
PHYSICAL REVIEW B 90, 195208 (2014)

Quantum-confined strain gradient effect in semiconductor nanomembranes
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Semiconductor nanomembranes can exhibit strain gradients that lead to quantum confinement effects similar
to the well known quantum-confined Stark effect (QCSE) in semiconductor quantum wells. The deformation of
square well into triangular well potential leads to modifications of the exciton resonance, but important differences
between the quantum-confined strain gradient effect (QCsgE) and the QCSE include (i) the versatility of the
QCsgE in which conduction and valence bands can have different slopes (even reverse slopes are possible), and
(ii) the fact that in the QCsgE exciton shifts are determined by the gradients in the heavy-hole and light-hole
energies as well as a gradient in the heavy-hole and light-hole coupling.
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I. INTRODUCTION

Flexible inorganic crystals, including GaAs nanomem-
branes, have shown great potential for electronic and optical
properties [1–11]. They can be, for example, thin layers
attached to elastic plastic substrates [2,4] or free-hanging films
[6]. They can also be semiconductor quantum wells that are
rolled up in microtubes [1,5,7]. Nanomembranes and nanocan-
tilevers are being used as optomechanical oscillators [8,9,11].
Strain can be used to provide confinement potentials via strain
gradients [12,13], and is being utilized to control and trap
excitons [14–16] and to control quantum dot emission [17].

In semiconductor optics, one of the most important effects is
the quantum-confined Stark effect (QCSE), in which a square
well (“particle-in-the-box”) potential of a semiconductor
quantum well is changed into a triangular potential through the
application of a voltage gradient (electric field). The electric
field can be an externally applied field, or a field created
internally by the material through the piezoelectric effect
(i.e., the electric field is created by strains) or spontaneous
polarization of the material. The importance of the QCSE is
rooted in two aspect. First, the simplicity of the triangular
quantum well, with analytical solutions available, makes it at-
tractive for textbook discussions of basic quantum confinement
effects (e.g., Refs. [18–20]). Second, the QCSE has become
the basis of widespread device applications, such as the elec-
troabsorption modulator (e.g., Ref. [21]). Here the triangular
deformation leads to a redshift of the lowest interband optical
transition (exciton), along with a reduction of the excitonic
absorption strength, because the electrons and holes are pushed
into opposite corners of their respective triangular quantum
wells, Fig. 1.

The modification of square well potentials into triangular
potentials can also be achieved by strain fields in nanomem-
branes with small cylindrical deformations where the strain
is proportional to the radial coordinate. If, for example,
the membrane is attached to a cylinder on its left, and
the left side of the nanomembrane is neither stretched nor
shortened (i.e., it is the so-called neutral plane), then the
nanomembrane experiences tensile strain (in the geometry of
Fig. 2 the tensile strain is in the vertical direction). The strain
is (approximately) proportional to z because the stretched arc
lengths are proportional to z [22]. In this sense, the strain

can be viewed as being analogous to the electric potential
in the QCSE. One could therefore expect that there is a
simple one-to-one relation between the electric field (i.e.,
the voltage gradient) and the strain gradient, as was pointed
out in Ref. [23]. But we show in the following that, due
to the anisotropic nature of cylindrical deformations, in the
QCsgE modifications of the exciton resonance are in general
caused by both the strain gradient and the overall (average)
level of strain in the nanomembrane. In the QCSE, the
overall level of the electric potential is automatically removed
from observations of the exciton absorption resonance, which
involves differences between conduction and valence band
energies, because the applied voltage shifts the conduction and
valence bands by the same amount. The strain gradient in the
QCsgE, however, affects the conduction and valence bands
differently. Therefore, exciton shifts contain contributions
from the overall (or average) strain across the nanomembrane
and the actual strain gradient. The fact that the strain affects
the conduction and valence bands differently has additional
consequences, which make the strain gradient more versatile
than the voltage gradient. In the conventional QCSE, the slopes
of the conduction and valence bands are the same. In the
case of strain gradients, the slopes are in general different.
Also, unlike an applied voltage, the cylindrical strain makes
the system anisotropic (in Fig. 2, the vertical x direction
experiences either tensile or compressive strain, while the
direction perpendicular to the plane of the plot remains strain
free). Formally, this anisotropy is related to heavy-hole (hh)
light-hole (lh) coupling, which has been studied for the case
of planar anisotropic deformations of quantum wells in Refs.
[24–26] (note that the more conventional application of strain,
for example in strained-layer superlattices and strained-layer
lasers, does not involve optical anisotropy). In contrast to the
QCSE, optical anisotropy is an integral part of the QCsgE.
Also, because of the hh-lh coupling the effective hh and
lh strain potentials are in general not strictly linear in z

even if the strain is. Below we show that the slopes of the
conduction and valence bands offer a variety of possibilities.
They can be almost parallel, as in the case of an electric
field, but their relative direction can also be reversed, as
schematically shown in Fig. 1(c). This means that, unlike
the electric field case, an exciton resonance can be redshifted
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FIG. 1. (Color online) Sketch of square well and triangular well
quantum confinement potential of electrons and holes used in
the quantum-confined Stark effect QCSE (a) and (b) and found
in the quantum-confined strain gradient effect QCsgE (b) as well
as the reverse QCsgE (c). Note that the QCsgE does not involve any
electric field (for example piezoelectric fields). Also note that in the
Stark effect caused by an applied voltage of the form V0 + zV ′, the
slopes of the conduction (c) and valence (v) bands are equal (they are
proportional to V ′), and that an overall energy shift of c and v band,
which is proportional to V0 and equal for c and v, does not affect
interband transitions and exciton resonances. In the case of strain,
both the slopes and the overall energetic shift of the c and v bands are
in general different, and the v band is not strictly linear in z. In case
of different c- and v-band shifts, we define the QCsgE, in analogy to
the QCSE, as the effect solely due to the triangular deformation.

without being reduced in strength. We call this the reverse
QCsgE.

II. RESULTS AND DISCUSSION

A. General theory

In order to analyze the QCSgE, we evaluate a fully micro-
scopic theory through numerical integration, which allows us
to obtain the (spinor-valued) single-particle wave functions,
the energy band structure, and the excitonic absorption spectra
of a GaAs nanomembrane. We also discuss simple analytical
models that allow us to interpret key features of the full

numerical solutions. The details of the theoretical framework
have been presented in Ref. [27], but the numerical evaluation
in the present study is more general as it does not involve
the averaged-strain approximation (in contrast to [27]). The
theory involves a 4 × 4 Luttinger Hamiltonian for the valence
bands of the GaAs material as well as the Pikus-Bir strain
Hamiltonian (e.g., Refs. [18,28]). Unlike Ref. [27], the wave
vector kz for the motion in z direction is now replaced by
−i∂/∂z, which generates coupled partial differential equations
in z for the valence bands and an ordinary differential equation
for the conduction band. We apply zero boundary conditions.
The differential equations are solved for the in-plane wave
vectors k = (kx,ky) through discretization of the z space. The
wave functions of the conduction and valence band states
are used to compute the electron-hole Coulomb interaction
matrix element and the effective dipole-coupling matrix
elements. The generalized Wannier equation for the interband
polarization, a first-order differential equation in time, is then
solved via time stepping. The transmitted and reflected fields
are obtained from a transfer matrix formalism. The detailed
equations can be found in Ref. [27], see Eqs. (9), (10), and (16).
For completeness we have also amended the Luttinger and
Pikus-Bir Hamiltonians by the k-linear terms [29,30], using a
value of CD = 20.6 meV for the Dresselhaus constant. Hence
the difference of the solutions presented in the following and
those presented in Ref. [27] are (i) we now discretize the z

space in addition to the k space and thus obtain the proper
band structure and z-dependent wave functions, and (ii) the
k-linear terms are included.

As for the strain profile of the cylindrically deformed
nanomembrane, we utilize a simple analytical model based
on the Landau Lifshitz bent plate model, p. 38 of Ref. [31].
That model asserts that, in a thin plate deformed as in Fig. 2,
the stresses σxz, σyz, and σzz are essentially zero. We have
confirmed, through direct numerical integration of a structural
analysis code (Eq. (37) of Ref. [27]), that this is indeed true
in our systems (a GaAs quantum well membrane of width 20
nm, with strains of up to approximately 1%). We are using a
generalization of the bent plate model to the case of crystals
with zincblende symmetry and arbitrary locations of the
neutral plane. In particular, we are interested in three different
positions of the neutral plane. (i) If the nanomembrane is
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FIG. 2. (Color online) Left: Cylindrical deformation of a nanomembrane. Middle: Sketch viewed from the side. We assume throughout
this paper that the nanomembrane is bent to the left. If the arc length of the left (right) side of the bent membrane is the same as the height of
the undeformed rectangular membrane shown with red dashed lines, we refer to the deformation as “left neutral” (“right neutral”). If the arc
length at the center of the bent membrane is the same as the height of the undeformed rectangular membrane we call this the “mid neutral”
deformation. Right: Strain εxx(x = 0,z) for a nanomembrane of width Lz = 20 nm, with an average strain ε̄xx = ±0.6% in the case of left and
right neutral deformation. R denotes the cylinder radius.
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attached, without strain, to a cylinder on its left (according
to Fig. 2), the concave side of the membrane is neutral (we
will call this left neutral). (ii) If the membrane is attached to
the inside of a cylinder on its right, then the convex side of the
membrane is neutral (we will call this right neutral). (iii) It may
also be possible, although in practice possibly more difficult,
to position the neutral plane in the middle of the membrane,
as in the original Landau Lifshitz bent plate model; we will
call this mid neutral. For the left (upper sign) and right (lower
sign) neutral case, the strain profile, up to linear order in z is
given by

εxx(x,z) = [1 ± Lz/(2R)] cos(x/R) − 1 + (z/R) cos(x/R).
(1)

In order to identify the pure QCsgE, we will focus on the
optical response of the nanomembrane’s center |x| � R, so
that the cosine function can be equated to unity. Taking
absorption spectra over a wider region around the center would
lead to inhomogeneous broadening and a dilution of the pure
QCsgE. At the center (x = 0), the strain reduces to

εxx(z) ≡ εxx(0,z) = ε0
xx + ε′

xxz/Lz, (2)

with ε0
xx = ±Lz/(2R), in the left and right neutral cases. In the

mid neutral case, ε0
xx = 0. In all three cases, ε′

xx = Lz/R. In
our case, ε0

xx = 0.1% corresponds to a radius of R = 10 μm
and is slightly below the fracture threshold [23,32]. The linear
strain profiles used below are shown in Fig. 2. Each case corre-
sponds to a different averaged strain, ε̄xx = (1/Lz)

∫
dzεxx(z).

The strain in z direction follows from the condition that the
normal stress in z direction is negligible, σzz = 0 and is given
by εzz(z) ≡ εzz(0,z) = (−C12/C11)εxx(z), where the Cij are
the elastic stiffness constants. The corresponding quantum
confinement potential for the conduction band states is given
by

V c
st (z) = EG + ac[εxx(z) + εzz(z)] + V c

conf(z), (3)

where EG is the bulk band gap and V c
conf(z) is the square

well confinement potential. Since the valence band states are
governed by the Luttinger and Pikus-Bir Hamiltonians, and
since the strain enters both the diagonal and off-diagonal
elements of this Hamiltonian, a simple yet rigorous plot of
the quantum confinement potential is not possible. However,
it is still instructive to look at the diagonal elements of the
valence band Hamiltonian at k = 0. In Fig. 3 we show the
diagonal confinement potential

V hh
st (z) = −av[εxx(z) + εzz(z)]

+ (b/2)[εxx(z) − 2εzz(z)] + V hh
conf(z) (4)

and

V lh
st (z) = −av[εxx(z) + εzz(z)]

− (b/2)[εxx(z) − 2εzz(z)] + V lh
conf(z), (5)

which suggest that we should expect an effect similar to the
conventional Stark effect in the case of the hh exciton in the
right neutral system, while in the left neutral system we should
expect the reverse QCsgE with the lowest exciton resonance
being dominantly light hole.

FIG. 3. (Color online) Confinement potential for conduction
band electrons (top), and the confinement potential contribution
from the diagonal of the Luttinger Hamiltonian for valence band
holes. The strain profiles are given in Fig. 2. As in Ref. [27], we
use ac = −9.3 eV, av = 1.16 eV, and b = −1.9 eV for the defor-
mation potentials, and C11 = 11.9 × 1011 dyn/cm2, C12 = 5.38 ×
1011 dyn/cm2. Dash-dotted lines: Airy solution energies (in left-
neutral case calculated with hh mass and lh slope).

B. Exciton spectra

In order to verify our expectations, we show in Fig. 4
exciton spectra obtained from the full microscopic calculation.
We first note that in Fig. 4(a) we see a behavior of the hh
exciton that is very similar to the conventional Stark effect:
the resonance shifts to the red (lower photon energies) and
weakens. The mid neutral case does not involve any overall
shifts of the c and v band, because the average strain ε̄xx = 0.
Hence, the changes in the exciton resonance are solely due
to the triangular deformation of the confinement potential.
Since, however, placing the neutral plane exactly in the middle
of the nanomembrane may be more difficult to realize than
placing it at the right or left surface, we show in Figs. 4(b)
and 4(c) spectra for the right and left neutral case. In these
cases, however, we have overall shifts because the average
strain ε̄xx is not zero. In order to extract the effect of the
triangular deformation, we need to compare systems with a
triangular potential to one with a square well potential but
the same average strain ε̄xx . In the right (left) neutral case, the
corresponding square well potential is one of a nanomembrane
or quantum well that undergoes planar compressive (tensile)
deformation.

The effects of anisotropic planar deformations have been
studied and observed [24–26]. Planar compressive (tensile)
strain leads to a blue (red) shift and an increase of strength
of the lowest exciton for X (Y ) polarized light. The shifted
resonances are not pure hh excitons, as the strain leads to
superpositions of hh and lh wave functions in a way that
breaks the x-y symmetry. The strain-induced anisotropy can
be understood from the valence band strain Hamiltonian in the
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FIG. 4. (Color online) Absorption spectra calculated with the
theory outlined in Ref. [27]. The bulk band gap is EG = 1500 meV.
Short-dashed black line: unstrained nanomembrane; red solid line:
strain with gradient according to Fig. 2; red dash-dotted line: strain
without strain gradient (i.e., with square well confinement potential)
but same average strain ε̄xx = ±0.6% as in solid red line; dotted blue
line: small strain ε̄xx = ±0.1% (for this strain value the curves with
and without strain gradient are practically the same). Spectra in (a)
and (b) for X, in (c) for Y -polarized light.

(3/2,−1/2) subsystem (cf. Eqs. (A5)–(A8) in [27]),

(
s+ c

c s− − �

)
, (6)

with s± = ε̄xx[−av ± b/2] + ε̄zz[−av ∓ b], c =
−(

√
3/2)bε̄xx , and the hh-lh splitting � > 0. To first

order in ε̄xx (with |ε̄xxb| � �), the spin-up components of

the eigenvectors are

|hh〉 ∼
[
|x〉

(
1 + b

2�
ε̄xx

)
+ i|y〉

(
1 − b

2�
ε̄xx

)]
(7)

and

|lh〉 ∼
[
|x〉

(
3b

2�
ε̄xx − 1

)
+ i|y〉

(
3b

2�
ε̄xx + 1

)]
. (8)

For example, since b < 0, the hh wave function’s |x〉 (|y〉)
component is increased (decreased) by compressive (ε̄xx <

0) strain, thus increasing (decreasing) absorption of X (Y )
polarized light.

We see in Fig. 4(b) that, for ε̄xx = −0.6%, the triangular de-
formation leads to a signature very similar to the conventional
Stark effect. The shift can be attributed in large part to the
shift of the bands in the triangular deformation, see Fig. 5. The
conduction band (not shown) shifts by 2.84 meV down, and the
hh valence band at k = 0 by about 3.95 meV up (see Fig. 5).
The redshift of the exciton resonance in Fig. 4(b) is about
5.06 meV, which is 1.74 meV less than the shift expected from
the band shifts. This difference can be attributed to the fact
that the valence band shifts depend on k, and also the fact that
the Coulomb interaction is modified due to the change of wave
functions entering the Coulomb form factor. The reduction in
the exciton strength can be attributed to a reduction of wave
function overlap (see next paragraph). In Fig. 4(c) we see that
the left neutral case also leads to a redshift. But in contrast to
the conventional case, where the redshift is associated with a
reduction in the exciton strength, here the exciton does not get
reduced by the triangular deformation. The size of the redshift,
here about 2.34 meV, is again slightly less than what would be
expected on the basis of the conduction and valence band shifts
brought about by the triangular deformation (2.85 meV from
the c band and 0.59 meV from the v band, see Fig. 5). Figure 5
shows that the Airy solutions using the hh mass and the highest
valence band slopes (Fig. 3) yield almost exactly the QCsgE
shift in the mid neutral case, indicating a compensation of the
strain-induced shift resulting from the compressive strain on
the left side of the nanomembrane by hh-lh coupling effects.

The Airy solutions under (over) estimate the shift in the
right (left) neutral case. This is expected because in the right
(left) neutral case the wave functions are pushed into a corner
where the strain is more compressive (tensile) than average,
resulting in a strain-induced shift to higher (lower) valence
band energies not accounted for by the Airy solution. For
the conduction band, the Airy solutions and the numerical
solutions are the same.

The reduction in the exciton strength in Fig. 4(b) can be
attributed to a reduction of wave function overlap. The valence
band wave functions are, in general, four-component spinors
for angular momentum labels j = 3/2, −1/2,1/2,−3/2.
We show the wave functions corresponding to the lowest
exciton resonance in Fig. 6 for k = 0, in which case the 3/2,
−1/2 and 1/2,−3/2 subsystems are decoupled and the wave
functions have only two spinor components.

The mid neutral case shows that the wave functions are
pushed to the left, opposite to the case of c-band electrons,
which are pushed to the right. The wave function, while still
dominantly of hh character (i.e., the 3/2 component is large),
acquires a small portion of lh character (−1/2 component).
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FIG. 5. (Color online) Valence band structure without (red dashed lines) and with (solid blue lines) strain gradients. The strain profiles are
given in Fig. 2. The right neutral and planar compressive (left neutral and planar tensile) systems have the same average strain ε̄xx = −0.6%
(ε̄xx = +0.6%). The planar systems do not have strain gradients. Shown are the first six valence bands. The twofold spin degeneracy is lifted
by the strain, leaving only Kramer’s degeneracy [E(k) = E(−k)]. Without strain, the spin degeneracy is lifted by the k-linear terms in the
Luttinger Hamiltonian. The valence band strain-gradient shift for the lowest exciton can be deduced from the difference between the highest
red dashed and solid blue bands. Diamonds show Airy solutions for highest valence bands at k = 0 (cf. Fig. 3).

In the left neutral case, the wave function is dominantly of lh
character (large −1/2 contribution) and is pushed to the right
side; both effects in agreement with the simplified argument
based on Fig. 3. The lack of reduction of the oscillator strength
stems, in part, from the fact that the hole wave function is
pushed to the same side as the c-band wave function. The
small increase in exciton strength compared to the square well
with the same average strain can be ascribed to the fact that,
on the right side (z > 0), the strain is more tensile than the
average. Therefore, looking with y-polarized light, the lowest
exciton resonance is expected to grow.

C. Proposal for experimental observation

The strict definition of the QCsgE requires comparison
of nanomembranes that differ only in the triangular de-
formation, not the overall shift of the bands, but it may
be difficult in practice to perform such a comparison. A
simpler demonstration of the QCsgE could be based on a
comparison of cylindrically deformed nanomembranes with
increasing deformation. Figure 7 shows the hh and lh exciton
peak positions, read off “by hand” from the exciton spectra
calculated with the full microscopic theory, with and without
triangular deformation. In the planar deformation case (i.e.,

FIG. 6. (Color online) Spinor-valued wave functions at k = 0 of the highest valence band. Blue solid line: real part, red dashed line:
imaginary part. For clarity, the light-hole components j = −1/2 are shifted horizontally. The corresponding conduction band wave function
(not shown) is pushed to the right by the strain gradient. Mid neutral and right neutral show that the hole wave functions are pushed to the
left (normal QCsgE), whereas the left neutral wave function is pushed to the right (reverse QCsgE) and becomes predominantly light hole
(j = −1/2). Bohr radius aB = 13.5 nm.
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FIG. 7. (Color online) Exciton peak positions for cylindrical
deformation (left neutral, ε̄xx > 0) and corresponding square well
potentials (planar deformation). The lh-exciton peak vanishes for
ε̄xx < −0.003, hence no green square symbols are shown at those
strains. At ε̄xx 	= 0, hh (lh) is used as a label without implying
dominantly j = ±3/2 (±1/2) wave functions at k = 0. The dashed
lines show the analytical model (see text).

without triangular deformation) the exciton peaks agree well
with the following simple analytic model. Using the k = 0
conduction and valence band Hamiltonian (Eqs. (10) and
(A5)–(A8) in Ref. [27]), we form a 2 × 2 matrix,(

h+ −c

−c h−

)
, (9)

with h± = Ex
hh/lh + ε̄xx[a ∓ b/2] + ε̄zz[a ± b], where a =

ac + av is the interband hydrostatic deformation potential,
and we have replaced the k = 0 transition energies by the

hh and lh exciton energies Ex
hh and Ex

lh for the case without
strain. The eigenvalues of this 2 × 2 matrix can easily be
found analytically and are plotted as dashed lines in Fig. 7.
The QCsgE can now be identified as a redshift relative to
peak positions predicted by this simple model for the planar
deformation case. The effect is particularly strong on the
compressive side (ε̄xx < 0).

D. Conclusion

In summary, we have defined the quantum-confined strain
gradient effect as the shift of exciton resonances (together
with possible change of their oscillator strengths), brought
about by a triangular deformation of an otherwise square
well potential. We have taken care to extract effects solely
due to the triangular deformation, and not to count shifts
and/or changes in the oscillator strength due to z-averaged
anisotropic deformation. We found that the QCsgE exhibits
similarities, but also distinct differences from the well-known
quantum-confined Stark effect. These differences, notably the
fact that conduction and valence band triangular confinement
potentials are generally not equal, and that they can even be
reversed, make the QCsgE an interesting topic for further
exploration. Moreover, it will be interesting to investigate a
variety of systems used in optomechanics as well as systems
in the which electric fields, for example in the form of
piezoelectric fields, coexists with the quantum-confined strain
gradient effect.
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