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The first-principles linear response method is used within the local-density approximation to calculate the full
phonon band structures and phonon density of states (DOS) of CsSnX3 (X = Cl, Br, or I) in different phases.
The relations between soft phonon modes and phase transitions are investigated. We find soft phonon modes only
in the cubic and tetragonal phases, not in the orthorhombic and monoclinic phases. A dispersionless soft phonon
branch spreads from the k point M to R in the Brillouin zone of the cubic phase. The lower symmetry tetragonal
phase results from the condensation of the soft phonon mode at the k point M . Furthermore, the condensation
of the soft phonon mode at the k point Z in the Brillouin zone of tetragonal phase results in the orthorhombic
γ phase. To facilitate comparison with experimental data, we calculate infrared spectra for the cubic phase. At
this point only a limited comparison with experimental data is possible. We find that the calculated modes agree
with the available experimental data when we assign the second and third calculated modes to the experimental
first and second modes. The lowest calculated mode is at a frequency where the phonon DOS has a maximum
value. So the strong phonon-phonon interaction results in short phonon lifetime or strong broadening, which
could explain why this mode has not been observed. Our first-principles calculated IR spectra show that the third
observed mode in IR absorption is actually the highest longitudinal optical (LO) rather than transverse optical
mode. We show, furthermore, that a strong LO-plasmon coupling may be expected in these materials and can
explain observed Raman data for CsSnI3.
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I. INTRODUCTION

Halide perovskites of the general formula ABX3 with
B standing for Sn or Pb, X a halogen (I, Br, Cl), and
A a large cation such as Cs+1 or an organic ion such as
methylammonium (CH3NH+1

3 ), have recently attracted a great
deal of attention for their potential applications in solar cellsw
[1–13]. Up to 15% energy conversion efficiencies have been
realized using these materials in the last year in a rapid
development of different solar cell designs [4,8,10,14]. As the
underlying reasons for this success are not yet fully understood,
and further improvements appear possible, it is important to
gain a better understanding of the remarkable combination of
properties in this family of materials. Part of their appeal is that
they are solution processable and have tunable band gaps in the
optimal range for solar cells (1.3–1.6 eV). They are excellent
light absorbers in most of the visible range and also have high
hole mobility and long mean free paths for both electrons and
holes.

In a recent paper [15], we discussed the electronic band
structure of the CsSnX3 subfamily of these materials and
pointed out their “inverted” band structure, i.e., unlike most
conventional semiconductors, their valence band has a strong
Sn-s-like character (antibondingly mixed with X-p), while
their conduction band has Sn-p character. This unusual band
structure already explains a number of their unusual properties,
such as anomalous temperature dependence of the gap and
high hole mobility. The largely intra-atomic nature of the gap
explains the strong optical transitions both in luminescence and
absorption. As discussed in our previous paper, however, the
strong photoluminescence well separated from the absorption
appears to be from a defect bound exciton rather than free
exciton. As part of our study of the exciton binding energy, we
needed to estimate the phonon contribution to the dielectric
screening. In this paper we provide a more complete account
of the lattice dynamical properties of these materials.

There are a few reasons for our interest in the phonons.
First, our previous calculations of the phonon frequencies at �

for the cubic perovskites (the so-called α phase) only agreed
with experimentally reported values after we identified our
second and third highest modes with the lowest (and second)
experimentally observed mode, leaving the question open,
why was the lowest mode not observed? Also, what is the
nature of the third observed mode which was higher than our
calculated highest one? In our previous paper, we tentatively
assigned it to a second harmonic but as we will show below,
this assignment needs to be revised. It is in fact an longitudinal
optical (LO) rather than a transverse optical (TO) mode. It
should be mentioned here that the only experimental paper
on the vibrational infrared spectra of CsSnBr3 and CsSnCl3
only had a table of values in it, but no actual figures of the
absorption spectra on which these values were based. For
CsSnI3, on the other hand, we found that the highest LO mode
was assigned to a weak observed peak in Raman spectroscopy
[16], even though this mode is not Raman active to first order.
In other words it is a forbidden LO mode, enhanced by resonant
Raman effects. In this paper we analyze in more detail what
the predicted IR phonon spectra should look like and how to
reconcile these sparse experimental data with our calculated
results. We will show that the LO mode observed in Raman in
fact is strongly affected by LO-plasmon coupling.

Secondly, these perovskites are known to undergo a number
of phase transitions as a function of temperature [2,17–20].
The cubic phase is only stable at high temperature and
at lower temperature the perovskites undergo a series of
transitions, corresponding to rotations and rearrangements of
the octahedral SnX6 building blocks. As discussed in detail by
Chung et al. [2] in the CsSnI3 case, from high temperature to
low temperature, CsSnI3 changes from the cubic (α) phase
to the tetragonal (β) phase at around 431.5 ± 5.7 K, and
then to the orthorhombic (γ ) phase at around 352 ± 5.3 K.
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Exposure to air (at room temperature in 1 h) causes a transition
to another orthorhombic yellow (Y ) phase. As for CsSnBr3,
the only commonly confirmed transition is the transition from
the cubic (α) phase to the tetragonal (β) phase, which occurs
at around 292 K [18,21,22]. A second transition to another
tetragonal phase was found by Mori and Saito [18] at 274 K
and a transition to a monoclinic phase at 247 K. For CsSnCl3,
the cubic (α) phase converts to a monoclinic (M) phase at
around 363 K [21,23].

Some of these transitions are well known to be related to
soft modes [18,24–28] and thus we investigate here whether
soft modes occur and how these transitions relate to the soft
mode displacement patterns. To this end, we need calculations
of the full dispersion curves of the phonon modes. These
transitions may turn out to be quite important for the durability
of the new solar cell materials. In fact, some of the phase
transitions correspond to a more severe change in the lattice
structure, in which the basic BX6 octahedral units of the struc-
ture change from corner sharing to side sharing. As we already
showed in our previous paper [15], this leads to a large
increase in the gap making the materials far less useful for
photovoltaics. The key question then becomes how to avoid
these latter phase transformations. A better understanding of
the stability of the various phases with respect to soft modes
is required to address this question. While we are not able
at this point to provide a full understanding of the transition
to the so-called yellow phase of CsSnI3 and the monoclinic
phase of CsSnCl3, we find that the γ phase has no soft
modes and is thus mechanically stable. The transitions to
the undesirable phases (from a photovoltaics point of view)
appears to require more complex rearrangements and bond
breaking and reforming. In order to design better future
materials in this family, it is also important to understand their
trends with different constituent ion sizes. Indeed the series of
phase transitions in CsSnI3 appears to generally lead to a den-
sification of the crystal structure and hence ion sizes play a key
role.

The paper is organized as follows. In Sec. II we give details
of the computational method. In Sec. III A, we present the
phonon dispersion curves and densities of states (DOS) and
discuss the relation to the phase transitions. In Sec. III B,
we present our predicted IR spectra and discuss the available
experimental data. In Sec. III C, we discuss the Raman data on
CsSnI3 and the plasmon-LO phonon coupling.

II. COMPUTATIONAL METHOD

To calculate phonon band structures and IR spectra, we
adopt the density functional perturbation theory [29,30] within
the local density approximation (LDA). The ABINIT code
[31] with norm-conserving pseudopotentials [32] was used
for these calculations. The crystal structures are first fully
relaxed with respect to the lattice constants and internal
parameters. The force constants and Born effective charges
are then calculated from the first-order corrections to the
wave functions within the linear response regime in response
to atomic displacements and static electric fields. The linear
response formalisms allow us to obtain the dynamical matrix at
an arbitrary k point and also to obtain the nonanalytic behavior
at k → 0, i.e., the LO-TO splitting. Thus we can generate the

phonon band structure throughout the Brillouin zone. We use
the usual approach of Fourier interpolation of the dynamical
matrix from a relatively coarse mesh (4 × 4 × 4) to the points
required along symmetry lines for the sake of efficiency. For
the phonon density of states, interpolation to a fine mesh of
240 × 240 × 240 is used. Finally, from the Born effective
charges and normal mode eigenvectors at �, we extract the
matrix elements for the infrared spectra.

The phonon band structure calculations are expensive
calculations, especially for the lower symmetry phases which
have larger unit cells. We, therefore, used a 4 × 4 × 4 k-point
grid for every phase. Actually, we checked the convergence of
the k-point grid for the higher symmetry phases. Although
small shifts in phonon frequencies occur the qualitative
conclusions about soft modes and the nature of the IR spectra
were not affected by our choice of a relatively coarse k-point
mesh. For α-CsSnI3, the highest phonon frequency at the k
point �, the T 3

1u(LO) phonon mode, which is the one we are
mostly interested in, is 152 cm−1 for the 4 × 4 × 4 k-point
grid, 151 cm−1 for the 6 × 6 × 6 k-point grid, and 148 cm−1

for the 8 × 8 × 8 k-point grid. Our convergence studies show
that the plane wave cut-off energy of about 30 hartree is good
enough for each phase. In practice, we used 28 hartree for the
orthorhombic phase, 30 hartree for the monoclinic phase, 40
hartree for the tetragonal phase, and 100 hartree for the cubic
phase; the latter two high cut-off energies are not necessary but
for these smaller cells, we could afford to use a higher cutoff,
which can only improve the results.

III. RESULTS

A. Phonon band structures and soft phonon modes

Figure 1 from top to bottom shows the first-principles
calculated phonon band structure and phonon DOS resolved
into atomic components for α-CsSnI3, β-CsSnI3, γ -CsSnI3,
and Y -CsSnI3, respectively. The notation of the k points is
explained in Fig. 6 in our previous paper [15]. Figure 2 from
top to bottom shows the phonon band structure and phonon
DOS of α-CsSnBr3, β-CsSnBr3, and our predicted γ -CsSnBr3.
Figure 3 from top to bottom shows the phonon band structure
and phonon DOS of α-CsSnCl3 and M-CsSnCl3, respectively.
We can see that in the α and β phases, imaginary frequency
modes indicated as negative frequencies (soft phonon modes)
occur, while in γ , Y , and M phases, no imaginary frequency
modes are found. The appearance of the soft phonon modes in
α and β phases reflects the instability of those crystal structures
at low temperatures. We should view the high-temperature
phases as being stabilized by the additional entropy related to
these soft phonon mode fluctuations.

We also can see that, in all three compounds, there is a
dispersionless soft phonon branch from M to R in the Brillouin
zone of the cubic phase. The question thus arises which of
these soft phonons is responsible for the phase transition. The
decomposition of the DOS in different atomic contributions
shows that the primary contribution to the soft phonons comes
from the vibrations of the halide atoms. The absolute value of
the frequency of the soft phonon modes becomes larger when
the halide is changed from I to Br to Cl. This reflects the fact
that the lighter the mass of the atom involved, the higher the
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FIG. 1. (Color online) Phonon band structure with phonon DOS
of α-CsSnI3, β-CsSnI3, γ -CsSnI3, and Y -CsSnI3.
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FIG. 2. (Color online) Phonon band structure with phonon DOS
of α-CsSnBr3, β-CsSnBr3, and (predict) γ -CsSnBr3.

absolute value of the phonon frequency. This factor can also
be used to explain why the highest phonon frequency becomes
larger when we go from CsSnI3 to CsSnBr3 to CsSnCl3.
Furthermore, this factor explains why the vibrations of Cs
(heaviest atom, compared to Sn and X) atoms only contribute
to lower phonon frequency modes (say, below 100 cm−1),
while higher phonon frequency modes (above 100 cm−1) can
mainly be attributed to the vibrations of relatively lighter

195201-3



LING-YI HUANG AND WALTER R. L. LAMBRECHT PHYSICAL REVIEW B 90, 195201 (2014)

-50

 0

 50

 100

 150

 200

 250

 300

 M  R  X   

F
re

qu
en

cy
 (

cm
-1

)

 45000

Phonon DOS (states/Ha)

Total
Cs
Sn
Cl

-50

 0

 50

 100

 150

 200

 250

 300

   Z  X  C  E  A  Y  D   

F
re

qu
en

cy
 (

cm
-1

)

 75000

Phonon DOS (states/Ha)

Total
Cs
Sn
Cl

FIG. 3. (Color online) Phonon band structure with phonon DOS
of α-CsSnCl3 and M-CsSnCl3.

atoms, Sn and X. In other words, the higher phonon frequency
modes come from deformations of the octahedrons, not from
the relative motion of the Cs atoms and the octahedrons.

However, both vibrations of octahedrons and vibrations of
Cs atoms contribute to lower frequency modes.

Now, let us investigate the displacement patterns of the
soft modes in the α phase first. Figure 4, from left to right,
shows the displacement pattern of the soft phonon mode at the
M point, denoted by M+

2 (corresponding to the irreducible
representation notation of the Koster-Slater tables [33] for
the group D4h; also denoted by M3, M+

3 , or M+
2 in different

literature depending on how the irreducible representations
are ordered in the character tables ) [18,27,34–38], and the
threefold degenerate soft phonon modes at the R point, denoted
by Ra , Rb, and Rc, respectively. We first may note that only
the halide ions are moving in these modes. At the M point
(1,1,0)π/a, the motions of the atoms on opposing vertical
faces are opposite and thus correspond to a rotation of the octa-
hedron about the c axis. In adjacent unit cells, in the a-b plane,
the twists are opposite leading to a new tetragonal cell rotated
by 45◦ and with lattice constant at = √

2a. The motions at
the R point (1,1,1)π/a at first may seem more complex, but
this just reflects that now there is also a phase change for the
opposite horizontal faces. So, the rotations of the octahedron
in the two unit cells stacked on top of each other are opposite
and may now occur about each of the cubic axes, a, b, or c. In
the literature, these are sometimes denoted as the R25 mode,
which corresponds to the Bouckaert-Smoluchowski-Wigner
[39] notation for the point group irreducible representations.
It corresponds to the T2u mode of the cubic group in the usual
chemical notation [40]. Clearly, the α → β phase transition
corresponds to the condensation of the M+

2 soft mode because
it does not involve a doubling of the cell along the c direction.
This also means it corresponds to the Glazer tilt system [28,41]
a0a0c+, meaning that there is only a rotation about the c axis.
The R25, on the other hand, would correspond to Glazer tilt
system a0a0c− with alternating positive and negative twists
about the c axis.

The γ phase is characterized by both octahedral twists about
the c axis and tilts about the tetragonal a axis. It corresponds
to the Glazer notation a+b−b−. The R25 mode corresponds to
only twisting about the axes but in the opposite direction in
alternating unit cells. The γ phase thus cannot be obtained

FIG. 4. (Color online) From left to right shows the displacement patterns of soft phonon modes M+
2 , Ra , Rb, and Rc, or R25, in the cubic

phase, respectively. The green spheres are Cs atoms located at the corners of cubic unit cells, the gray ones are Sn atoms located at the center
of unit cells, and the purple ones are X, X = I, Br, or Cl, located at the surface centers of unit cells. The displacements are represented by gray
arrows.
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FIG. 5. (Color online) The displacement pattern of the soft
phonon mode at the k point Z in β-CsSnI3. The green spheres are
Cs atoms, the gray ones are Sn atoms, and the purple ones are I atoms.
The displacements of Cs atoms are represented by green arrows, while
the displacements of I atoms are represented by purple arrows. For
clarity, we only show the displacements of I atoms in the central
octahedron. The phonon mode is named Z5

−.

directly from the α phase. Inspection of the soft mode at the
Z point in the β phase as shown in Fig. 5 reveals that not only
the octahedrons rotate about the b axis but also the Cs atoms
rotate about the a axis. The symmetry of this mode is Z5

− in
the Koster-Slater notation. It is doubly degenerate because one
can either rotate the Cs about a and octahedra about b or vice
versa.

The sequence of phase transitions can also be analyzed
using group theory. The space group of the tetragonal phase
(with space group No. 127 D5

4h or P 4/mbm) is an isotropy
subgroup of te space group of the cubic phase (with space
group No. 221 O1

h or Pm3̄m). According to group theory, the
space group No. 221 can go to the space group No. 127 via
four transformations [38]: X+

5 , X5
−, M+

2 , and M+
3 (using the

notation from Stokes and Hatch [38]). But only the operation
of M+

2 leads to the correct atomic positions:(
x

2
+ y

2
− 1

2
,−x

2
+ y

2
,z

)
(1)

(in reduced coordinates) in the tetragonal phase, where (x,y,z)
are the reduced coordinates of an atom in the cubic phase. In
fact, we may note that there is no soft phonon at the X point
the cubic Brillouin zone. In this way, the Cs atom at (0,0,0)
in the cubic phase transforms to the 2d (Wyckoff) positions
in the tetragonal phase. The Sn atom at (0.5,0.5,0.5) in the
cubic phase transforms to the 2b (Wyckoff) positions in the
tetragonal phase. Finally, the I atom at (0.5,0.5,0) in the cubic
phase goes to the 2a (Wyckoff) positions in the tetragonal
phase and I atoms at (0.5,0,0.5) and (0,0.5,0.5) transform to
4h (Wyckoff) positions in the tetragonal phase. So the effect
of condensation of the M+

2 soft phonon mode is equivalent
to the operation described by Eq. (1) in terms of a coordinate
transformation.

The same analysis can be applied to the phase transforma-
tion from the β phase to the γ phase (with space group No. 62
or D16

2h or Pnma). The space group No. 127 can go to the space
group No. 62 via two transformations: Z5

− and Z+
5 . But only

the operation of Z5
−,

(x ′,y ′,z′) →
(

y ′,x ′ − 1

2
,
z′

2
− 1

4

)
, (2)

FIG. 6. (Color online) The proposed crystal structure of CsSnBr3

in the D2
4 space group No. 90. The �−

1 deformation distorts the
octahedra compared to the β phase. The green spheres are Cs atoms,
the gray ones are Sn atoms, and the brown ones are Br atoms.

transforms the atoms in the β phase to the correct positions in
the γ phase. (Please note that the y coordinate and z coordinate
are switched compared to the notation in the book of Stokes
and Hatch [38].) The Cs atoms at 2d positions in the β phase
transform to the 4c positions in the γ phase, the Sn atoms at
the 2b positions in the β phase transform to the 4b positions
in the γ phase, and the I atoms at the 2a and 4h positions
in the β phase transform to the 4c and 8d positions in the γ

phase, respectively. So the effect of condensation of the Z5
−

soft phonon mode is equivalent to the operation described in
Eq. (2) for the coordinate transformation. The phase transitions
from the α phase to the β phase, and then to the γ phase, can
be summarized as follows:

O1
h

M+
2−→ D5

4h

Z5
−

−→ D16
2h. (3)

In the paper by Mori and Saito [18] it was claimed that
β-CsSnBr3 (with space group No. 127) can transform to the
lower symmetry phase with space group No. 90 (D2

4 or P 4212)
by the condensation of the R25 soft phonon mode. But from the
group theory point of view, this appears incorrect. According to
the group theory, the space group No. 127 can only transform
to the No. 90 isotropy subgroup via the operation �−

1 :

(x ′,y ′,z′) → (
x ′,y ′ − 1

2 ,z′) . (4)

However, as illustrated in Fig. 6, the operation of �−
1 symmetry

is related to displacements of the Sn atom and I atoms just
above and below the Sn along the c axis (z direction). It is thus
not related to the rotations of the R25 soft phonons and does
not correspond to a soft mode. Also, in this space group the
c lattice constant is not doubled, as mentioned by Mori and
Saito [18]. An R25 soft mode directly from the cubic phase
could lead to space group 140, D18

4h or I4/mcm instead. So,
it appears that either the space-group determination or the
soft mode analysis is incorrect in Ref. [18]. We also note that
the γ phase has not been observed for this material but is,
according to our calculations, free of soft phonon modes and
hence mechanically stable. Further work on the nature of the
phase transitions in CsSnBr3 appears to be necessary.

The structural changes from α to β, and to γ phases only
involve the rotations (with some slight distortions) of the
octahedrons; all octahedrons remain corner shared. However,
the crystal structure of the yellow phase and monoclinic phase
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are quite different from those of the α, β, and γ phases;
they display edge sharing of the octahedra, so rebonding is
required. It seems that the phase transitions from γ -CsSnI3

to Y -CsSnI33 and from α-CsSnCl3 to M-CsSnCl3 cannot be
described by condensations of particular soft phonons. In fact,
we find no soft phonon modes in the γ phase of any of these
compounds. This indicates the mechanical stability of this
phase. However, this does not preclude chemically induced
further phase transitions.

We finally note that the series of phase transitions from α

to β to γ increase the density of the crystal. They are driven
by the fact that the cage size for the Cs atom in the ideal cubic
perovskite is set by the Sn-I octahedron size and is slightly too
large for a Cs atom. This is related to the tolerance factor t ,
defined, for example, in Benedek and Fennie [42], and given by

t = RAC√
2RBC

(5)

with RAC and RBC ideal bond lengths. Using ideal bond
lengths based on Shannon ionic radii [43], we obtain t values
of 0.987, 0.971, and 0.900 for the CsSnCl3, CsSnBr3, CsSnI3

cases, respectively. The fact that these are smaller than 1
indicates that rotations of the octahedra are expected and
are consistent with the general trend of oxide perovskites
of a transition to the Pnma phase group for materials with
t < 1. The driving force for this stabilization is to optimize the
environment of the A cation. We note that for CsSnCl3, with
the largest t among these materials, the transitions to the β

phase and γ phase were not observed, but instead a transition to
the differently bonded monoclinic phase occurs. For the I and
Br cases, the rotation angles about the c axis in the β phase, are
respectively 13.89◦ and 12.63◦ based on the calculated relaxed
structures. For the γ phase, the rotations about the c axis and
a axis are calculated to be 13.86◦ and 10.23◦ for CsSnI3 and
11.86◦ and 8.74◦ for CsSnBr3. Thus, the smaller t , the larger
the rotation, as expected. We only have experimental values
for CsSnI3 where the crystal structure measured by x-ray
diffraction [19] corresponds to an angle of 9.09◦ in the β phase
and 10.09◦ and 3.85◦ in the γ phase relative to the c and a axes,
respectively. The calculations agree qualitatively with the ex-
periments in terms of order of magnitude and in predicting that
the rotation about the c axis is larger than that about the a axis.

B. Comparison of zone center modes with experimental data

The experimental data on the phonon spectra of these
materials are rather scarce. For the cubic phase, in particular,
there are no allowed Raman-active modes. Group theory
analysis shows that there are three T1u modes (IR active)
and one silent T2u mode at �. As far as infrared studies,
we found only one study for α-CsSnBr3 and CsSnCl3 [44].
Unfortunately, this paper only gives a table of the modes but
shows no actual spectra. The results are said to be obtained
from absorption measurements on powders. The paper does
not mention anything about TO-LO splittings and since they
measured absorption, one would assume that these correspond
to the TO modes. A direct comparison with our calculated
results in this (as will be shown erroneous later) interpretation
is shown in Table I and shows discrepancies from 50% to 72%.

TABLE I. Direct (but erroneous) comparison of our calculated
TO phonon frequencies (Cal.) with experimental results (Expt.) from
Donaldson et al. [44]. The last column gives the mode-Grüneisen
parameters. All frequencies are in units of cm−1.

Mode Cal. Expt. Error γ

α-CsSnBr3 T 1
1u(TO) 19 68 72% −8.6

T 2
1u(TO) 59 118 50% 0.037

T 3
1u(TO) 108 218 50% −4.3

α-CsSnCl3 T 1
1u(TO) 25 70 64% −7.7

T 2
1u(TO) 76 172 56% 0.12

T 3
1u(TO) 121 310 61% −5.2

We note that the LDA underestimate of the unit cell
volume may lead to an overestimate of the phonon frequencies,
in particular for bond-stretch modes. To investigate this
further we have calculated the fractional change in phonon
frequency per fractional change in lattice volume, i.e., the
mode-Grüneisen parameters, γi = d ln ωi/d ln V . These are
also included in Table I. We note that correcting the volume
would shift our phonon frequencies down [except for T 2

1u(TO)
phonons], thus worsening the agreement with experiment. As
already mentioned in our previous paper [15] we noted that
the comparison is better between our second and third modes
with their first and second modes, in particular if we average
over TO and LO modes. However, this requires explaining
why the first mode was not observed and what is the higher
observed third mode. We already showed in our previous paper
that the oscillator strength for the lowest mode is smaller than
the second one by a factor of 6 in CsSnI3 and by a factor of 4
in CsSnBr3 but not in CsSnCl3 where they are predicted to be
about equal.

To further investigate these questions, we calculated in-
frared spectra even though at present we have no experimental
curves to compare with. Figure 7 shows the first-principles
calculated real part and imaginary part of the dielectric
function, ε, the imaginary part of −1/ε, the absorption coeffi-
cient, and the normal incidence reflectivity of α-CsSnX3.
As is well known, the peaks in the Im{ε} correspond to
the TO phonons, while the peaks in −Im{ε−1} correspond
to the LO phonons. We can see that the LO-TO splitting is
negligible for the lowest T

(1)
1u mode, which is consistent with

its weak oscillator strength. For the second mode, the LO mode
shows up in the absorption curves only as a weak shoulder for
CsSnBr3 and as a slight asymmetry of the peak in CsSnCl3.
Interestingly, the LO-TO splitting of this mode is largest for
CsSnI3 but no IR data are available for this material. However,
the third T

(3)
1u shows clearly separated LO and TO peaks in

absorption. Noticing that the absorption coefficient is given by

α(ω) = 2ω Im{ε(ω)}
n(ω)c

(6)

with c the speed of light, it becomes clear that the peaks
in absorption can also correspond to a zero or minimum in
the index of refraction n(ω) = Re{√ε} and this explains the
highest peak in the experimental absorption spectrum as an
LO mode. Thus it becomes clear that the three peaks observed
in the experiment are, respectively, the T

(2)
1u mode (averaged

195201-6



LATTICE DYNAMICS IN PEROVSKITE HALIDES CsSn . . . PHYSICAL REVIEW B 90, 195201 (2014)

-50

 0

 50

100

150

200

 0  50  100  150  200  250  300  350

Frequency (1/cm)

Absorption coefficient/50 (1/cm)
Reflectivity x100

-Im[1/ ] x30
Re[ ]
Im[ ]

-50

 0

 50

100

150

200

 0  50  100  150  200  250  300  350

Frequency (1/cm)

Absorption coefficient/50 (1/cm)
Reflectivity x100

-Im[1/ ] x30
Re[ ]
Im[ ]

-50

 0

 50

100

150

200

 0  50  100  150  200  250  300  350

Frequency (1/cm)

Absorption coefficient/50 (1/cm)
Reflectivity x100

-Im[1/ ] x30
Re[ ]
Im[ ]

FIG. 7. (Color online) The real part and imaginary part of dielectric function, ε, imaginary part of −1/ε, and absorption coefficient and
reflectivity of α-CsSnI3 (left), α-CsSnBr3 (middle), and α-CsSnCl3 (right).

over TO and LO), the T
(3)

1u (TO) mode, and the T
(3)

1u (LO) mode.
The current interpretation of the highest observed mode is
different from our tentative assignment in the previous paper
[15] as a two-phonon absorption peak. The latter tentative
explanation was only based on numerical values of 2ω

T
(3)

1u (TO)

but ignores the relative probabilities of single- and two-phonon
absorption and the fact that two-phonon absorption would be
more complex than just getting overtones of the one-phonon
frequencies at �. We think this explanation is far less likely.
Although our present interpretation does not match perfectly
either, it is a more straightforward explanation.

From Fig. 7, it appears, however, that the T
(1)

1u mode has
comparable intensity in absorption to the T

(2)
1u mode. However,

in constructing these spectra we used the same broadening
for each peak. Returning to Figs. 2 and 3 we can see that
the lowest mode at the � point coincides with a sharp peak in
phonon DOS, whereas the second peak lies in a region of lower
density of states (especially for CsSnBr3). Thus we expect
strong phonon-phonon scattering (or anharmonic effects) on
this mode may lead to a short lifetime or strong broadening.
This would strongly reduce the peak height and might explain
why this mode was not observed in the experimental absorption
spectrum [44]. We can see that this mode corresponds to an
almost dispersionless band corresponding to the Cs motion
relative to the SnI6 octahedron and is dominated by the Cs
motion. The final comparison with experimental data using
this interpretation is shown in Table II. The maximum error
is now reduced to 30% and occurs for the T

(3)
1u (TO) mode of

CsSnCl3. The origin of this discrepancy is difficult to ascertain

TABLE II. Comparison of our calculated phonon frequencies
(Cal.) with experimental results (Expt.) from Donaldson et al. [44].
All frequencies are in units of cm−1.

Mode Cal. Expt. Error

α-CsSnBr3 T 1
1u(TO-LO) 23

T 2
1u(TO-LO) 64 68 6%
T 3

1u(TO) 108 118 8%
T 3

1u(LO) 184 218 16%
α-CsSnCl3 T 1

1u(TO-LO) 29
T 2

1u(TO-LO) 77 70 10%
T 3

1u(TO) 121 172 30%
T 3

1u(LO) 246 310 21%

without reliable experimental spectra. We note that the LO
mode in both materials appears to be underestimated by our
calculation. This is addressed in the next section.

C. LO-plasmon coupling effect

Although we could not find IR absorption data in the
literature for CsSnI3, Yu et al. [16] measured the Raman
spectrum for γ -CsSnI3. In Fig. 1 of their paper, the Raman
spectrum shows two peaks located at 258 and 472 cm−1,
respectively. They claimed the first peak is from the first-order
LO-phonon scattering, while the second peak is from the triply
enhanced second-order Raman scattering. Although we have
already mentioned that in α-CsSnI3 none of the modes are
Raman active, Raman-active modes could exist in the γ phase
or could be observed as LO-forbidden modes [45,46] by means
of the Fröhlich mechanism. This makes sense because the
gap of the material is rather low (1.3 eV) and thus the lasers
used in Raman spectroscopy in Ref. [16] are above the gap
which leads to resonantly enhanced Raman scattering even
for the first-order Raman scattering. The resonant Raman
effect is well known to enhance the intensity of forbidden
LO modes. We also may note that because the β and γ phases
still have an inversion center, the modes derived from the
α-phase T1u modes remain odd with respect to inversion and
therefore Raman inactive even in the β and γ phases. The
only Raman-active modes in those materials will arise from
new modes at the zone center arising from folded zone-edge
modes.

However, with this interpretation, there appears again to
be a large discrepancy between the measured value of the
frequency (258 cm−1) and our calculated T 3

1u LO mode in
CsSnI3 (152 cm−1). As we have seen earlier, this highest
mode is not significantly shifting from the α to γ phases.
The discrepancy is 41% and thus larger than for CsSnBr3

or CsSnCl3 discussed in the previous section but we note
that in all cases, our calculations appear to underestimate the
LO mode.

Since these materials, in particular CsSnI3, are known to
be rather conductive by unintentional p-type doping, we test
the hypothesis that this shift could arise from LO-plasmon
coupling. The plasmon frequency can be written

ωp =
√

4πne2

m∗ε∞
, (7)
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where n is the concentration of carriers, e is the electric charge,
m∗ is effective mass of the carrier, and ε∞ is the high-frequency
dielectric constant in the material. In the present case, the
carriers are holes; we have calculated the effective mass of
hole and the high-frequency dielectric constant in our previous
paper [15] and obtained m∗ = 0.069me and ε∞ = 4.86 for
α-CsSnI3. The remaining unknown physical quantity is the
concentration of holes, n. Fortunately, in the paper from Chung
et al. [2], they measured the concentration of carriers and
reported carrier concentration of about 1017 cm−3 for CsSnI3

at room temperature. If n goes from 1016 to 1018 cm−3, ωp

changes as a function of
√

n from 52 to 517 cm−1, which
is comparable to the frequency of the LO-phonon modes.
Thus we expect strong LO-plasmon coupling. We note that the
low phonon frequencies (due to the heavy masses of the ions
involved) conspire with the unusually low hole mass and low
high-frequency dielectric constant in this material to produce
comparable LO and plasmon frequencies even for moderate
carrier concentration. We are now in a position to calculate the
frequency of a LO-plasmon coupled mode, denoted by ωLO-p.
The dielectric function in the presence of the free carriers in a
semiconductor is [47]

ε (ω) = ε∞

(
1 + ω2

LO − ω2
TO

ω2
TO − ω2

− ω2
p

ω2

)
. (8)

By solving the equation ε (ω) = 0, we obtain

ω2
LO-p = 1

2

(
ω2

LO + ω2
p

)

±
[(

ω2
LO + ω2

p

)2

4
− ω2

TOω2
p

]
. (9)

Using our calculated ωTO = 101 cm−1 and ωLO = 152 cm−1

and other constants as mentioned above, we find that for hole
concentrations from 1016 to 1018 cm−3, ωLO-p varies from 157
to 530 cm−1. Clearly, this range encompasses the experimental
value of 258 cm−1, which in this model would correspond to
a plausible carrier concentration of 1.92 × 1017 cm−3. In this
case, the upper LO-plasmon coupled mode is more plasmon
than LO-like. Unfortunately, we do not know independent
measurements of the carrier concentration in the samples used
in Ref. [16]. Our interpretation predicts that the Raman spectra
could shift significantly with carrier concentration. Further-
more, Chung et al. [2] already showed that significant changes
in carrier concentration can be induced by high-temperature
annealing because this creates more hole generating acceptor
native defect states. We thus propose that our interpretation
could be tested by measuring the Raman spectrum after
annealing treatments. Obviously, the LO-plasmon coupling
effect is also expected to occur in CsSnBr3 and CsSnCl3 and
could thus also explain our underestimate of the LO mode
compared to the highest observed IR absorption peak. Since
the highest LO mode involved in this LO-plasmon effect is a
breathing mode of the octahedra, it should also be applicable
in the hybrid halide perovskites.

IV. CONCLUSIONS

In this paper, we presented full phonon band structures and
atom resolved densities of states for CsSnX3, X = I, Br, Cl
for various structures. These calculations showed soft phonon
modes between M and R in the cubic α phase and near Z

in the tetragonal β phase. We showed that their normal mode
displacement patterns correspond to a pure octahedron rotation
about one cubic axis for the M point, and an alternating rotation
of octahedra back and forth along one axis for the R point. The
M rotations which correspond to the irreducible representation
M+

2 are responsible for the phase transition to the β phase. The
normal mode of the soft mode at Z, which has Z5

− symmetry
combines further rotations of the octahedrons about one axis
perpendicular to the tetragonal symmetry axis and rotation of
the Cs atoms about the other axis. This mode is responsible for
the β → γ transition. The γ phase is found to be mechanically
stable because it displays no soft phonon modes. We find it also
to be stable in CsSnBr3 and thus predict this phase might be the
stable one in this material at lower temperatures. On the other
hand, the yellow phase of CsSnI3 and the monoclinic phase of
CsSnCl3 involve a more complex rearrangement of octahedra
into edge-sharing octahedra, which clearly cannot be obtained
from a soft phonon mechanism. These phases themselves show
no soft phonon modes. They remain nevertheless a concern
for photovoltaic applications for the ultimate stability of these
materials in different chemical environments (for example,
moist air) because these phases have much larger band
gaps.

We predicted infrared spectra from the α phase of all
three compounds, in the form of reflectivity, absorption, and
dielectric functions. We reinterpreted the few available experi-
mental data on α-CsSnBr3 and α-CsSnCl3. The three reported
experimental frequencies correspond to the T

(2)
1u (TO-LO)

average mode, the T
(3)

1u (TO) mode, and the T
(3)

1u (LO) mode,
respectively. The lowest mode T

(1)
1u at about 20–30 cm−1 is

shown to have low oscillator strength, low LO-TO splitting,
and is expected to have a short lifetime due to its coincidence
with a strong peak in phonon density of states which would
broaden the transition to the extent that it becomes difficult
or impossible to detect. It involves mostly the motion of the
heavy Cs ion, which is in some sense rattling about in its
too large cage. This sluggish mode is possibly of interest for
thermoelectric properties because it could strongly suppress
thermal conductivity. Furthermore, we pointed out that in these
materials a strong LO-hole-plasmon coupling can be expected
because of the relatively high plasmon frequency related to
the low hole mass and low high-frequency dielectric constant
and low LO-phonon frequency even for moderately low carrier
concentrations of order 1017 cm−3.
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