�0

X(h) > w} (63)

for all real w. Using a well-known result for the Brownian
motion with a linear drift (see, e.g., Ref. [38])

Prob
{

max
h�0

X(h) > w
} = exp

(
− γw

2z2 ln 2

)
, w > 0 (64)

we find the following upper bound for the complementary
cumulative distribution function:

P(W ) � exp

{
− γ

2z2 ln 2

[
W + 1

2
ln

(1 − γ )Jz

J̄z

]}
. (65)

From Eq. (65) it follows that for J̄z/(π2β) � T � δ all
moments of ln ZS (and hence all moments of χzz) are finite
for Jz < δ. Therefore, even in the presence of the strong level
fluctuations the Stoner instability occurs at Jz = δ only. For
Jz < δ and for temperatures T � δ, the quantum dot is in the
paramagnetic state.

For z � 1 the saddle-point approximation in Eq. (40)
becomes exact and the statistics of ln ZS reduces to the
statistics of maxima of the process Y (h) = −h2 − zv(h). As
it can be seen from rescaling of h, the probability that the
maximum of Y (h) exceeds w equals the probability that the
maximum of Ỹ (s) = v(s)/(1 + s2) defined on s � 0 exceeds√

w/z. From the results of Hüsler and Piterbarg [39] it follows
that the large-w tail of Prob{maxh�0 Y (h) > w} is determined
by a small vicinity of the point s∗ = 1 where the variance of
Ỹ (s) attains its maximum ln 2. Furthermore, should we have a
finite limit

lim
s,t→s∗

[Ỹ (s) − Ỹ (t)]2

K2(s − t)
> 0 (66)

for some function K(x) regularly varying at 0 with index
α ∈ (0,1), the precise asymptotics would read as

Prob
{

max
h�0

Y (h) > W
} ∼ const(α) × (z2/W )−1

K−1(
√

z2/W )

× exp

[
− W

2z2 ln 2

]
, W/z2 � 1.

(67)

Here, K−1(x) stands for the functional inverse of K(x).
In our case, Eq. (59) translates into K(x) = x

√
ln(1/x)

which is regularly varying with index α = 1 [recall that a
function f (x) is regular varying at x = 0 with index α if
limt→0 f (at)/f (t) = aα for any a > 0]. The result of Ref. [39]
is therefore not directly applicable, but we believe this to be a
technicality. In analogy with a similar situation for fractional
Brownian motion, we expect the asymptotics (67) to hold
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with only the W -independent factor const(α) modified. Note
that the exponential part can be tracked to be the tail of a
normal distribution with variance ln 2 taken at

√
W/z, and

that it had been correctly reproduced by our initial estimate.
Therefore, we find with logarithmic accuracy that the tail of
the complementary cumulative distribution function is given
by {W � [ln 2/(π2β)]δJz/[T (δ − Jz)]}

P(W ) ∝ Ptail

(
π2βT (δ − Jz)W

δJz

)
,

Ptail(x) =
√

ln x√
x

exp

(
− x

2 ln 2

)
. (68)

This result is valid in the temperature range J̄z/(π2β) � T �
δ and is consistent with the upper bound (65).

To illustrate the result (68) we approximate the Gaussian
process v(h) by a degenerate one ṽ(h) = ξ |h|, where ξ is the
Gaussian random variable with zero mean ξ = 0 and variance
ξ 2 = 4 ln 2. Substituting the process ṽ(h) for v(h) into the
right-hand side of Eq. (57), we estimate the partition function
as ZS �

√
J̄z/Jz exp(z2ξ 2/4)[1 − erf(zξ/2)]. The large values

of ZS correspond to large negative values of ξ such that
ln ZS ≈ z2ξ 2/4. Therefore, the tail of distribution of ln ZS

is simple exponential. Hence, we find that for z � 1 the tail
of the complementary cumulative distribution function P(W )
is given by Eq. (68) without the logarithm in the preexponent.
As shown in Fig. 6, the overall behavior of P(W ) for z � 1 is
well enough approximated by the complementary cumulative
distribution function for the degenerate process ṽ(h). Also, we
mention that the behavior of P(W ) for z � 1 is very different
from its behavior at z � 1. For the latter, P(W ) is given by the

4 6 84

6

8

W z2

ln
1
P
W

0 2 4 6 80

0.5

1

W z2

P
W

FIG. 6. (Color online) The dependence of P(W ) on W/z2 at
T = 3δ computed numerically for Jz/δ = 0.94 (z ≈ 0.5) (upper solid
curve) and Jz/δ = 0.999 94 (z ≈ 16.8) (lower solid curve). The black
dotted curve is the complementary cumulative distribution function
for the normal distribution with mean and variance as one can find
from the lowest-order perturbation theory in V for T = 3δ and
Jz/δ = 0.94 [cf. Eqs. (E7) and (E8)]. The red dashed curve is the
complementary cumulative distribution function of the degenerate
process ṽ(h) for T = 3δ and Jz/δ = 0.999 94. Inset: Comparison
of the tail of P(W ) computed numerically for Jz/δ = 0.999 94
(z ≈ 16.8) and asymptotic result (68).

complementary cumulative distribution function of the normal
distribution (see Fig. 6).

Equation (68) implies that the average moments of ln ZS

scale as (ln ZS)k ∼ z2k for z � 1. Hence, for δ � T �
J̄z/(π2β) the kth moment of the spin susceptibility is given by

χk
zz ∝

[
δ2

π2β(δ − Jz)2T

]k

, k = 1,2, . . . . (69)

The result (69) can be obtained from the saddle-point analysis
of the integral in the right-hand side of Eq. (57), i.e., in essence,
by Larkin-Imry-Ma–type arguments [40,41]. The scaling of
the average spin susceptibility [Eq. (69) with k = 1] was
proposed in Ref. [6] using arguments of Larkin-Imry-Ma type.

B. Heisenberg exchange

For the case of the isotropic exchange J⊥ = Jz ≡ J , the
integration overB in Eq. (18) becomes trivial. Then, for T � δ

we obtain [12]

ZS =
(

δ

δ − J

)1/2
e

βb2

4J

sinh(βb/2)
�̃

(
b

J
,

βJδ

δ − J

)
, (70)

where

�̃(x,y) =
∫ ∞

−∞

dh√
π

sinh(hx
√

y)e−h2+h
√

y−V (h
√

y). (71)

Since in the absence of magnetic field Z grows with increase of
J [see Eq. (9)], one can check that for the Heisenberg exchange
ZS � 1. The detailed results of the perturbative expansion
in V for the longitudinal spin susceptibility can be found in
Ref. [12]. Similarly to the case of the Ising exchange, the
effect of fluctuations is important at b = 0 and δ � T �
Jδ/[π2β(δ − J )]. In this range of parameters, the typical value
of |h| in the integral in the right-hand side of Eq. (71) is large
|h| ∼

√
βJ̄ � 1, where J̄ = δJ/(δ − J ). Then, for b = 0

Eq. (9) can be rewritten as

ZS = 2√
βJ

δ

δ − J

∫ ∞

−∞

dh√
π

h e−h2+h
√

y−zv(h), (72)

where z = [βJ̄ /(π2β)]1/2. Here, β = 1 which corresponds to
the orthogonal Wigner-Dyson ensemble. The complementary
cumulative distribution function P(W ) = Prob{ln ZS > W }
can be estimated in a similar way as in the previous section.
Writing

ZS � 2√
βJ

(
δ

δ − J

)[
2
∫ ∞

0

dh h sinh(h
√

y)√
πγ

e−(1−γ )h2/γ

]
× max

h�0
{e−h2−(z/

√
γ )v(h)}, (73)

with arbitrary splitting parameter γ (0 < γ < 1), we obtain
the following upper bound:

P(W ) � aγ exp

{
− γ

2z2 ln 2

[
W + 3

2
ln

(1 − γ )J

J̄

]}
, (74)

where aγ = exp{(π2βγ )/[8(1 − γ ) ln 2]}. This upper bound
implies that all moments of ln ZS (and of χzz) are finite for
J < δ. At z � 1 the integral in the right-hand side of Eq. (71)
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can be evaluated in the saddle-point approximation, reducing
the statistics of ln ZS to the statistics of maxima of the process
Y (h) = −h2 + h

√
y − zv(h). Then, using as in the previous

section the results of Hüsler and Piterbarg [39], we find the
tail of the complementary cumulative distribution function at
W � δJ/[T (δ − J )] is given by Ptail[π2βT (δ − J )W/(δJ )]
[see Eq. (68)]. We note that for this tail the drift term h

√
y in

the process Y (h) is not important.
The typical value of h contributing to the integral in the

right-hand side of Eq. (72) is
√

y/2. Then, for z � 1 we
find, with logarithmic accuracy, ln Zs − y/4 = (z

√
y/2)v(1).

Hence, for δ � T � J̄ /(π2β) the average kth moment of the
longitudinal spin susceptibility can be estimated as

(
χzz − χ

(0)
zz

)k ∝
(

δ2√
π2βT (δ − J )2

)k

, (75)

where χ (0)
zz = δ2/[12T (δ − J )2] is the spin susceptibility in

the absence of level fluctuations. We note that for δ �
T � J̄ /(π2β) the scaling of the average longitudinal spin
susceptibility similar to Eq. (75) with k = 1 was derived in
Ref. [6].

V. TRANSVERSE SPIN SUSCEPTIBILITY

The transverse spin susceptibility is defined as follows
(see, e.g., Ref. [42]):

χ⊥(ω) = i

Z

∫ ∞

0
dt ei(ω+i0+)t Tr([Ŝ+(t),Ŝ−(0)]e−βH ), (76)

where Ŝ± = Ŝx ± iŜy . Since, in contrast with Ŝz, the operators
Ŝx , Ŝy of the total spin do not commute with the Hamiltonian
H (for Jz �= 0), the transverse spin susceptibility can acquire
nontrivial frequency dependence.

In order to find the dynamic transverse spin susceptibility
(76) we use the Heisenberg equations of motion for the spin
operators: d Ŝ/dt = i[H,S]. Since the operator Sz commutes
with the Hamiltonian, it has no dynamics, Ŝz(t) = Ŝz. For the
other components of the total spin we find

Ŝ±(t) = e∓2i(J⊥−Jz)Ŝzt Ŝ±(0)e−i(J⊥−Jz)t±ibt

≡ Ŝ±(0)e∓2i(J⊥−Jz)Ŝzt ei(J⊥−Jz)t±ibt . (77)

Using expressions (77), we integrate over time in Eq. (76) and
obtain the following operator expression for the transverse spin
susceptibility:

χ⊥(ω) = 1

Z

∑
σ=±

Tr

(
σ
[
Ŝ2 − Ŝ2

z

]− Ŝz

)
e−βH

ω + b + (J⊥ − Jz)(2Ŝz + σ ) + i0+ .

(78)

Since operators Ŝz and Ŝ2 commute with H , one easily
evaluates the trace in Eq. (78) with the help of Eq. (9). Thus,
we derive the exact result for the dynamic transverse spin

susceptibility:

χ⊥(ω) = 1

Z

∑
n↑,n↓

Zn↑Zn↓e
−βEc(n−N0)2+βJ⊥m(m+1)+βμn

× sgn (2m + 1)
|m+1/2|−1/2∑

l=−|m+1/2|+1/2

eβ(Jz−J⊥)l2−βbl

×
∑
σ=±

σ [m(m + 1) − l2] − l

ω + b + (J⊥ − Jz)(2l + σ ) + i0+ . (79)

In what follows, we will be interested in the imaginary part of
χ⊥(ω). The real part can be restored from the Kramers-Kronig
relations. Using Eq. (79), the imaginary part of the dynamic
transverse spin susceptibility can be written as

Im χ⊥(ω) = −π

Z

∑
n∈Z

∑
σ=±

δ(ω + b + (2n − σ )(Jz − J⊥))

×
(

n + σT
∂

∂J⊥

)
Z(n). (80)

Here, we introduce the Fourier transform of the partition
function Z(b + iλT ) in the complex magnetic field b + iλT :

Z(n) =
∫ π

−π

dλ

2π
e−iλnZ(b + iλT ). (81)

As it follows from Eq. (80), the imaginary part of the transverse
spin susceptibility obeys the sum rule∫ ∞

−∞

dω

2π
Im χ⊥(ω) = M, (82)

where the magnetization M = −〈Ŝz〉 = T ∂ ln Z/∂b. Since at
b = 0 the function Z(n) is even, the imaginary part of the
zero-field transverse spin susceptibility is odd in frequency:
Im χ⊥(−ω) = − Im χ⊥(ω), so the sum rule (82) is trivially
satisfied.

We mention that in the case of an isotropic exchange Jz =
J⊥, Eq. (80) becomes trivial, Im χ⊥(ω) = 2πMδ(ω − b). In
this case, the behavior of the transverse spin susceptibility
is fully determined by the behavior of the magnetization M .
Therefore, in what follows we shall not discuss the transverse
spin susceptibility for the isotropic exchange.

A. Equidistant single-particle spectrum

At first, we consider the case of an equidistant single-
particle spectrum and, therefore, neglect effects related to the
level fluctuations. As it was discussed in Sec. II C, for δ � T

the partition function can be factorized in accordance with
Eq. (15). Since the factor ZC does not depend on the magnetic
field, it does not influence the results for χ⊥(ω) and we omit
it below in this section. It implies that ZS , ZS(n), and ZS(b +
iλT ) should be substituted for Z, Z(n), and Z(b + iλT ) in
Eqs. (80) and (81), respectively. Using Eq. (31) for the
equidistant single-particle spectrum, we can rewrite ZS(n) in
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the following way:

ZS(n) =
√

βδ

π

∫ π

−π

dλ

2π
e−iλn

∑
m

e−β(δ−J⊥)m2+βJ⊥m

× sgn(2m + 1)
|m+1/2|−1/2∑

l=−|m+1/2|+1/2

eβ(Jz−J⊥)l2−βbl−iλl .

(83)

Next, performing integration over λ, we obtain the following
result:

ZS(n) =
√

βδ

π
eβ(Jz−J⊥)n2+βbn

⎡⎣∑
m=|n|

e−β(δ−J⊥)m2+βJ⊥m

−
∑

m=|n|+1

e−β(δ−J⊥)m2−βJ⊥m

⎤⎦ . (84)

In the case β(δ − J⊥)|n| � 1, applying the Euler-Maclaurin
formula to estimate the sums over m, we find

ZS(n) = 1

2

(
δ

δ − J⊥

)1/2

e
βJ2⊥

4(δ−J⊥) eβ(Jz−J⊥)n2+βbn

×
∑
s=±

erf

[√
β(δ − J⊥)

(
s|n| + J⊥

2(δ − J⊥)

)]

+
√

βδ

π
e−β(δ−Jz)n2+βbn cosh(βJ⊥|n|). (85)

In the opposite case β(δ − J⊥)|n| � 1, the term with m = |n|
in the right-hand side of Eq. (84) provides the main contribu-
tion. Then, we obtain

ZS(n) =
√

βδ

π
e−β(δ−Jz)n2+βJ⊥|n|+βbn. (86)

We note that for J⊥ = 0, both expressions (85) and (86)
coincide and are valid, in fact, for arbitrary n.

According to Eq. (80), Im χ⊥(ω) is represented as the sum
of delta peaks. Since their positions are independent of the
realization of single-particle levels, the delta peaks survive
averaging of Im χ⊥(ω) over level fluctuations. Therefore, in
order to discuss the frequency dependence of the transverse
spin susceptibility in a form of a smooth curve, we assume
some natural broadening � � |Jz − J⊥| for these delta peaks.
Then, the sum over n in Eq. (80) can be replaced by an integral
and we obtain

Im χ⊥(ω) = − π

2|Jz − J⊥|ZS

×
∑
σ=±

(
n + σT

∂

∂J⊥

)
ZS(n)

∣∣∣∣
n=−�+σ/2

, (87)

where � = (ω + b)/[2(Jz − J⊥)].
In the limit of large frequencies or large magnetic fields

β(δ − J⊥)|� | � 1, the imaginary part of the transverse spin
susceptibility is exponentially small:

Im χ⊥(ω) = �
√

πβδ

|Jz − J⊥|ZS

exp[−β(δ − Jz)|� |(|� | + 1)

+βJ⊥|� | − βb� ]. (88)
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/J δ⊥

Im (0)ln[ ]d
d
χ
ω
⊥

zJ J⊥ =

FIG. 7. Dependence of the slope d Im χ⊥(0)
dω

of the traverse spin
susceptibility on J⊥/δ for Jz = δ/2.

In the absence of magnetic field b = 0, Im χ⊥ is an odd
function of the frequency ω. For ω → 0 the imaginary part of
the transverse spin susceptibility has linear behavior:

Im χ⊥(ω) = ω
√

πβδ

2|Jz − J⊥|(δ − J⊥)ZS

[
2δ − J⊥

2(δ − J⊥)

+
√

π

2
√

β(δ − J⊥)
G
(

βJ 2
⊥

4(δ − J⊥)

)]
, (89)

where

G(x) = (1 + 2x)ex erf(
√

x). (90)

The slope of Im χ⊥(ω) at ω = 0 has different behaviors
for J⊥ < Jz and for J⊥ > Jz. In the interval 0 � J⊥ � Jz,
the slope grows monotonously with the increase of J⊥ and
diverges at J⊥ = Jz. In the range Jz < J⊥ < δ, the slope has
a minimum (see Fig. 7). The imaginary part of the zero-field
transverse spin susceptibility has two extrema (a minimum at a
negative frequency and a maximum at a positive frequency). In
the case δ − Jz,J⊥ � δ and δ � T � δ2/(δ − Jz), the posi-
tions of the extrema can be estimated as

ωext ≈ ± 2(Jz − J⊥)√
2β(δ − Jz)

[(
1 + βJ 2

⊥
8(δ − Jz)

)1/2

+
(

βJ 2
⊥

8(δ − Jz)

)1/2]
. (91)

The behavior of χ⊥(ω) as a function of frequency is shown in
Fig. 8. In the presence of a magnetic field Im χ⊥(ω) is shifted
along the frequency axis and becomes asymmetric (see Fig. 8).

It is worthwhile to discuss the case of the Ising exchange
(J⊥ = 0) in more detail. In the regime of small frequencies
and magnetic fields |ω|,|b| � T Jz/δ, the imaginary part of
the dynamic spin susceptibility reads as

Im χ⊥(ω) = ω
√

πβ(δ − Jz)

2Jzδ
exp

{
− β[(δ − Jz)ω + δb]2

4J 2
z (δ − Jz)

}
.

(92)
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FIG. 8. (Color online) Dependence of Im χ⊥(ω) on ω for Jz =
0.98δ and several values of J⊥: J⊥ = 0.92δ (red solid line), J⊥ =
0.75δ (blue dashed line), and J⊥ = 0 (green dotted line). The curves
shrink to ω = 0 as one moves closer to the isotropic case.

Although Im χ⊥(ω) is asymmetric in the presence of magnetic
field, it still vanishes at zero frequency Im χ⊥(ω = 0) = 0.
In the opposite limit |ω|,|b| � T Jz/δ, from Eq. (88) we
find

Im χ⊥(ω)= (ω + b)
√

πβ(δ − Jz)

2J 2
z

exp

{
−β(δ − Jz)

2Jz

|ω + b|
}

× exp

{
−β[(δ − Jz)ω + δb]2

4J 2
z (δ − Jz)

}
. (93)

In the case b = 0, our results (92) and (93) coincide with the
small- and large-frequency asymptotics of the result obtained
in Ref. [18]. The presence of a magnetic field leads to a shift
of the extrema of the imaginary part of the dynamic spin
susceptibility according to

ωext ≈ ±
√

2J 2
z

β(δ − Jz)

{(
1 + βb2

8(δ − Jz)

)1/2

∓ b
√

β

8
√

(δ − Jz)

}
.

(94)

B. Effect of level fluctuations (Ising case)

The above results for the dynamic spin susceptibility
have been obtained without taking the level fluctuations into
account. Following, we consider how the level fluctuations
affect the dynamic spin susceptibility in the case of the
Ising exchange. As we shall demonstrate, the effect of level
fluctuations on Im χ⊥(ω) is small in most cases. Since the
effect of level fluctuations is suppressed by the magnetic field,
following we consider only the case b = 0.

We start from a generalization of Eq. (31) to an arbitrary
spectrum (see Appendix C):

Zn↑Zn↓ ≈
√

βδ

4π
e−βμnn−2β�0(μn)

∫ ∞

−∞

dθ

π
e−2miθ e

− θ2

βδ
−V (iθ)

.

(95)

With the help of Eqs. (79), (87), and (95), we rewrite
the imaginary part of the dynamic spin susceptibility as

follows:

Im χ⊥(ω) = −
√

πβ(δ − Jz)

2Jz

∑
σ=±

eβJzn
2

⎡⎣ ∞∑
m=|n|+1

2σm

× e−βδm2
Fχ

(
m,βδ,

βδJz

δ − Jz

)
+(n + σ |n|)e−βδn2

×Fχ

(
|n|,βδ,

βδJz

δ − Jz

)⎤⎦∣∣∣∣∣∣
n=(σJz−ω)/(2Jz)

.

(96)

Here, the random function

Fχ (m,x,y) =
∫∞
−∞ dθ e−θ2−V (xm+iθ

√
x)∫∞

−∞ dh e−h2−V (h
√

y)
(97)

is equal to unity in the absence of level fluctuations (for V = 0).
Expanding the right-hand side of Eq. (97) to the second

order in V we find

Fχ (m) =
∫ ∞

−∞

dh1dh2

π
e−h2

1−h2
2

{
1 + 1

2
L(2xm + 2ih1

√
x)

− 2L(xm + ih1
√

x + h2
√

y) − 1

2
L(2h1

√
y)

+ 2L(h1
√

y + h2
√

y)

}
. (98)

In the high-temperature regime T � δJz/(δ − Jz), and for
|m| � T/δ, all three integrals in the right-hand side of Eq. (98)
are of the same order. Using the asymptotic expression (43) for
the function L(h) at |h| � 1, we obtain the following result for
the imaginary part of the average dynamic spin susceptibility
at low frequencies δ|ω|/(2Jz) � T and high temperatures
T � δJz/(δ − Jz):

Im χ⊥(ω)

Im χ
(0)
⊥ (ω)

= 1 + 3ζ (3)δ2

16π4βT 2

[
− δ2

(δ − Jz)2

− δ2ω2

T J 2
z (δ − Jz)

+ δ2ω4

4T 2J 4
z

]
. (99)

Here, Im χ
(0)
⊥ (ω) is given by Eq. (92) with b = 0. We

mention that Eq. (99) can be obtained from Eq. (92) if one
substitutes 1/� for 1/δ and performs averaging with the
help of Eq. (47). In the regime of low frequencies and high
temperatures, the effect of level fluctuations is small.

In the case of high frequencies and high temperatures
δ|ω|/(2Jz) � T � δJz/(δ − Jz), the first and second lines in
the right-hand side of Eq. (98) provide the main contribution.
Then, with the help of the asymptotic expression (43) for L(h)
at |h| � 1 we find that for |ω|/(2Jz) � T/δ � Jz/(δ − Jz)
the imaginary part of the average dynamic spin susceptibility
can be written as

Im χ⊥(ω)

Im χ
(0)
⊥ (ω)

= 1 + ln 2

2π2β

ω2δ2

T 2J 2
z

. (100)

Here, Im χ
(0)
⊥ (ω) is given by Eq. (93) with b = 0. We note

that the result (100) is valid provided [ωδ/(T Jz)]2 � π2β so
that the perturbation theory in V is justified. We emphasize
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that although the result Eq. (100) is valid at high temperatures
T � δJz/(δ − Jz), it cannot be obtained from Eq. (93) by a
substitution of 1/� for 1/δ and averaging with the help of
Eq. (47).

In the case of low temperatures T � δJz/(δ − Jz), the m-
independent contributions in the right-hand side of Eq. (98)
vanish in the leading order. Using the asymptotic result for
L(h) at |h| � 1 [see Eq. (43)], we obtain

Fχ (m) = 1 − x

π2β

⎧⎪⎨⎪⎩
(xm2 − 1

2 ) ln y, x|m|� 1

(xm2 − 1
2 ) ln y

x2m2 , 1� x|m| � √
y

y

2x
ln x2m2

y
,

√
y� x|m|.

(101)

Hence, we find the following result for the imaginary part of
the average dynamical spin susceptibility at low frequencies
|ω|/J 2

z � T/δ � Jz/(δ − Jz):

Im χ⊥(ω)

Im χ
(0)
⊥ (ω)

= 1 − δ

βπ2T

(
δω2

4T J 2
z

+ 1

2

)
ln

δJz

(δ − Jz)T
.

(102)

Here, Im χ
(0)
⊥ (ω) is given by Eq. (92) with b = 0. In the

temperature range |ω|/J 2
z � T/δ � Jz/(δ − Jz) the effect of

level fluctuations is suppressed by an additional small factor
δ/T � 1. Thus, we expect that the perturbation theory is valid
even for T � δJz/[π2β(δ − Jz)].

In the high-frequency regime 1 � [ωδ/(JzT )]2, and at low
temperatures T � δJz/(δ − Jz) we obtain from Eq. (101) the
following result for the average dynamical spin susceptibility:

Im χ⊥(ω)

Im χ
(0)
⊥ (ω)

= 1 + 1

2π2β
min

{
ω2δ2

2J 2
z T 2

,
δJz

T (δ − Jz)

}

× ln max

{
ω2δ(δ − Jz)

4J 3
z T

,
4J 3

z T

ω2δ(δ − Jz)

}
.

(103)

Here, Im χ
(0)
⊥ (ω) is given by Eq. (93) for b = 0.

The perturbation theory is justified for max{[ωδ/(JzT )]2,

δJz/[T (δ − Jz)]} � π2β. We remind that the maximum of
Im χ

(0)
⊥ (ω) is close to the frequency ωext ≈ √2J 2

z T /(δ − Jz).
Then, as it follows from Eq. (103), the fluctuations yield an
enhancement of the maximal value of the average dynamical
spin susceptibility of the relative order {δJz/[π2βT (δ − Jz)]}.
Due to fluctuations, there is a small shift of the maximum
towards zero frequency δωext/ωext ∼ −δ2/(π2βT 2).

Since ZS � 1, we can bound the function Fχ (m) from above
as

Fχ (m) �
(

δ

δ − Jz

)1/2 ∫ ∞

−∞
dθ e−θ2−V (xm+iθ

√
x). (104)

Therefore, Fχ (m) remains finite for Jz < δ. Thus, in spite
of the level fluctuations, the Stoner instability in Im χ⊥(ω)
emerges only at Jz = δ.

According to Eq. (104), averaging over level fluctuations
keeps Im χ⊥(ω) finite. However, the form of the curve can
be changed drastically in the regime of strong fluctuations.
To estimate Im χ⊥(ω) at δ � T � δJz/[π2β(δ − Jz)], we

substitute the degenerate process ṽ(h) for V (h) into Eq. (97).
Then, a straightforward calculation yields

Fχ (m) = eβ(δ−Jz)m2

√
8z2 ln 2

exp

[
−β(δ − Jz)m2

2z2 ln 2

]
(105)

for β(δ − Jz)m2 � 1. We recall that z2 = δ2/[π2βT (δ − Jz)].
This result implies that Im χ⊥(ω) has a minimum and a
maximum at frequencies

ωext = ±2
√

ln 2√
π2β

δ2

δ − Jz

. (106)

Due to strong fluctuations of the single-particle levels, the
frequency of the extremum shifts towards higher frequencies
(in comparison with the corresponding result without fluctua-
tions) and becomes temperature independent. The fluctuations
do not affect considerably the values of Im χ⊥(ω) at the
extrema. Therefore, the slope at ω = 0 becomes smaller
Im χ⊥(ω)/ Im χ

(0)
⊥ (ω) ∝ 1/z � 1.

VI. CONCLUSIONS

In this paper, we have addressed the spin fluctuations and
dynamics in quantum dots and ferromagnetic nanoparticles.
Within the framework of the model Hamiltonian which is
an extension of the universal Hamiltonian to the case of
uniaxial anisotropic exchange interaction, we have derived
exact analytic expressions for the static longitudinal and
dynamic transverse spin susceptibilities for arbitrary single-
particle spectrum.

For the equidistant single-particle levels, we analyzed
the temperature and magnetic field dependence of χzz. For
J⊥ �= 0, the zero-field longitudinal spin susceptibility has
temperature dependence of type 1/T (Curie type) or 1/

√
T .

This indicates that the destruction of the mesoscopic Stoner
instability by uniaxial anisotropy is not abrupt. The magnetic
field suppresses the temperature dependence of χzz making
spins aligned along the field.

For the case of the Ising exchange interaction we study the
effect of single-particle level fluctuations on χzz in detail. The
temperature dependence of χzz appears only due to level fluctu-
ations. We showed that at low temperatures and for δ − Jz � δ

(where fluctuations are strong), the statistical properties of the
longitudinal spin susceptibility are determined by the statistics
of the extrema of a Gaussian process with a drift. This random
process resembles locally a fractional Brownian motion. We
rigorously prove that in this regime of strong fluctuations, all
moments of zero-field static longitudinal spin susceptibility
χzz are finite for Jz < δ and temperatures T � δ. This means
that the Stoner instability is not shifted by the level fluctuations
away from its average position at Jz = δ. Also, our results
imply that randomness in the single-particle levels does not
lead to a transition at finite T � δ between a paramagnetic
and a ferromagnetic phase. We expect that these conclusions
hold also for temperatures T � δ. However, we cannot argue it
within our approach; a separate (perhaps numerical) analysis
is needed. We found that the magnetic field suppresses the
effect of level fluctuations on the average longitudinal spin
susceptibility. Interestingly, the dependence of χzz on b is
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nonmonotonous with a minimum. We extended the analysis of
the effect of strong level fluctuations to the case of Heisenberg
exchange. We demonstrated that in this case the very same
conclusions as for the Ising exchange hold.

For equidistant single-particle levels, we computed the
temperature and magnetic field dependence of the imaginary
part of the transverse spin susceptibility Im χ⊥(ω). We found
that it always has a maximum and a minimum whose positions
tend to zero frequency with the decrease of anisotropy. The
height of the maximum and the depth of the minimum increase
with the decrease of anisotropy.

For the Ising exchange, we took into account the effect
of single-particle level fluctuations on Im χ⊥(ω). We argued
that all moments of the dynamic transverse spin susceptibility
χ⊥(ω) do not diverge for Jz < δ. We found that at δ − Jz � δ

the positions of the extrema of Im χ⊥(ω) have a
√

T -type
dependence at high temperatures and become independent of T

at low temperatures (in the regime of strong level fluctuations).
Interestingly, the level fluctuations do not change the minimal
and maximal values of Im χ⊥(ω) significantly.

Our results, in principle, can be checked in quantum dots
and nanoparticles made of materials close to the Stoner

instability, such as Co impurities in a Pd or Pt host, Fe or Mn
dissolved in various transition-metal alloys, Ni impurities in a
Pd host, and Co in Fe grains, as well as nearly ferromagnetic
rare-earth materials [43]. However, to test our most interesting
results on spin susceptibility in the regime of strong level
fluctuations, one needs to explore the regime (δ − Jz)/δ �
1/(π2β). The closest material to the Stoner instability we
are aware of, YFe2Zn20 [44], has the exchange interaction
J ≈ 0.94δ which is near the border of the regime with strong
level fluctuations at low temperatures.
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APPENDIX A: DERIVATION OF Z(b) USING THE WEI-NORMAN-KOLOKOLOV TRANSFORMATION

In this Appendix, we present a derivation of the partition function for the Hamiltonian (1). For simplicity, we consider the
case of zero magnetic field. We use the notation of Ref. [12]. We start from the Hamiltonian H0 + HS . Then, the corresponding
partition function can be written as ZJ = Tr〈exp(−βHS)〉, where HS is given by Eq. (5) and 〈. . .〉 denotes the averaging over all
many-particle states with the weight exp(−βH0). To get rid of terms of the fourth order in electron operators in the exponent HS

we apply the Hubbard-Stratonovich transformation

eit[J⊥(S2
x+S2

y )+JzS
2
z ] = lim

N→∞

∫ [ N∏
n=1

dθn

]∏
α

T eitθnsα/N exp

[
− i�

4

N∑
n=1

(
θ2
x,n + θ2

y,n

J⊥
+ θ2

z,n

Jz

)]
, (A1)

where � = t/N . Here and further, we omit the normalization factors. We restore the correct normalization factor (depending on
T ,J⊥, and Jz) in the final result. To calculate the time-ordered exponent (T ) of noncommuting operators, it is useful to apply the
Wei-Norman-Kolokolov transformation [45,46] allowing us to rewrite the T exponent as a product of usual exponents:

∏
α

T eitθnsα/N = eps
−p
α κ

p

p,N exp

(
isz

α�

N∑
n=1

ρp,n

)
exp

⎛⎝isp
α �

N∑
n=1

κ−p
p,n

n∏
j=1

e−ip�ρp,j

⎞⎠ , (A2)

where p = ± and s
p
α = sx

α + ips
y
α . We employ the initial condition κ

p

p,1 = 0. The new variables ρp, κ
p
p , and κ

−p
p are related to

the variables θ as follows:

θx,n − ipθy,n

2
= κ−p

p,n, θz,n = ρp,n − κ−p
p,n

(
κp

p,n + κ
p

p,n−1

)
,

θx,n + ipθy,n

2
= κ

p
p,n − κ

p

p,n−1

ip�
+ ρp,n

(
κ

p
p,n + κ

p

p,n−1

)
2

−
(
κ

p
p,n + κ

p

p,n−1

)2
4

κ−p
p,n. (A3)

The vector variables θn are real but the transformation (A3) assumes that the contour of integration in Eq. (A2) has been
rotated. In order to preserve the number of variables, we impose the following constraints on the new variables: ρp,n = −ρ∗

p,n and
κ+

p,n = (κ−
p,n)∗. We mention that the transformation (A3) assumes such a discretization of time that the quantity (κp

p,N + κ
p

p,N−1)/2
corresponds to κ

p
p (t) in the continuous limit. In general, there are a lot of discrete representations of κ

p
p (t), e.g., of the form

νκ
p

p,N + (1 − ν)κp

p,N−1 with 0 � ν � 1. However, the choice of the symmetric one (with ν = 1
2 ) is optimal since it allows us to

work within the first order in � in Eq. (A1). We note that the Jacobian of the transformation (A3) is equal to exp(ip�
∑N

n=1 ρp,n/2).
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Having in mind the further usage of the results, we rewrite exp(−βH ) as the product exp(−it+H ) exp(it−H ) with t+ − t− =
−iβ. Now, rewriting two exponents in terms of two sets of new variables, we obtain

ZJ =
∏
p=±

⎧⎨⎩ lim
Np→∞

Np∏
np=1

∫
dκp

p,np
dκ−p

p,np
dρp,np

e
ip�

2 ρp,np − ip�

4Jz
ρ2

p,np
− 1

J⊥ κ
−p
p,np (κp

p,np −κ
p

p,np−1)− ip��

2J⊥ ρp,np κ
−p
p,np (κp

p,np +κ
p

p,np−1)

× e
ip��

4J⊥ [κ−p
p,np (κp

p,np +κ
p

p,np−1)]2

⎫⎬⎭∏
α

Tr
∏
p=±

[
e−iptpεαnα e

ps
−p
α κ

p

p,Np eisz
α�
∑Np

n=1 ρp,neis
p
α �
∑Np

n=1 κ
−p
p,n exp(−ip�

∑n
j=1 ρp,j )], (A4)

where � = 1 − J⊥/Jz and � = tp/Np. Let us introduce a set of auxiliary variables ηp,np
to get rid of terms of the fourth order

in κp’s:

e
ip��

4J⊥ [κ−p
p,np (κp

p,np +κ
p

p,np−1)]2 =
∫

dηp,np
e

ip��

4J⊥ η2
p,np e

− ip��

2J⊥ [ηp,np κ
−p
p,np (κp

p,np +κ
p

p,np−1)]
. (A5)

To proceed with the evaluation of ZJ we need to calculate the following integrals over κp’s:

Np∏
np=1

∫
dκp

p,np
dκ−p

p,np
exp

(
− 1

J⊥
κ−p

p,np

(
κp

p,np
− κ

p

p,np−1

))
exp

(
− ip��

2J⊥
(ρp,np

− ηp,np
)κ−p

p,np

(
κp

p,np
+ κ

p

p,np−1

))
. (A6)

Following Ref. [46], we introduce the new variables

κ−p
p,np

= χ−p
p,np

eαp,np , κp
p,np

= χp
p,np

eβp,np , (A7)

where

βp,np
= −ip��

∑np

n=1(ρp,n − ηp,n), αp,np
= −βp,np

− ip��

2
(ρp,np

− ηp,np
). (A8)

Such choice of αp,np
and βp,np

allows us to get rid of terms of the third order (second order in χ ’s and first order in ρ) in Eq. (A6)
within the first order in �. The last term in the right-hand side of the second equation in (A8) determines the Jacobian Jp of the
transformation (A7), Jp = exp[−ip��(ρp,np

− ηp,np
)/2]. We emphasize that it can be missed in the continuous representation.

Evaluating the single-particle trace Tr in the expression (A4) explicitly, one can obtain (the limit Np → ∞ is assumed)

ZJ =
∏
p=±

⎧⎨⎩
Np∏

np=1

∫
dχp

p,np
dχ−p

p,np
dρp,np

dηp,np
e

ip�

2 [(1−�)ρp,np +�ηp,np ]e
− ip�

4Jz
[ρ2

p,np
+ �

1−�
η2

p,np
]
e
− 1

J⊥ χ
−p
p,np (χp

p,np −χ
p

p,np−1)

⎫⎬⎭
×
∏
α

⎧⎨⎩1 + e−2iεα (t+−t−) + 2e−iεα (t+−t−) cos

⎛⎝�

2

∑
p=±

Np∑
np=1

ρp,np

⎞⎠+
∏
p=±

e−ipεαtp exp

⎛⎝ ip�

2

Np∑
np=1

ρp,np

⎞⎠
×
⎛⎝pχ

p

p,Np
e
−ip��

∑Np

np=1(ρp,np −ηp,np ) + i�

N−p∑
n−p=1

χ
p
−p,n−p

e−ip��
∑n−p

n=1 (ρ−p,n−η−p,n)eip�
∑n−p

n=1 ρ−p,n

⎞⎠⎫⎬⎭ . (A9)

Now, the integration over variables χp,np
can be performed (see details in Appendix B of Ref. [12]). Then, we find

ZJ =
∏
p=±

⎧⎨⎩
Np∏

np=1

∫
dρp,np

dηp,np
e

ip�

2 [(1−�)ρp,np +�ηp,np ]e
− ip�

4Jz
[ρ2

p,np
+ �

1−�
η2

p,np
]

⎫⎬⎭∏
α

(∮
|zα |=1

idzα

2πz2
α

)
e−w

× exp

⎧⎨⎩−2v cos

⎡⎣�

2

∑
p=±

Np∑
np=1

ρp,np

⎤⎦⎫⎬⎭
∫ ∞

0
dy e−y exp

{
−iJ⊥vy

(∏
p=±

e
i

p�

2

∑Np

np=1 ρp,np

)

×
⎛⎝∑

p=±
p e

−ip��
∑Np

np=1(ρp,np −ηp,np )
�

Np∑
np=1

e−ip�
∑np

n=1[(1−�)ρp,n+�ηp,n]

⎞⎠⎫⎬⎭ . (A10)

Here, we introduce the notation

w =
∑

α

zα(1 + e−2iεα (t+−t−)), v =
∑

α

zαe−iεα (t+−t−). (A11)
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Let us introduce new variables to make the expression (A10) more standard:

ξp(t) = ip

∫ t

0
dt ′[(1 − �)ρp(t ′) + �ηp(t ′)] + ξp(0). (A12)

Here, we switch to continuous representation. We obtain

ZJ =
∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

0
dy e−y−w

∏
p=±

{∫
D[ξp,ηp]e

1
2 [ξp(tp)−ξp(0)]e

− ip

4Jz

∫ tp

0 dt[
(ipξ̇p+�ηp )2

(1−�)2
+ �η2

p

1−�
]
}

× e
−2v cosh{ 1

2(1−�)

∑
p=± p[ξp(tp)−ξp(0)−ip�

∫ tp

0 dt ′ηp(t ′)]}

× exp

{
−iJ⊥vy

(∏
p=±

e
1

2(1−�) [ξp(tp)−ξp(0)−ip�
∫ tp

0 dtηp(t)]

)(∑
p=±

p e
1

1−�
[ξp(0)−�ξp(tp)+ip�

∫ tp

0 dtηp(t)]
∫ tp

0
dt e−ξp(t)

)}
. (A13)

There is some freedom in choosing the initial conditions for field variables ξp(t). It is convenient to choose them such that the
following relations hold: ∑

p=±
ξp(tp) + 2 ln(4vy) = 0, (A14)

∑
p=±

p

[
ξp(0) − �ξp(tp) + ip�

∫ tp

0
dtηp(t)

]
= 0. (A15)

Then, Eq. (A13) can be rewritten as

ZJ =
∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

0
dy e−y−w

∏
p=±

{∫
D[ξp,ηp]

∫ ∞

−∞
dx e

1
2 [ξp(tp)−ξp(0)]e

− ip

4Jz

∫ tp

0 dt[
(ipξ̇p+�ηp )2

(1−�)2
+ �η2

p

1−�
]

× e
ixp

1−�
[ξp(0)−�ξp(tp)+ip�

∫ tp

0 dtηp(t)]

}
e−2v cosh ξ+(t+)−ξ−(t−)

2 e− iJ⊥
4

∑
p=± p

∫ tp

0 dt e−ξp (t)
δ

(∑
p=±

ξp(tp) + 2 ln(4vy)

)
. (A16)

Integrating over the variables ηp we find

ZJ =
∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

−∞
dx
∏
p=±

{
e−iJz�x2ptp

∫
D[ξp] eip

∫ tp

0 dtLp e−(1−2ipx)ξp(0)/2

}

×
∫ ∞

0

dy

4yv
e−y−w exp

(
−2v cosh

[
1

2

∑
p=±

pξp(tp)

])
δ

(∑
p=±

ξp(tp) + 2 ln(4vy)

)
. (A17)

The functional integral (A17) is of Feynman-Kac type with the Lagrangian

Lp = 1

4J⊥
ξ̇ 2
p − J⊥

4
e−ξp . (A18)

Then, the calculation of the partition function can be reduced to an evaluation of two matrix elements:

ZJ =
∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

−∞
dx e−iJz�x2(t+−t−)

∫ ∞

0

dy

4yv
e−y−w

∏
p=±

{∫
dξpdξ ′

p e−(1−2ipx)ξ ′
p/2

}

×δ

(∑
p=±

ξp + 2 ln(4vy)

)
e−2v cosh[(ξ+−ξ−)/2]〈ξ+|e−iHJ t+|ξ ′

+〉〈ξ ′
−|eiHJ t−|ξ−〉. (A19)

Here, the one-dimensional quantum mechanical Hamiltonian

HJ = −J⊥
∂2

∂ξ 2
+ J⊥

4
e−ξ . (A20)

Its eigenfunctions are given by the modified Bessel functions K2iν where ν is a real number:

〈ξ |ν〉 = 2

π

√
ν sinh(2πν)K2iν(e−ξ/2). (A21)
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The eigenvalues of HJ are equal to Jν2: HJ |ν〉 = Jν2|ν〉. After integration over y we obtain

ZJ = 4

π2

∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

−∞
dx e−iJz�x2(t+−t−)

∫ ∞

0

dν

v
ν sinh(2πν)K2iν(2v)e−w

×
∏
p=±

{∫
dξpdξ ′

p e−(1−2ipx)ξ ′
p/2K2iν(e−ξp/2)

}
〈ξ+|e−iHJ t+|ξ ′

+〉〈ξ ′
−|eiHJ t−|ξ−〉. (A22)

Here, we use the following result (see formula 6.794.11 on p. 794 of Ref. [47]):∫ ∞

0
dν ν sinh(2πν)K2iν(2v)K2iν(e−ξ+/2)K2iν(e−ξ−/2) = π2

16
exp

(
− 1

4v
e− ξ++ξ−

2 − 2v cosh
ξ+ − ξ−

2

)
. (A23)

Integration over ξp can be now easily performed, and we obtain

ZJ = 32

π2

∏
α

(∮
|zα |=1

idzα

2πz2
α

)∫ ∞

−∞
dx e−iJz�x2(t+−t−)

∫ ∞

0

dν

v
ν sinh(2πν)K2iν(2v)e−we−iJ⊥ν2(t+−t−)

∫
dη+dη−

× e−2η++4ixη−K2iν(e−η+−η− )K2iν(e−η++η− ). (A24)

Using the identity (see formula 6.521.3 on p. 658 of Ref. [47])∫ ∞

0
dx xKν(ax)Kν(bx) = π (ab)−ν(a2ν − b2ν)

2 sin(πν)(a2 − b2)
, (A25)

we can perform the integration over η+. With the help of the integral representation of the modified Bessel function

Kν(x) =
∫ ∞

0
dh e−x cosh h+νh, (A26)

we integrate over ν. Finally, integration over x yields

ZJ = 2e−βJ⊥/2

πβ
√

J⊥(Jz − J⊥)

∫ ∞

−∞
dh sinh h

∏
α,σ

(1 + e−εαβ+hσ )e− h2

J⊥β

∫ ∞

−∞
dη− e

− 4η2−
�J⊥β

sinh 4η−h

J⊥β

sinh(2η−)
. (A27)

Here, we restored the correct numerical factor using the normalization condition ZJ = 1 at εα → +∞.
In order to derive the partition function for the Hamiltonian (1) from Eq. (A27), one needs to make the substitution

εα → εα + iφ0T and to integrate over the variable φ0:

Z =
∑
k∈Z

e−βEc(k−N0)2
∫ π

−π

dφ0

2π
eiφ0kZJ . (A28)

Then, we obtain Eq. (11) with b = 0.
It is easy to obtain the partition function with nonzero magnetic field. The field shifts the z projection of the total spin in the

evolution operator (A1): Sz → Sz + B
2Jz

. This shift affects only the boundary conditions on ξ in (A15).

APPENDIX B: ASYMPTOTIC RESULTS
FOR THE FUNCTIONS F1(x, y) AND F2(x, y)

At y � min{1,1/
√

x}, the value of the integral in Eq. (23)
is determined by the region ||t | − xy/2| ∼ 1. Thus, one can
expand sinh in the denominator into a series in yt ∼ y2x � 1
and obtain

F1(x,y) =
√

π

y
erfi(xy/2) − xy2

12
exp(x2y2/4). (B1)

Here, we performed the expansion to the second order in yt ,
having the further calculation for the spin susceptibility in
mind.

At 1/
√

x � y � 1, the argument of the sinh in the denom-
inator is large and one can make the following replacement:
sinh yt ∼ sgn(t) exp(y|t |)/2. Then, we find

F1(x,y) = 2 exp[(x − 1)2y2/4]. (B2)

The same simplification for sinh yt can be used in the limit
y � 1 and x � 1. Then, we obtain

F1(x,y) = e(x−1)2y2/4{1 + erf[(x − 1)y/2]}. (B3)

At y � 1 and x � 1 the relevant region of integration in
Eq. (23) is determined by the denominator. Thus, one can
omit e−t2

, expand sinh(xyt) in the numerator, and find

F1(x,y) = π3/2x

2y
. (B4)

The only relevant case for our values of x and y in Eq. (38)
is the case with y � 1/

√
x. In this regime, the denominator

can be substituted by yt and the region of integration can be
extended to infinity. Then, the following result can be obtained
from (B1) by replacement y → iy:

F2(x,y) =
√

π

y
erf(xy/2) + xy2

12
exp(−x2y2/4). (B5)
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APPENDIX C: DERIVATION OF EQS. (31) AND (95)

In this Appendix, we present brief arguments as to why
Eqs. (31) and (95) are correct. Since Eq. (31) can be obtained
from Eq. (95), we consider only the latter. We start from the
following exact expression:

Zn↑Zn↓ =
∫ π

−π

dθ1dθ2

(2π )2
e−iφn−iθm

∏
σ=±

e−β�0(iT φ+iσT θ/2), (C1)

where θ1,2 = φ ± θ/2. As usual, at δ � T the integral over
φ can be performed in the saddle-point approximation. This
yields

Zn↑Zn↓ ≈
√

βδ

4π
e−βμnn−2β�0(μn)Xm(βδ), (C2)

where

Xm(x) =
∫ π

−π

dθ

π
e−2miθ e−θ2/x−V (iθ). (C3)

The function Xm(x) can be rewritten as

Xm(x) =
∫ ∞

−∞

dθ

π
e−θ2/x−V (iθ) cos 2mθ + Rm(x). (C4)

Now, we bound

Rm(x) = 2
∫ ∞

π

dθ

π
e−θ2/x−V (iθ) cos 2mθ (C5)

from above. Using that random function V (iθ ) depends, in
fact, on sin2(θ/2) [cf. Eq. (D3)], we obtain the following set
of inequalities:

|Rm(x)| � 4
∫ 2π

0

dθ

2π

∞∑
l=0

e−(θ+π+2πl)2/xe−V (iθ)

� 4
∞∑
l=0

e−π2(2l+1)2/x

∫ 2π

0

dθ

2π
e−V (iθ)

� 4
∞∑
l=1

e−π2l/x

∫ 2π

0

dθ

2π
e−V (iθ)

� 4

eπ2/x − 1

∫ 2π

0

dθ

2π
e−V (iθ). (C6)

Hence, we demonstrate that |Rm(x)| � O(e−π2/x) is indepen-
dent of m. Therefore, we can write Xm(x) at x � 1 as follows:

Xm(x) ≈
∫ ∞

−∞

dθ

π
e−θ2/x−V (iθ) cos 2mθ. (C7)

APPENDIX D: CORRELATION FUNCTION V (h1)V (h2)

In this Appendix, we present a brief derivation of Eq. (42).
The correlation function of the single-particle density of states
is given by [34]

〈δν0(E)δν0(E + ω)〉 = 1

δ2

[
δ

(
ω

δ

)
− R

(
πω

δ

)]
. (D1)

Here, the function R(x) depends on the statistics of the
ensemble of single-particle energies. Using Eq. (D1), the
identity

∫∞
−∞ R(x)dx = π and the definition of V (h) we obtain

V (h1)V (h2) = T 2
∫ ∞

−∞

dE dω

δ2
R

(
πT ω

δ

)
[g(E,h1)g(E,h2)

− g(E + ω/2,h1)g(E − ω/2,h2)], (D2)

where

g(E,h) = ln

[
1 + sinh2

(
h
2

)
cosh2

(
E
2

)] . (D3)

The function g(E,h) has the following Fourier transform with
respect to variable E:

g(t,h) =
∫ ∞

−∞

dE

2π
eiEt g(E,h) = 1

2πt
Im
∫ ∞

−∞
dE eiEt

× tanh
E

2

sinh2(h/2)

sinh2(h/2) + cosh2(E/2)
. (D4)

Since the function g(E,h) is even in E, the function g(t,h) is
even in t . The function under the integral in the right-hand side
of Eq. (D4) has poles at E = π (2n + 1)i, ± h + π (2m + 1)i
where n and m are integers. Computation of the residues yields

g(t,h) = 1

2πt
Im 4πi

∑
n�0

e−π(2n+1)t

(
1 − 1

2
e−iht − 1

2
eiht

)

= 1 − cos(ht)

t sinh(πt)
. (D5)

Substitution into Eq. (D2) leads to

V (h1)V (h2) = 2πT 2
∫ ∞

−∞

dt dω

δ2
R

(
πT ω

δ

)
g(t,h1)

× g(t,h2)[1 − e−iωt ]. (D6)

At x � 1 the function R(x) has the following asymptotic
behavior:

R(x) = 1

βx2
, x � 1. (D7)

Recall that β = 1 for the orthogonal Wigner-Dyson ensem-
ble, β = 2 for the unitary Wigner-Dyson ensemble, and
β = 4 for the symplectic Wigner-Dyson ensemble. Then, at
max{|h|,T /δ} � 1 we find

V (h1)V (h2) = 4

β

∫ ∞

0
dt

[1 − cos(h1t)][1 − cos(h2t)]

t sinh2(πt)

=
∑
σ=±

L(h1 + σh2) − 2L(h1) − 2L(h2), (D8)

where

L(h) = 2

β

∫ ∞

0
dt

cos(ht) − 1 + h2t2/2

t sinh2(πt)
(D9)
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is even in h. Next, for h > 0,

L′(h) = 2

β

∫ ∞

0
dt

ht − sin(ht)

sinh2(πt)

= 8

β

∫ ∞

0
dt

∞∑
n=1

n[ht − sin(ht)]e−2πnt

= 2h

π2β

[
Re ψ

(
1 + ih

2π

)
− ψ(1)

]
. (D10)

This is the Eq. (42) of the paper. Using the well-known
asymptotic expressions for the Euler digamma function ψ(x)
at small and large values of its argument, one arrives at
Eq. (43).

APPENDIX E: FOURTH-ORDER PERTURBATION
THEORY FOR χ zz IN THE CASE OF THE ISING

EXCHANGE

In this Appendix, we present the derivation of the perturba-
tive results (46) and (49) for b = 0. In addition, we compute
the next order in L for the correction to χzz.

We start from the expansion of the average ln ZS to the
fourth order in V :

ln ZS = 1

2
ln

J̄z

Jz

− 1

2
F2 − 1

2
F1,1 − 1

24
F4 − 1

8
F2,2 − 1

6
F3,1

− 1

2
F2,1,1 − 1

4
F1,1,1,1 + O(V 6). (E1)

Here, we introduced

Fk1,...,kq
= (−1)q

∫ ∞

−∞

dh1 . . . dhq

πq/2
exp

⎛⎝ q∑
j=1

h2
j

⎞⎠
×V k1 (h1) . . . V kq (hq). (E2)

1. Second order in V

The contribution of the second order in V is given by F2

and F1,1. We find

F2 + F1,1 = 2
∫ ∞

0

dh√
π

e−h2
[2L(h

√
2y) − L(2h

√
y)]. (E3)

Here, we remind y = βJ̄z. It is instructive to compare
the second-order contribution (E3) with the second-order
contribution to the variance of ln ZS :

(ln ZS − ln ZS)2 = F1,1 = 4
∫ ∞

0

dh√
π

e−h2

× [L(h
√

2y) − 2L(h
√

y)]. (E4)

In the regime T � J̄z, the arguments of L in the right-hand
side of Eqs. (E3) and (E4) are small. Using the asymptotic

expression for L(h) at |h| � 1, we obtain

F2 + F1,1 = −3ζ (3)

4π4β

J̄ 2
z

T 2
, F1,1 = 3ζ (3)

8π4β

J̄ 2
z

T 2
. (E5)

The result (E5) for F2 + F1,1 is translated into Eq. (46) of the
paper. From Eq. (E5), we find that

(χzz − χzz)2

χ2
zz

∝ J̄ 2
z

π2βT 2
� 1, T � J̄z. (E6)

At low temperatures T � J̄z, the asymptotic expression of
L(h) for |h| � 1 must be used in Eq. (E3). We find

F2 + F1,1 = − ln 2

π2β

J̄z

T
, F1,1 = ln 2

π2β

J̄z

T
. (E7)

From Eq. (E5), it follows that

(χzz − χzz)2

χ2
zz

∝ J̄z

π2βT
� 1,

J̄z

π2β
� T � J̄z. (E8)

In view of the result (E8) we can expect that ln ZS has a
normal distribution with mean [ln(J̄z/Jz) − F2 − F1,1]/2 and
variance F1,1 in the regime J̄z/(π2β) � T � J̄z. For T = 3δ

and Jz/δ = 0.97, the complementary cumulative distribution
function for the normal distribution and the complementary
cumulative distribution function obtained numerically for the
process V (h) are compared in Fig. 6. We note that for T = 3δ

and Jz/δ = 0.94, numerical integration of Eqs. (E3) and (E4)
yields F2 + F1,1 ≈ −0.07 and F1,1 ≈ 0.05. These values are
still different from the asymptotic estimates (E7).

2. Fourth order in V

In the regime T � J̄z, the fourth-order contributions are
proportional to (Jz/T )4 and therefore negligible. For low
temperatures T � J̄z, the contributions of the fourth order
in V are listed in the following:

F4 = −3
∫ ∞

−∞

dh√
π

e−h2
[V 2(h

√
y)]2 = −36 ln2 2 z4,

(E9)

F2,2 =
[∫ ∞

−∞

dh√
π

e−h2
V 2(h

√
y)

]2

+ 2
∫ ∞

−∞

dh1dh2

π
e−h2

1−h2
2 [V (h1

√
y)V (h2

√
y)]2

= (4 ln2 2 + 8b2,2) z4, (E10)

b2,2 = 1

2

∫ 2π

0

dφ

2π
(v(cos φ)v(sin φ))2 ≈ 0.35, (E11)

F3,1 = 3
∫ ∞

−∞

dh1dh2

π
e−h2

1−h2
2V (h1

√
y)V (h2

√
y)

×V 2(h2
√

y) = 12 ln2 2 z4, (E12)

F2,1,1 = −
∫ ∞

−∞

dh1dh2dh3

π3/2
e−h2

1−h2
2−h2

3 V (h1
√

y)V (h2
√

y)

× [V 2(h3
√

y) + 2V (h1
√

y)V (h3
√

y)]

= −(2 ln2 2 + 2b2,1,1) z4, (E13)
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b2,1,1 = 15

4

∫ 2π

0

dφ

4π

∫ π

0
dθ sin3 θ v(cos φ)v(sin φ)

× v(cos θ )v(sin θ cos φ) ≈ 0.79, (E14)

F1,1,1,1 = 3

[∫ ∞

−∞

dh√
π

e−h2
V 2(h

√
y)

]2

= 3 ln2 2 z4. (E15)

Here, we recall that z2 = J̄z/(π2βT ). Summing up, for
T � J̄z we obtain

ln ZS = 1

2
ln

J̄z

Jz

+ ln 2

2π2β

J̄z

T
+ a2

4

(
J̄z

π2βT

)2

, (E16)

where

a2 = −3 ln2 2 − 4b2,2 + 4b2,1,1 ≈ 0.29. (E17)

Using Eq. (E16) and the definition of the spin susceptibility,
we obtain for b = 0

χzz = 1

2(δ − Jz)

[
1 + J̄z ln 2

π2βT
+ a2

(
J̄z

π2βT

)2 ]
. (E18)
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