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Topological phases in iridium oxide superlattices: Quantized anomalous charge or valley Hall
insulators
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We study topological phases in orthorhombic perovskite iridium (Ir) oxide superlattices grown along the [001]
crystallographic axis. Bilayer Ir oxide superlattices display topological magnetic insulators exhibiting quantized
anomalous Hall effects due to strong spin-orbit coupling of Ir 5d orbitals and electronic correlation effects.
We also find a valley Hall insulator with counterpropagating edge currents from two different valleys and a
topological crystalline insulator with edge states protected by the crystal lattice symmetry based on stacking of
two layers. In a single-layer superlattice, a topological insulator can be realized, when a strain field is applied to
break the symmetry of a glide plane protecting the Dirac points. It turns into a topological magnetic insulator
in the presence of magnetic ordering and/or in-plane magnetic field. We discuss essential ingredients for these
topological phases and experimental signatures to test our theoretical proposals.
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I. INTRODUCTION

Considerable attention has recently been devoted to the
study of nontrivial physics arising from strong spin-orbit
coupling (SOC). Such studies were initiated by theoretical
proposals of topological insulators with conducting surface
states protected by time-reversal (TR) symmetry [1–9],
which was then experimentally confirmed in two-dimensional
(2D) HgTe/Hg1−xCdxTe quantum wells [10] and indirectly
by angle-resolved photoemission spectroscopy (ARPES) in
three-dimensional (3D) systems such as Bi1−xSbx [11,12],
Bi2Se3 [13,14], Bi2Te3, and Sb2Te3 [15–17]. Since then, a
variety of topological phases has been theoretically suggested.
These include topological crystalline insulators with surface
states protected by crystal lattice symmetry [18–22], Weyl
semimetals with chiral fermions [23–27], and topological
magnetic insulators with quantized anomalous Hall (QAH)
effects [28–31]. Furthermore, strongly interacting systems
could provide a new avenue to explore more exotic phases such
as topological Mott insulators and fractional Chern insulators
[32,33].

While the number of topological phases proposed in theory
is still growing, experimental confirmations are limited to the
systems of groups IV-VI elements. Why have such topological
phases not been detected in other abundant materials such as
oxides? In particular, transition-metal oxides exhibit various
collective phenomena stemming from strong electronic corre-
lations, and this has led to tremendous interest and effort in
growing oxide films to discover new functionalities. However,
this effort has so far been focused mainly on 3d- and 4d-orbital
systems with weak or moderate SOC, and little attention has
been paid to 5d-orbital systems with strong SOC until recently.

Among 5d-orbital systems, Ir oxides named iridates have
provided an excellent playground to study the combined effects
of SOC and electron correlations. Depending on the underlying
lattice structure, iridates have offered a rich phase diagram
[33]. Despite different phases, a common ingredient is the
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Jeff = 1
2 description due to strong atomic SOC and this is

a good starting point in building microscopic Hamiltonians.
Using a Jeff = 1

2 wave function, a topological insulator was
proposed in 3D perovskite iridates [34]. It was found that
bulk SrIrO3 with Pbnm structure exhibits a crystal-symmetry-
protected nodal line which becomes a 3D nodal point when
the mirror symmetry along the c axis is broken. It becomes a
topological insulator with a large mirror symmetry-breaking
term [34]. A successful growing of the Ir oxide superlattice
[(SrIrO3)n,SrTiO3] where the integer n controls the number
of Ir oxide layers using the pulsed laser deposition (PLD)
technique has also been reported [35]. It has demonstrated how
a spin-orbit magnetic insulator arises by tuning the number of
SrIrO3 layers.

Given that SrIrO3 with Pbnm structure possesses a crystal-
symmetry-protected nodal line, it is possible to design other
topological phases by employing the current experimental
techniques. While a topological insulator was proposed in an
effective honeycomb bilayer by fabricating a [111] superlattice
structure from perovskite oxides [36], an atomically controlled
[111] superlattice of perovskite oxides is known to be difficult
to fabricate. On the other hand, an Ir oxide superlattice
along the [001] axis has been successfully made by Matsuno
et al. [35], as stated above. In this paper, we show how to
realize topological phases in Ir oxide superlattices grown
along the [001] axis, [(SrIrO3)n, (AMO3)n′], for integer n′
and n = 1 or 2, where AMO3 is a band insulator with a
closed-shell transition metal M4+ and an alkaline-earth metal
A2+. To realize topological phases, one has to retain oxygen
octahedra rotation and tilting which is necessary to generate
a Rashba-like SOC in the Jeff = 1

2 basis. Thus, AMO3 should
have the orthorhombic Pbnm structure such as CaTiO3,
SrZrO3, or SrHfO3 instead of SrTiO3 with tetragonal structure.
The topological states realized in these superlattices include
topological magnetic insulators with QAH effects, nontrivial
valley insulators, topological insulators with TR symmetry,
and topological crystalline insulators.

This paper is organized as follows. In Sec. II, we show
how a 2D topological insulator can be made in an Ir oxide
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single-layer system. When oxygen octahedron is rotated
and titled away from the c axis, there are two 2D Dirac
points similar to the honeycomb lattice [37]. These 2D Dirac
points are protected by the b-glide symmetry. Breaking this
b-glide symmetry generates a 2D topological insulator, and
furthermore in the presence of a magnetic ordering and/or
in-plane magnetic field, the system becomes a topological
magnetic insulator. This could be confirmed by quantized
Hall conductance in Hall measurement. In Sec. III, we
propose two different types of bilayer Ir oxides. Depending
on the layer stacking, one becomes a topological magnetic
insulator for any small magnetic field that breaks the b-glide
symmetry. The other case possesses various topological phases
including topological crystalline, topological magnetic, and
mirror valley insulators. In each section, we offer a schematic
crystal structure of Ir oxide superlattices and physical origins
of such topological phases based on symmetry of the lattice
and TR. We summarize our findings in the last section.

II. SINGLE-LAYER IRIDATES

A. Model Hamiltonian and Dirac fermion

In bulk samples of AMO3 with Pbnm structure, each
M atom surrounded by six O atoms forms an octahedron.
This octahedron is rotated by an angle θ around the c axis
and tilted by an angle φ around the local (110) direction,
as shown in Fig. 1. The rotation and tilting angles alternate
between two neighboring IrO6 octahedra in the plane and
between adjacent layers making four M atoms in a unit cell.
To engineer a single-layer Ir oxide, the IrO2 layer is grown
from AMO3, as shown in Fig. 1. The x and y directions

FIG. 1. (Color online) Left: IrO6 octahedron with the rotation θ

along the c axis and tilting φ along the local (110) axis. Right: Single-
layer Ir oxide superlattice structure. IrO2 layer contains two different
sites denoted by A and B representing different rotations and tiltings,
(θ,φ) and (−θ, − φ) oxygen octahedra, and it is grown on a band
insulator AMO3 with Pbnm structure. The primitive lattice vectors
are �a = (x̂ − ŷ)/2 and �b = (x̂ + ŷ)/2.

are rotated by 45 degrees from the crystal a and b axis for
convenience. As we state above, the alternating rotation and
tilting of neighboring IrO6 is crucial to realize topological
phases for the following reason. The relatively strong SOC of
Ir atoms splits t2g states into Jeff = 1

2 and Jeff = 3
2 , and the

Ir4+ ionic configuration leading to the valence of 5d5 causes
these iridates to be a half-filled Jeff = 1

2 band. Even though the
tetragonal distortion of IrO6 octahedra may affect the validity
of the Jeff = 1

2 description in reality, the tetragonal crystal-field
splitting is small compared to the SOC of iridium [38,39].
Thus, Jeff = 1

2 states are well separated from Jeff = 3
2 states,

which makes the Jeff = 1
2 picture still adequate to describe

the physics near the Fermi energy. Note that Jeff = 1
2 consists

of |Jz = ± 1
2 〉 = 1√

3

(|dxy,s〉 ± |dyz,−s〉 + i|dxz,−s〉
)
, where ±s

represents spin-1/2 up and down states [40], respectively. In
the presence of the alternating tilting and rotation between
neighboring sites, a hopping integral between dxy,s and dxz/yz,s

orbitals becomes finite. Since dxy,s and dxz/yz,s belong to
different spin states of |Jz〉, this hopping involves |Jz = 1

2 〉 and
|Jz = − 1

2 〉 states, which then generates a spin-flip Rashba-like
term.

For a single layer of IrO2, there are two sites due to different
rotation (θ ) and tilting angle (φ) between nearest-neighbor
sites. We denote these Ir sites by A and B, indicating different
oxygen environments as shown in Fig. 1. They have a rectangle
structure associated with a glide symmetry plane, which
corresponds to the invariance under a 1/2 translation along
a certain direction, and reflection afterwards. In this lattice,
it is along the b axis and thus named the b glide. The effect
of this glide plane on t2g orbitals is to interchange the dyz

with the dxz orbital, and to exchange the A with the B site.
Introducing the Pauli matrices �τ and �σ for the sublattice A

and B, and Jeff = 1/2 pseudospin, respectively, this b-glide
symmetry plane is expressed as

�̂b = i√
2

(σx − σy)τxk̂bg, (1)

where k̂bg is the operator acting on crystal momentum space
as k̂bg : (kx,ky) → (ky,kx) [34].

A tight-binding model can be constructed from Jeff = 1/2
bands with the basis (A ↑ ,B ↑ ,A ↓ ,B ↓), where A and B

denote two different Ir sites in the unit cell, as discussed above,
and (↑ , ↓) represents Jz = ± 1

2 . Taking into account nearest
and next-nearest hoppings, the Hamiltonian is given by

H0(k) = ε0(k)τx + ε′(k)I + ε1d (k)σzτy

+ εy(k)σyτy + εx(k)σxτy, (2)

where

ε0/1d (k) = 2t0/1d [cos(kx) + cos(ky)],

εy/x(k) = t1 cos(kx/y) + t2 cos(ky/x), (3)

ε′(k) = t ′ cos(kx) cos(ky).

Here, t0 is the nearest-neighbor (NN) intraorbital hopping
and t1d is the NN hopping between dyz and dxz orbitals.
t ′ is the next-nearest-neighbor (NNN) intraorbital hopping.
t1 and t2 are the NN hopping from dyz and dxz orbitals to
dxy orbital, respectively. t1d , t1, and t2 vanish without the
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FIG. 2. (Color online) Band dispersion of single-layer Ir oxide (a) without tilting φ. It shows fourfold degeneracy along the S = (π,0) →
X = ( π

2 , − π

2 ) direction. (b) Finite rotation and tilting leaves two Dirac points at X and Y = ( π

2 , π

2 ). (c) When the b-glide symmetry is broken,
the Dirac point acquires a finite gap at the X and Y points. The set of (θ,φ) for both (b) and (c) is (7◦,19◦).

rotation and tilting of octahedra. The hopping parameters
are obtained based on the Slater-Koster method [41] and the
parameters are functions of θ and φ. For example, they are
given by (t ′,t0,t1d ,t1,t2)/t = (−0.3, − 0.6, − 0.15,0.15,0.45)
when (θ,φ) ≈ (7◦,19◦), where t is the π bonding between d

orbitals tddπ , and we set tddπ : tddσ : tddδ = 1 : 3
2 : 1

4 . Note that
the tight-binding parameters are fully determined by a set of
(θ,φ). Different values of (θ,φ) will simply modify the detailed
shape of the band dispersion. Thus, by tuning the magnitude
of (θ,φ), it is possible to have the electron and hole pockets
near Fermi energy. However, the topological feature of the
band structure (characterized by the Chern numbers) remains
intact. This particular choice of (θ,φ) is made to avoid the
electron and hole pockets at εF , but topological properties do
not depend on the choice of (θ,φ).

The band structure is shown in Fig. 2. Without the tilting
angle φ, two bands are degenerate along X = (π

2 , − π
2 ) to

S = (π,0), as shown in Fig. 2(a). However, when both rotation
and tilting of octahedra are present, this degeneracy is broken,
and there are two Dirac points at X and Y protected by the
b-glide symmetry, as shown in Fig. 2(b). The Dirac point may
appear below the Fermi energy εF when the tilting angle φ

is not significant (φ < 17◦). Indirect hopping via the oxygens
can change the strength of hopping parameters as well, but
the topological nature of phases described here is not altered
by such quantitative changes. When the b-glide symmetry is
broken, for example by a strain field along the x direction,
these Dirac points are gapped, as shown in Fig. 2(c). In the
following section, we discuss the topological nature of this
insulator by providing the corresponding Chern numbers and
edge state analysis.

B. Topological insulator and quantized anomalous Hall effects

Since the Dirac points are protected by the b-glide symme-
try, any small perturbation that breaks the b-glide symmetry
opens a gap at these two Dirac points. The b-glide operator
is given by Eq. (1), and thus a small strain along the x (or
y) direction is sufficient to break the b-glide symmetry. Such
a broken b-glide symmetry term allows additional NNN and
third-NN hoppings as follows:

ε2n(k) = [t2n cos(kx + ky) + t ′2n cos(kx − ky)]τz,

ε3n(k) = 2t3n[cos(2kx) − β cos(2ky)]τz,
(4)

where t2n and t3n are the NNN intraorbital hopping, t3n is
the third-NN intraorbital hopping, and β is the parameter
to measure the strength of a broken b-glide term. The
tight-binding parameters (t2n,t

′
2n,t3n) = (0.098, − 0.1,0.06)

obtained by Slater-Koster using the same set of angles (θ ,φ)
as above, and with β = 0.6 the band dispersion, are shown in
Fig. 2(c).

The nontrivial topology behind the gapped Dirac point can
be revealed through the following edge state calculation. The
slab computation has been performed in a zigzag slab geometry
periodic along �b = x̂+ŷ

2 , while it has an open boundary along
�a = x̂−ŷ

2 . Along the �a direction, one end terminates at atom A
and the other side ends with atom B. When TR symmetry is
not broken, the system shows gapless edge modes propagating
from the valence band to the conduction band, as shown in
Fig. 3(a). These two gapless edge states cross at a time-reversal
invariant momentum (TRIM) point, indicating their protection
by the TR symmetry. As long as TR symmetry is present, the
degeneracy cannot be lifted by disorders or weak interactions.
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0.5
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E t

(a) TI

0 Π 2 Π
1
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0
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E t
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FIG. 3. (Color online) Edge state calculation of (a) the topological insulator (TI) shown in Fig. 2(c), and 2(b) the quantized anomalous
Hall insulator (QAHI) when the TR is broken due to a noncollinear magnetic ordering or an in-plane magnetic field. Gray lines represent the
bulk state and red (blue) lines denote the edge state at L = 0 (L = N ) plotted along ka = kx − ky − π . The parameter set is the same with
the band dispersion in Fig. 2(c). The two gapless edge modes at L = 0/L = N (red/blue) crossing at 1D TR invariant momentum indicate that
the system belongs to a 2D TI. After breaking the TR, only one gapless edge state is left propagating along the boundary.
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Indeed, we have checked that the edge states are robust, even
in the presence of a random sublattice potential. The Z2

index is another way to confirm the topological insulator. It
is straightforward to compute the eigenvalues of the inversion
operator [6]. The result shows that the Z2 index = 1, consistent
with the edge state calculation.

Another effect of strong SOC in iridates is an amplification
of electronic correlation leading to a spin-orbit Mott insulator.
The relevant bandwidth W is the Jeff = 1

2 band rather than the
full t2g band due to the SOC, and thus the ratio of Hubbard
interaction U and the bandwidth W is magnified in iridates
[42,43]. In order to understand the magnetic ordering pattern,
let us consider the Hubbard model with the tight-binding
Hamiltonian of Eq. (2), where ε1d (k) and εy/x(k) contain
pseudospin-dependent terms. This NN Hamiltonian can be
expressed as

H0 =
∑
〈i.j〉

{t0c†i,A,σ cj,B,σ + ic
†
i,A,α(�v · �σ )αβcj,B,β} + H.c.,

where �v = ( t2
2 , t1

2 ,t1d ) along the x bond, while �v = ( t1
2 , t2

2 ,t1d )

along the y bond. Here c
†
i,A/B,σ , in which the operator creates

an electron on site i with sublattice A/B and pseudospin σ .
In the large-U limit, the spin model is then obtained as [44]

Heff = J
∑
〈i,j〉

�Si · �Sj +
∑
〈i,j〉

�Dij · (�Si × �Sj ). (5)

Here, J = 4
U

[(t0)2 − �v · �v] and �Dij = 8εi t0 �v
U

, where εi is the
change of sign in the adjacent bond [33,45].

Note that when the bond retains the inversion symmetry,
the Dzyaloshinskii-Moriya (DM) vector �D should vanish.
However, due to the different rotation and tilting angles of
oxygen octahedra between neighboring Ir atoms which break
the inversion symmetry on the bond, the effective spin model of
Eq. (5) is obtained. The ground state of such spin Hamiltonian
has a noncollinear form,

m100σx + m(010)σyτz + m(001)σzτz, (6)

where m(010) and m(001) represent sublattice antiferromagnetic
orderings, while m(100) denotes a ferromagnetic component
of ordering. The exact form and amplitudes of the magnetic
orderings in Eq. (6) are related to the crystal symmetry and
detailed hopping parameters on the bond. However, the specific
magnetic pattern is not crucial to realize the QAH effect in
single-layer iridates, as long as the TR symmetry is broken.

In the absence of TR symmetry, the topological invariance
characterizing the QAH effects is identified by the charge
Chern number defined as

Cp = 1

2π

∫
d2k�z

p(k), (7)

where p is the band index and �z
p(k) is the z component of the

pth-band Berry curvature �p(k) given in the Appendix. The
quantized transverse Hall conductance σxy is then given by

σxy = e2

h

∑
p∈ occupied

Cp, (8)

where the sum goes over all occupied bands below Fermi
energy εF . For the single-layer 2D Ir oxide, the quantized Hall

conductivity is obtained as

σxy = e2

h
, (9)

indicating the topological invariance C ≡ ∑
p∈ occupied Cp = 1

related to the edge currents propagating along one direction
on the sample boundary [46] shown in Fig. 3(b).

Note that the QAH phase depends on the magnitude of the
ordering. The different sizes of gaps at the X and Y points
appear after breaking b-glide symmetry; see Fig. 2(c). If the
strength of the magnetic ordering reverses the bands at the
X point, for instance, while keeping the gap at the Y point
intact, the system turns into the QAH phase with quantized
σxy of Eq. (9). However, if the magnitude of the ordering is
sufficiently large to reverse both bands at the X and Y points,
the system will then turn to a trivial insulator. Thus, above the
magnetic ordering temperature, the QAH phase should show
up in a certain range of external magnetic field.

III. BILAYER IRIDATES

To realize the topological phases in the single-layer IrO2

layer, the b-glide symmetry should be externally broken.
This requires a strain field in a certain direction, which is
not trivial in an experimental setting. In this section, we
propose two types of bilayer IrO2 systems, which naturally
hold topological phases without a lattice symmetry-breaking
perturbation. Since the single IrO2 layer has two different sets
of rotation and tilting angles, one way to engineer bilayer
systems is to stack two layers of A and B on top of each other.
Note that A and B per unit cell have the rotation and tilting
angle (θ,φ) and (−θ, − φ), respectively. Another way to stack
two single layers is to make the second layer have different
rotation and tilting set such as (θ, − φ) and (−θ,φ) denoted
by C and D sites, respectively. We call the first case ABAB
stacking and the other case ABCD stacking; see Fig. 4. The
distance between the top and bottom layers in both cases can
be manipulated by the number of AMO3 layers in between,
and the nature of topological phases is not altered by such
quantitative changes. Let us consider the ABAB stacking case
first.

A. ABAB stacking

As presented in Fig. 4, the ABAB bilayer structure with
significant rotation and tilting can be obtained by inserting
a single-layer band insulator material MO2 (M = Zr, Hf)
between two IrO2 layers. The tight-binding Hamiltonian is
given by

HABAB(k) =
∑
i=1,2

Hi
0(k) + H12(k), (10)

where Hi
0 represents a top (i = 1) and bottom (i = 2)

IrO2 layer and is the same as Eq. (2). H12 contains the
hopping terms between the two layers and, introducing another
Pauli matrices �ν for the layer degree of freedom, it is
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FIG. 4. (Color online) Left: ABAB stacking with A = (θ,φ) and
B = (−θ, − φ) types of octahedra rotation and tilting. Right: ABCD
bilayer stacking which contains A and B in the top layer, while
C = (θ, − φ) and D = (−θ,φ) types of octahedra rotation and tilting
are in the bottom layer.

written as

H12(k) = εdi(k)νx + Re[εdz(k)]σyτyνx + Im[εdz(k)]σzτyνy

+ Re[εz(k)]σyτyνx + Im[εz(k)]σxτyνx

+ Re[ε′
z(k)]σyτyνy + Im[ε′

z(k)]σxτyνy, (11)

where

εdi(k) = tz + t(110) cos(kx + ky) + t(11̄0) cos(kx − ky),

εdz(k) = tdz[cos(kx) + cos(ky)] + it ′dz[sin(kx) + sin(ky)],

εz(k) = [t2z cos(ky) + t1z cos(kx)] + i(kx ↔ ky),

ε′
z(k) = [t ′2z sin(ky) + t ′1z sin(kx)] + i(kx ↔ ky). (12)

Here, tz is the NN hopping between two layers. t(110) and
t(11̄0) are the third-NN intraorbital hopping along (110) and
(11̄0), respectively. tdz and t ′dz arise from the dyz orbital
to the dxz orbital NNN hopping due to the rotation and
tilting angles. t2z,t1z,t

′
2z, and t ′1z are given by the overlap

hopping integral between the dyz(dxz) and dxy orbital.
The parameters in the tight-binding Hamiltonian given by
Eq. (10) are obtained based on the Slater-Koster method [41]
and (tz,t(110),t(11̄0),tdz,tdz,t

′
dz,t2z,t1z,t

′
2z,t

′
1z)/t = (−0.13, −

0.01, − 0.09, − 0.03, − 0.01,0.014,0.01,0.062,0.01) for the
same θ and φ used in the single layer. The band structure
in Fig. 5(a) shows that there are two line nodes around X

and Y when φ = 0. However, a finite tilting φ lifts the band
degeneracy, but keeps one pair of Dirac points along the high
symmetry line X → S, which is protected by the b-glide
symmetry in Fig. 5(b).

Due to the electronic correlation and DM interaction, a
noncollinear magnetic ordering is expected. One example of
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E t

S X Y X
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E t

S X Y X
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2

E t

0 ,k0 )(k

(k0 ,-k0)000

(a) φ = 0

(b) Finite φ with ABAB stacking

(c) Finite φ with ABCD stacking

FIG. 5. (Color online) Band structure for bilayer with no tilt
effect (i.e., φ = 0) in octahedron environment (a) has a degenerate
line circling the � point [47]. (b) ABAB: Finite tilting lifts the line
node degeneracy but leaves one Dirac point protected by the b-glide
symmetry along S → X for ABAB stacking. (c) Band structure for
the ABCD bilayer with finite tilting φ. It has a band gap at (k0, ± k0)
(circled out by band lines). The Fermi energy is εF = 0, indicated by
gray solid lines.

noncollinear orderings has the form

m(110)(σx + σy) + m(11̄0)(σx − σy)τz + m(001)σzτz. (13)

Since an exact direction of magnetic ordering is not important
for the topological nature, we compute the Hall conductivity
for (a) m(110) �= 0 and (b) m(11̄0) �= 0 cases. For both cases, we
found it is quantized as

σ bilayer
xy = 2

e2

h
, (14)

which implies the charge Chern number defined in Eq. (7) for
the entire valence bands C = 2. The edge states computed in
the zigzag slab geometry are shown for the (a) case in Fig. 6(a)
and the (b) case in Fig. 6(b), respectively. This also confirms
the existence of the two gapless edge modes propagating along
the sample boundary. Thus any magnetic ordering (or in-plane
magnetic field) leads to a topological magnetic insulator with
QAH effect in the 2D ABAB stacked bilayer Ir oxides.

The difference between the single-layer and the bilayer
ABAB stacking deserves some discussion, as the bilayer is
obtained simply by stacking the AB single layer. The Dirac
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FIG. 6. (Color online) Slab dispersion with (a) ferromagnetic (FM) ordering with m(110) = 0.09t and (b) antiferromagnetic (AFM) ordering
with strength m(11̄0) = 0.06t . Two gapless edge modes at the L = 0 and L = N boundaries are represented by red and blue, respectively.

nodes at the X and Y TRIM points of the single layer are
protected by the b-glide symmetry. However, finite hopping
integrals between two layers generate the different size of
gaps at the X and Y points in the ABAB bilayer system, and
the Dirac point is shifted to a nonsymmetric point. Thus any
magnetic field or magnetic ordering that breaks the b-glide
symmetry would turn the system into a topological magnetic
insulator. On the other hand, in the single layer, a magnetic field
and/or ordering that breaks the TR and the b-glide symmetry
simultaneously induces the same strength of gap at the X

and Y points, making the system a trivial insulator. Thus an
external b-glide symmetry-breaking perturbation is necessary
to generate different gaps at X and Y in order to realize the
QAH insulator in the single-layer case. Below we consider the
other type of layer stacking, which offers various topological
phases.

B. ABCD stacking

The crystal structure with ABCD stacking is displayed in
Fig. 4. The tight-binding Hamiltonian for this stacking is
given by

HABCD(k) =
∑
i=±

Hi
0(k) + H ′

12(k), (15)

where

H±
0 (k) = ε′(k)I + ε0(k)τx + ε1d (k)σzτy

±[εy(k)σyτy + εx(k)σxτy], (16)

H ′
12(k) = εdi(k)νx + ε12(k)τxνx + t ′z(σy + σx)τzνy.

The various dispersions ε(k)s in H±
0 have the same expression

as Eq. (3), which represent intralayer hopping integrals for the
top (i = +) and bottom (i = −) layer. H ′

12 contains hopping
paths between the two layers, and the dispersion εdi(k) is the
same as Eq. (12). t ′z represents the 1D orbital to dxy-orbital
hopping between the layers, and

ε12(k) = t12[cos(kx) + cos(ky)], (17)

where t12 denotes the NNN interlayer intraorbital hopping.
In addition to the b-glide symmetry �̂b in Eq. (1), there

exists another glide plane which transfers between top and

bottom layers in this bilayer system,

�̂layer = i√
2

(σx + σy)τxνxk̂layer, (18)

where k̂layer is the operator that interchanges kx with ky as
k̂layer : (kx,ky) → (−ky, − kx). By computing the commutator
of �̂layer with HABCD(k), it is straightforward to verify that
[�̂layer,HABCD] = 0.

The band dispersion is shown in Fig. 5(c). The set of
tight-binding parameters is given by (tz,t(110),t11̄0,t12,t

′
z)/t =

(−0.23, − 0.01, − 0.09, − 0.11, − 0.04) for the same θ and
φ in the single layer. The hopping amplitude changes as a
function of distance and has been estimated by introducing a
scaling function 1/r5. There are two line nodes that appear
when the tilting degree vanishes, i.e., φ = 0, and those
degeneracies are gapped out after introducing some finite
tilting, as shown in Fig. 5(c).

To analyze the topological nature of the bilayer system,
we introduce the combined symmetry of �̂b and �̂layer such
that �̂mirror ≡ �̂b�̂layer = iσzνxk̂ with k̂: (kx,ky) → (−kx, −
ky), since the Hamiltonian is even under k̂, [iσzνx,HABCD] =
0. Furthermore, the low-energy effective Hamiltonian can be
brought into a block diagonalized form near X and Y TRIM
points with each block labeled by the eigenvalues of σzνx ,
given by

H eff
±,X/Y = �A±,X/Y (k) · �σ , (19)

where ± subscripts are assigned to reflect the eigenvalues
of the combined operator �̂mirror. The explicit expression of
vector �A±,X/Y (k) is presented in the Appendix. One way to
glimpse the topological phases lying behind the gapped band
structure is to evaluate the topological charges [48] defined
by the mirror valley (MV) Chern number Cmv , valley Chern
number Cv , and mirror Chern number Cm, in addition to the
charge Chern number C at the X and Y TRIM points:

Cmv = 1
2 (C+,X − C−,X + C−,Y − C+,Y ),

Cm = 1
2 (C+,Y − C−,Y − C−,X + C+,X),

(20)
Cv = (C+,X + C−,X − C+,Y − C−,Y ),

C = (C+,X + C−,X + C+,Y + C−,Y ).
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FIG. 7. (Color online) Phase diagram when rotation degree is θ = 13◦ in (c) plotted as the z-direction exchange field hz in units of Tesla
(T) vs tilting degree φ. Different phases has been characterized by different topological invariants (Cmv,Cm,Cv,C). The edge state for each
phase has been displayed in (a) QAH, (b) quantized valley Hall (QVH), (d) mirror valley Hall (MVH), and (e) topological crystalline insulator
(TCI). Two gapless edge modes in (a), (b), (d), and (e) at the L = 0 and L = N boundaries are represented by red and blue, respectively. Edge
states are purple (mixed color of red and blue) in (d) and (e) because of the degeneracy between edge modes at L = 0 and L = N . See the
main text for finite Cmv and Cm related to these edge modes.

The charge Chern number C is the sum of all Chern numbers
C±,X/Y associated with valleys (X/Y ) and mirror symme-
try eigenvalues (±). The valley-Chern/mirror-Chern number
Cv/Cm is odd only under the interchange of two valley/mirror
symmetry eigenvalues. The mirror valley Chern number Cmv ,
however, is odd under the interchange of valleys and mirror
symmetry eigenvalues, respectively. The computation details
of (Cmv,Cm,Cv,C) and the explicit expressions are presented
in the Appendix.

A phase diagram contains various phases [49] including
the mirror valley Hall phase, topological crystalline insulator
phase, QAH phase, and quantized valley Hall phase with
distinguished topological features, as displayed in Fig. 7(c).
The phases listed here are robust against disorder as long
as it preserves the symmetry associated with each phase
[19,37,50]. The vertical axis is the degree of tilting angle φ

and the horizontal axis corresponds to the strength of the z

component of the magnetic exchange field and/or ordering.
The phase boundaries can be modified depending on the
magnetic ordering or exchange field pattern, but the qualitative
picture of the phase diagram is not sensitive to the choice
of magnetic ordering direction, as long as there is a finite z

component of ferromagnetic hz or antiferromagnetic ordering
of mz. Thus we only tune the strength of hz for simplicity.
In Fig. 7(c), hz is estimated in Tesla using the tight-binding
parameters discussed above, and we set t ∼ 100 meV.

Each phase separated by a thick black line in Fig. 7(c)
is characterized by the unique set of topological invariance
(Cmv,Cm,Cv,C) defined in Eq. (20). The edge states shown
in Figs. 7(a), 7(b), 7(d), and 7(e) are obtained with the slab
geometry under the same boundary condition with the ABAB
stacking case described in the last section.

The bilayer with small tilting angle is characterized by the
mirror valley Hall phase with Cmv = −2. The valley physics
in the mirror valley Hall phase manifests explicitly in the edge

state dispersion in Fig. 7(d). When the degree of tilting angle
φ increases, it becomes a topological crystalline insulator with
Cm = 2. The large tilting degree is able to inverse the sign
of one of the mass terms near X or Y , and thus modifies
the topology of the system. The edge state dispersion for the
topological crystalline insulator phase in Fig. 7(e) has two pairs
of gapless currents moving along opposite directions on each
boundary. Each pair of edge modes carries opposite mirror
eigenvalues. As the name suggests, these two pairs of gapless
edge states are indeed protected by �̂mirror. A TR breaking
term will not lift the degeneracy between edge states as long
as the perturbation preserves �̂mirror.

By tuning the strength of hz, the QAH phase arises. In
the QAH phase, two gapless edge states localized at L = 0
propagate along the same direction. Each one contributes
e2/h to the Hall conductance and the total Hall conductivity,
when Fermi energy has been tuned inside the bulk gap and is
given by

σxy = 2
e2

h
. (21)

However, in the quantized valley Hall phase, within valley
X (Y ), the two edge states localized at L = 0 propagating
along the same direction lead to quantized valley Hall
conductivity σv

xy ,

σv
xy = Cv

e2

h
= 4

e2

h
. (22)

In order to detect the anomalous Hall conductivity σv
xy , photon

illumination with circularly polarized light can be used, which
has been reported in the monolayer MoS2 transistors [51].
Since these two valleys are related by the inversion symmetry,
it requires breaking of the inversion symmetry to measure the
valley Hall conductance in Eq. (22).
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The mirror and mirror valley Chern numbers (Cm,Cmv) can
be understood through the behavior of edge modes localized
at L = 0, for instance. When the system is in the mirror valley
Hall phase, there are four edge modes at L = 0 or L = N , as
shown in Fig. 7(d). Two edge modes are propagating from left
to right, labeled with (−,X) and (+,Y ), respectively. The other
two are flowing along the opposite direction, named as (+,X)
and (−,Y ), respectively. Here, (±,X/Y ) means the edge state
carries ± quantum number which is the eigenvalue of σzνx and
the valley degree of freedom X/Y . Thus, Cmv is finite. When
the gap is reversed at X, the propagating direction of the edge
modes (±,X) will reverse and result in a nonvanishing Cm.
Therefore, the system is a topological crystalline insulator, as
shown in Fig. 7(e). ARPES has proven to be ideally suited to
detect topological signatures of TCIs [22]; such methods can
be, in principle, generalized to detect the MVH insulator.

As we emphasize above, a finite bilayer hopping integral
is crucial to achieve the QAH phase when TR symmetry
is broken because the z-axis ferromagnetic exchange field
hzσz (or sublattice antiferromagnetic ordering mzτzσz) has
to overcome tz to reverse the sign of the Berry curvature
around X or Y in order to enter the QAH insulator phase (see
the Appendix for the proof). Using the current tight-binding
parameters, the strength of hz needs to be about a few Tesla, as
shown in Fig. 7(c). Since the critical strength of hz is tuned by
the strength of tz, it is desirable to make the bilayer hopping tz
smaller, which can be controlled by the spacing between the
layers, as shown in Fig. 4.

IV. CONCLUSIONS

A recent experiment has reported the successful growth of
an Ir oxide superlattice [(SrIrO3)n, SrTiO3], with a controllable
number of layers n, which tailors a spin-orbit magnetic
insulator for n = 1 and 2 [35]. Due to the smaller lattice
constant in TiO2 compared with IrO2, it was expected that
there are alternating rotations of Ir octahedra, but lacking the
tilting (φ) of octahedra to keep the tetragonal crystal structure
of SrTiO3. This was confirmed by the magnetic ordering
patterns in n = 1 and 2 superlattices, consistent with the
first-principles calculations [35]. However, topological phases
have not been observed in these superlattices, even though bulk
SrIrO3 orthorhombic perovskites possess a crystal-symmetry-
protected nodal line [34].

One essential ingredient to realize any topological insulator
is a Rashba-like SOC. In the Jeff = 1/2 wave function formed
by a strong atomic SOC, this Rashba-like SOC is generated by
finite hopping integrals between different Jz = ±1/2 states.
For example, finite hopping paths between dxy and dxz/yz

generate Rashba-like SOC terms in the Jeff = 1/2 basis since
dxy up-spin and one-dimensional orbitals of dxz/yz up-spin
belong to different Jz states. In layered perovskite systems,
this is possible when the hopping path does not respect the
mirror symmetry under z → −z, as dxy is even while dxz/yz

is odd under this operation. Thus the alternating octahedra
rotations and tiltings are necessary for topological phases in
layered perovskites.

We propose topological phases in Ir oxide superlattices or
films. Different topological phases were found depending on
how the TR and crystal symmetries are broken. We consider

three types of superlattice: single layer, bilayer with ABAB
stacking, and bilayer with ABCD stacking. A brief summary
of our results is listed below.

For the single-layer Ir oxide, the Dirac dispersion at X and
Y TRIM points is protected by the b-glide symmetry. When
this b-glide symmetry is broken, for instance, by an uniaxial
pressure, it reveals a 2D topological insulator by gapping the
Dirac nodes. In the presence of a magnetic ordering or external
magnetic field, the system becomes a topological magnetic
insulator with QAH effects.

In the bilayer Ir oxides, we consider two different types of
stacking. (1) For ABAB stacking, the system is a semimetal
with two nodal points at εF . Any finite magnetic field for any
direction except the [11̄0] axis or magnetic ordering turns the
system into a topological magnetic insulator with QAH effects.
Thus, the topological magnetic insulator in ABAB stacking
is more realizable in the current experiment setting than the
single-layer case. (2) In the ABCD stacking case, due to an
additional mirror symmetry �mirror, it provides a richer phase
diagram. Besides the QAH phase, there are two additional
phases: TCI with nontrivial mirror Chern number and MVH
insulators with quantized mirror valley Chern number.

Experimentally, these superlattices or films are grown along
the [001] axis, which can be achieved by a very standard
PLD growing technique. To test the proposal, an ARPES
measurement can be employed to investigate the Dirac points
in these superlattices when TR symmetry is preserved, and a
Hall conductivity measurement should exhibit the QAH effect
when a magnetic ordering occurs or an external magnetic field
is applied.
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APPENDIX: ANALYTICAL RESULTS OF ABCD BILAYER

Applying the following canonical transformation in σ and
ν space:

σ± → σ±νz, ν± → ν±σz, (A1)

the Hamiltonian in Eq. (15) can be brought into a block
diagonalized form,

H ′ =
(

H ′
+ 0

0 H ′
−

)
, (A2)

with

H ′
± = ±εdi(k)σz + ε0(k)τx + εy(k)σyτy

+ εx(k)σxτy ± t ′z(σx − σy)τz, (A3)

where ± subscripts are assigned to reflect the eigenvalues of
σzνx and the basis we choose for H ′ is a set of the eigenvectors
of σzνx .

Let us consider the upper block Hamiltonian H ′
+ near the X

point for now. By computing the eigenvalues of H ′
+ in Eq. (A3)

along X → �, the location where the band gap vanishes near
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X is given by

cos(k±
0 ) = ± t ′z

t1 − t2
. (A4)

The two solutions (k±
0 , − k±

0 ) in Eq. (A4), in fact, have the
same topological properties. For convenience, only one point
(k+

0 , − k+
0 ) ≡ (k0, − k0) will be taken into account.

An effective two-band Hamiltonian can be obtained by
projecting the H ′

+ to the relevant two bands |φ〉 and |ϕ〉 at
(k0, − k0),

|φ〉 = 1√
2

(−|1, ↓〉 + |2, ↓〉),
(A5)

|ϕ〉 = 1√
2

(|1, ↑〉 + |2, ↑〉),

where 1 (2) refers to top (bottom) layer and ↑(↓) for |Jz =
1
2 (− 1

2 )〉. Follow the perturbation theory, the effective two-band
Hamiltonian around X is written as

H eff
+,X = P̂0H

′
+P̂0 = �A+,X(k) · �σ , (A6)

where the projecting operator is P̂0 = |φ〉〈φ| + |ϕ〉〈ϕ| and
each component of A+,X is given by

Az
+,X = tz + t(110) + t ′(11̄0) + t ′0 ≡ δX,

A
y/x

+,X(k) = t ′1δky/x − t ′2δkx/y.
(A7)

Here, t ′1 = t1 sin(k0), t ′2 = t2 sin(k0), t ′(11̄0) = t(11̄0) sin(k0), t ′0 =
4t0 cos(k0), and δkx ≡ kx − k0,δky ≡ ky + k0 for the follow-
ing calculation. The Berry curvature for the pth band is given
as �p(k) = ∇k × (i〈p,k|∇k|p,k〉). Thus the Berry curvature
for the lowest band of H eff

+,X in Eq. (A6) is

�z
+,X(k) = [(t ′2)2 − (t ′1)2]δX

| �A+,X|3 . (A8)

The Chern number can be computed using the formula of
Eq. (7) given in the main text and the expression is quite
straightforward,

C+,X = sign(δX). (A9)

Following the same procedure for lower block H ′
− around

X and ± block around Y , the Chern number is given by

C±,X = ±sign(δX),
(A10)

C±,Y = ∓sign(δY ),

where δY = tz + t ′(110) + t(11̄0) + t ′0 with t ′(110) = t(110) sin(k0).
Various topological charges in the bilayer system has been

identified in Eq. (20). By plugging in the expression of
Eq. (A10), we have

Cmv = sign(δX) + sign(δY ),

Cm = sign(δX) − sign(δY ), (A11)

Cv = C = 0.

Here, by considering the magnetic field along the z direction
hzσz with hz > 0, the TR can be explicitly broken. The only
modification in the two-band effective Hamiltonian is that the
mass term appears in Eq. (A8), which changes to

δX/Y → hz ± δX/Y . (A12)

And the Chern numbers in Eq. (A10) have the following
expressions:

C±,X = sign(hz ± δX),

C±,Y = −sign(hz ± δY ).
(A13)

The explicit expression of Cmv , Cm, Cv , and C in Eq. (20)
can be modified accordingly based on Eq. (A13). The above
analysis indicates that the phase transition is driven by the
z-direction magnetic field hz.
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