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Plaquette order in a dimerized frustrated spin ladder
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We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated
antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a
one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization
on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters
(corresponding to an intermediate XXZ anisotropy) in which the leg dimerization and the rung coupling terms
are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system
is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order
parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of
4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the
leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection
symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile
and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order
transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests
that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies
leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may
account for the experimental observation of spin-liquid behavior in a physical realization of the model.
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I. INTRODUCTION

Low-dimensional quantum magnets attract a lot of ex-
perimental and theoretical attention, due to the rich physics
arising from their enhanced quantum fluctuations, and com-
peting interactions that often induce nonclassical ground
states. Most prominently, quantum effects are manifested by
spin- 1

2 systems at one dimension. The simplest model for
one-dimensional (1D) quantum antiferromagnets is the XXZ

Hamiltonian, describing a spin- 1
2 chain with nearest-neighbor

interactions [1],

H =
∑

i

Jxy

(
Sx

i+1S
x
i + S

y

i+1S
y

i

) + Jz

∑
i

Sz
i+1S

z
i , (1)

where Jα > 0 corresponds to antiferromagnetic exchange
interaction. The isotropic case Jxy = Jz yields the 1D Heisen-
berg model. This system has a nonclassical ground state
at T = 0 that is a gapless liquid, characterized by a lack
of long-range order and power-law decay of the spin-spin
correlations i.e., a critical state. The properties of this 1D liquid
state at low temperatures can be evaluated in terms of gapless
spin- 1

2 excitations called spinons, which can be represented as
interacting spinless fermions and form a Luttinger liquid.

Whether an analogous spin-liquid state can also be found in
higher dimensions, and under what conditions, is an important
question [2]. Typically, the 1D Luttinger liquid state is unstable
to interchain couplings, which tend to favor various types of
long-range order [3–7]. Therefore, a necessary condition is
the presence of frustration resulting from conflict between
competing interactions. A particularly interesting model for
frustrated spin systems, on a 2D cubic lattice, was introduced
by Nersesyan and Tsvelik [8] (NT) as a possible realization of
the long-sought resonating valence bond (RVB) state [9]. The

model is described by the Hamiltonian

H =
∑
j,ν

⎧⎨
⎩J‖Sj,ν · Sj+1,ν +

∑
μ=±1

[J⊥Sj,ν

+ Jd (Sj+1,ν + Sj−1,ν)] · Sj,ν+μ

⎫⎬
⎭ , (2)

where ν enumerates chains and j is the site number, J‖ is the
intrachain exchange constant that couples neighboring spins
on the same chain, and J⊥,Jd are the transverse and diagonal
interchain exchange constants, respectively. The interactions
of this model are presented in Fig. 1. The competition
between exchange interactions on each triangle prevents anti-
ferromagnetic ordering. The model is particularly interesting
for the maximally frustrated special ratio J⊥/Jd = 2, which
corresponds to a critical point between two phases of valence
bond crystal (VBC) [10]; i.e., a state in which pairs of spins
form singlets (valence bonds) that are localized, thus forming
an ordered crystal. In the anisotropic limit (J‖ � J⊥ = 2Jd )
of weakly coupled chains, the ground state at this critical point
was first argued to be an RVB state [8,11]: a state where
valence bonds undergo quantum fluctuations. The ground state
is then a superposition of different partitionings of spins into
valence bonds with no preference for any specific valence
bond. However, since then it was argued that the ground state
could still be a VBC [12–14].

Recently, an experimental group measured the thermody-
namic properties of the material (NO) [Cu(NO3)3] (NOCuNO)
[15], which appears to be a good realization of the NT model
in the weak-coupling regime (J⊥ � J‖). NOCuNO has the
unique feature that due to the symmetry of the crystal structure,
its exchange interactions obey the special ratio J⊥ = 2Jd .
Hence, it provides a suggestive realization of the model exactly
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FIG. 1. (Color online) Schematic representation of the exchange
interactions of the NT model.

in the quantum critical point predicted in Refs. [8,12]. The
contribution to the specific heat from magnetic excitations
was fitted with an empirical formula that includes a term
linear in T , characteristic to gapless spinons. Susceptibility
and electron-spin resonance (ESR) measurements gave no
indication of long-range order throughout the whole measured
temperature range, but they did indicate a considerable
reduction compared to a standard spin-chain system at low
T . The experimental data appear to indicate the existence of a
spin-liquid component that constitutes a fraction of the degrees
of freedom in the system.

A more recent study of NOCuNO by Raman scattering
[16] indicated that a dynamical interplay between spin and
lattice degrees of freedom exists in this material, which might
lead to novel phases. Moreover, the Debye temperature in
NOCuNO is of the same order of magnitude as the spin
exchange interactions. It is known that when these two energy
scales are comparable, the spin-lattice coupling is enhanced
[17,18]. These observations motivate the study of the effect
of spin-lattice coupling, which was not considered in earlier
theoretical studies of the NT model.

One of the prominent consequences of spin-phonon cou-
pling is the emergence of spin-Peierls (SP) instability. This
effect occurs when the exchange couplings are modulated
due to distortions in the distance between neighboring atoms,
yielding an alternation of strong and weak bonds. The SP
instability tends to dimerize the spin-chain, therefore it can
destroy the gapless liquid state and form a VBC of longitudinal
dimers [20,21]. Away from the critical point of Ref. [8]
(J⊥ = 2Jd ), a competition arises between the SP instability
(which tends to create longitudinal dimers) and the transverse
exchange coupling (which tends to create transverse dimers).
This competition may lead to a phase transition between
different types of dimer crystals, or it may induce a new phase.

In one of the earlier theoretical works on the NT model
[12], Starykh and Balents considered a dimer-dimer interac-
tion term that may be generated by higher-order interchain
interactions, and they studied the influence of this interaction
term via a renormalization-group (RG) approach. They showed
that various ordered nonmagnetic phases (i.e., with zero
magnetization) can form even in the absence of an explicit
dimerization term. The possible phases are two types of VBC,
of staggered and columnar longitudinal singlets, in addition
to the rung singlets and rung triplets (Haldane phase [19])
VBC states predicted by NT. Later numerical studies [13]
confirmed the emergence of such phases for sufficiently strong
interchain interactions. This suggests an additional mechanism
for dimerization besides interaction with phonons.

(a)

(b)

FIG. 2. (Color online) Two possible ordering of valence bonds on
two noninteracting chains: (a) columnar dimers (CDs), (b) staggered
dimers (SDs). Thick red lines represent dimers on the stronger bonds.

A number of theoretical studies have also considered the
effect of an explicit dimerization term on the Heisenberg spin-
ladder without frustrating (diagonal) interactions [20–26].
Interestingly, these works found that although a dimerization
term opens a gap when added to a gapless spin chain, adding
such a term to a gapped spin ladder can lead to a gapless
phase for suitably tuned dimerization and exchange couplings.
It should be noted that the possible phases depend crucially
on the relative configuration of dimers on different legs of
the ladder. Specifically in a two-leg ladder, there are two
distinct configurations that differ by the relative sign of the
dimerization on the two chains, and they are dubbed columnar
dimers (CDs) and staggered dimers (SDs) (see Fig. 2). The
above-mentioned works primarily examined the SD case in
spin-1/2 Heisenberg ladders, which have been found [23,24]
to support massless spin excitations for sufficiently strong rung
coupling. More recent studies considered the CD configuration
along with the previously studied SD dimerization [27–29],
finding that the ground state of the CD state is lower in energy
and is always gapped.

In this paper, motivated by the experimental study of
Ref. [16], we examine the effect of leg-dimerization perturba-
tions on the low-energy physics of an anisotropic generaliza-
tion of the NT model. For this purpose, we consider a two-leg
ladder version of the NT model where we introduce dimeriza-
tion terms on the legs as well as XXZ anisotropy of all exchange
couplings J‖,J⊥,Jd . In contrast with the earlier studies
[20–29], which consider the SU(2)-symmetric Heisenberg
limit, we focus in particular on the case of an intermediate XXZ

anisotropy (J z
‖ /J‖ ∼ 0.6), where the rung and leg dimerization

terms have an approximately equal scaling dimension, and
hence they compete strongly. We consider both dimerization
patterns (CDs and SDs) depicted in Fig. 2: assuming the
dimerization originates from a SP instability, the choice
between them is dictated by the lattice deformation associated
with the coupling to a certain phonon mode. Considering all the
interactions (perpendicular, diagonal, and leg dimerization) in
a bosonization description, we map the model onto an effective
self-dual sine-Gordon model, which we show is equivalent
to a spin chain in a staggered and tilted magnetic field. Our
main result is that the effect of the leg dimerization on the
NT model may lead to a “plaquette-ordered” state: a crystal
of four-spin plaquettes where on each plaquette there is a
coherent superposition of longitudinal and transverse dimers,
in a configuration that breaks reflection symmetry across
the ladder. There are two types of plaquette ground states
corresponding to the two types of dimerized patterns CDs and
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SDs. Generically, in both cases the ground state is gapped.
The tuning of parameters [the dimerization δJ‖, the interleg
coupling (J⊥ − 2Jd ), and the anisotropies J z

α/J
xy
α ] leads to

a smooth interpolation between longitudinal and transverse
VBC (each being recovered in the appropriate limit case),
without a second-order phase transition. Similarly to Chitov
et al. (Ref. [28]), we find that the gap is larger in the CD
case, hence the plaquette order in this case is more stable.
Moreover, for the SD case [Fig. 2(b)], a 1D gapless (critical)
state can apparently be recovered under extreme conditions:
strong anisotropy of J⊥,Jd , and rung exchange of the order
of magnitude of the leg exchange. However, the closing of a
gap in the plaquette-ordered state is always preempted by a
first-order transition to the original VBC of leg dimers.

The paper is organized as follows: In Sec. II, we derive
the low-energy model for the spin system in terms of bosonic
fields. In Sec. III, we analyze the model and demonstrate the
emergence of the plaquette order (Sec. III A) and the phase
transition to the VBC state (Sec. III B). Technical details of
the fermionization method and of the calculations of dimer
correlation functions are discussed in Appendixes A and B,
respectively. Finally, in Sec. IV, we summarize the results
and discuss their possible relevance to the behavior of the 2D
realizations of the frustrated coupled chains model.

II. THE MODEL

We consider a two-leg XXZ ladder version of the NT model
[Eq. (2)],

Hladder =
∑

j

⎧⎨
⎩

∑
ν=1,2

{
J‖
2

[S+
j,νS

−
j+1,ν + H.c.] + J z

‖ Sz
j,νS

z
j+1,ν

}

+ J⊥
2

[S+
j,1S

−
j,2 + H.c.] + J z

⊥Sz
j,1S

z
j,2

+ Jd

2
[S+

j,1(S−
j+1,2 + S−

j−1,2) + H.c.]

+J z
d Sz

j,1

(
Sz

j+1,2 + Sz
j−1,2

)⎫⎬⎭ , (3)

with strong intrachain coupling (J‖ � J⊥,Jd ) and where
all exchange couplings are positive. We then introduce a
dimerization term along the legs of the ladder (e.g., due to
spin-Peierls instability), described by a contribution to the
Hamiltonian of the form

Hσ
P = δJ

xy

‖
2

∑
j

(−)j [S+
j,1S

−
j+1,1 + σS+

j,2S
−
j+1,2 + H.c.]

+ δJ z
‖

∑
j

(−)j
[
Sz

j,1S
z
j+1,1 + σSz

j,2S
z
j+1,2

]
. (4)

This term describes a static deformation of the exchange
constants along the legs. In the absence of transverse coupling
between the chains 1 and 2, the ground state of each chain is a
product of singlets on the strong bonds (i.e., a one-dimensional
VBC), with a gap of the order of δJ‖ between the singlet ground
state and the lowest triplet excitation. The parameter σ = ±
is the relative sign of the dimerization on the two chains.

The leg dimerization term is relevant as long as we are away
from the ferromagnetic transition point, therefore, in our case,
it is strongly relevant and tends to open a gap on each chain
independently. As a result, in the case of two uncoupled chains
there are two possible patterns in which a VBC can form on
the chains, depending on σ : σ = + yields a columnar dimers
state and σ = − a staggered dimers state, as shown in Fig. 2.

To derive the low-energy model of the system, we first
use the Jordan-Wigner transformation, which maps the spin
operators into fermion fields. In the absence of magnetic field,
the Fermi energy is at the middle of the band, and the fermion
operators can be expressed in terms of bosonic ones related to
the Fermion density fluctuations:

ψR/L,ν = 1√
2πa

e−i(±φν−θν ), (5)

where R,L stands for right- and left-moving fermions, respec-
tively, a is the lattice constant, and ν = 1,2 is the leg index.
This procedure can be summarized briefly by the following
spin-to-boson transformation:

S+
ν (x) = e−iθν (x)

√
2πa

{(−)x + cos[2φν(x)]},

Sz
ν(x) = − 1

π
∂xφν(x) + (−)x

πa
cos[2φν(x)]. (6)

We now bosonize the Hamiltonian H = Hladder + Hσ
P , starting

from

Hladder =
∫

dx
∑
ν=1,2

u

2π

[
1

K
(∂xφν)2 + K(∂xθν)2

]

+
∫

dx

[
g

(2πa)2
cos(θ1 − θ2)

+ gz

(2πa)2
cos[2(φ1 − φ2)]

+ gz

(2πa)2
cos[2(φ1 + φ2)]

]

+ (
J z

⊥ + 2J z
d

)
a

∫
dx

∂xφ1∂xφ2

π2
,

g ≡ 2πa(J⊥ − 2Jd )

(2πa)2
, gz ≡ 2πa

(
J z

⊥ − 2J z
d

)
(2πa)2

. (7)

Here u and K are the Luttinger parameters of each chain on
its own and are given by [32]

u = J‖
2

√
1 − (J z

‖ /J‖)2

1 + 1
π

arccos(−J z
‖ /J‖)

,

K = π

2 arccos(−J z
‖ /J‖)

. (8)

Note that the frustrating interactions Jd and J z
d enable the

tuning of g and gz independently of each other, and make
them relatively small. This consequence of the frustration is
important for our discussion since different phases may appear
as a function of the ratio g/gz.
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Equation (7) can be written more conveniently in terms of
independent symmetric and antisymmetric modes [30–32],

φs/a = φ1 ± φ2√
2

, θs/a = θ1 ± θ2√
2

. (9)

Then, Hladder assumes the form

Hladder =
∫

dx

⎧⎨
⎩

∑
μ=a,s

uμ

2π

[
1

Kμ

(∂xφμ)2 + Kμ(∂xθμ)2

]

+ g cos(
√

2θa) +gz cos(
√

8φa) + gz cos(
√

8φs)

⎫⎬
⎭ ,

(10)

where for J⊥,Jd � J‖,

Ka,s
∼= K [1 ± γ ] ,

ua,s
∼= u [1 ∓ γ ] , (11)

γ ≡ K
(
J z

⊥ + 2J z
d

)
a

2πu
.

In ladders with antiferromagnetic legs where the XXZ

anisotropy is anywhere in the range between the Heisenberg
and XX limits (such that 1/2 � K � 1), both sectors s and a

are gapped. The nature of the resulting phase depends on the
sign of g,gz: a negative sign (i.e., effectively ferromagnetic
rung coupling) yields the Haldane phase, while a positive sign
(effectively antiferromagnetic rung coupling) yields a crystal
of rung singlets [30–32].

Bosonization of Hσ
P (see, e.g., Ref. [32] for a detailed

derivation) yields a term more conveniently written in terms
of the original fields φ1,φ2:

Hσ
P ∼ gP

∫
dx[sin(2φ1) + σ sin(2φ2)],

(12)

gP ≡ δJ‖
πa

.

Then, substituting Eq. (9) into Eq. (12) recasts Hσ
P as a

coupling term between the a and s sectors. The resulting full
Hamiltonian is

H = Hladder + Hσ
P = Ha + Hs + Hσ

as,

Ha = ua

2π

∫
dx

[
1

Ka

(∂xφa)2 + Ka(∂xθa)2

]

+ g

∫
dx cos(

√
2θa) + gz

∫
dx cos(

√
8φa),

(13)

Hs = us

2π

∫
dx

[
1

Ks

(∂xφs)
2 + Ks(∂xθs)

2

]

+ gz

∫
dx cos(

√
8φs),

Hσ
as = gP

∫
dx{sin[

√
2(φs + φa)] + σ sin[

√
2(φs − φa)]}.

Note that at the critical point of the NT model, which
for anisotropic rung coupling requires both J⊥ = 2Jd and
J z

⊥ = 2J z
d , the coefficients g,gz in Eq. (13) vanish. However,

away from the critical point we must consider the competition

between all the cosine terms appearing. The relevance of the
terms is determined by the scaling dimensions. Let us denote
by dz

a/s the scaling dimensions of the terms gz cos(
√

8φa/s),
respectively, in the a/s sector, d of the term with coefficient
g, and dP the scaling dimension of the term with coefficient
gP . Employing a perturbative RG, these scaling dimensions
are given by

d = 1

2Ka

, dz
a = 2Ka, dP = 1

2
(Ka + Ks), dz

s = 2Ks.

(14)

Since γ [Eq. (11)] is positive, dz
s < dz

a . Therefore,
gz cos(

√
8φa) is always the least relevant term, and it will

be neglected henceforth. Comparing dP and dz
s , we find

that for weak rung coupling (γ < 1/2), the gP term is also
more relevant than the gz cos(

√
8φs) term. This analysis

of the scaling dimensions leads to the conclusion that for
weak rung coupling, the dominant terms that govern the
low-energy description are the g and gP terms, which indicate
a potential competition between the leg dimerization and the
rung coupling (which tends to form rung dimers for g > 0).
There is a special value of K for which the scaling dimensions
of the most relevant terms are equal: from Eqs. (11) and (14),
we find d = dP for

K∗ = 1√
2(1 + γ )

∼= 1√
2
. (15)

For this value of K [which corresponds to an intermediate
anisotropy J z

‖ /J‖ ≈ 0.6; see Eq. (8)], the competition between
the leg and rung dimerization terms is maximal. In the
remainder of the paper, we therefore focus our attention
primarily on the regime of parameters where K ∼ K∗.

We now recall that for arbitrary K in the regime of interest
1/2 � K < 1 (i.e., 0 < Jz

‖ � J‖, and in particular for K ∼
K∗), Ks < 1. Hence the term gz cos(

√
8φs) is also relevant,

and it tends to lock the value of the symmetric field φs . This
affects the interaction term Hσ

as , which has a different form for
SD (σ = −) and CD (σ = +) configurations:

H+
as = 2gP

∫
dx sin(

√
2φs) cos(

√
2φa),

H−
as = 2gP

∫
dx cos(

√
2φs) sin(

√
2φa). (16)

In a semiclassical approximation, the cos(
√

8φs) term in Eq.
(13) obtains a finite expectation value that minimizes Hs . This
depends on the sign of gz: for gz > 0,

〈cos(
√

8φs)〉 ∼= −1 �
√

2〈φs〉 ∼= π/2 (17)

while for gz < 0 (effectively ferromagnetic rung coupling),
〈φs〉 = 0. We can therefore replace φs with its expectation
value everywhere it appears in the interaction term Hσ

as . Noting
that a change in sign of gz is essentially equivalent to trading
the roles of σ = + and σ = −, we confine ourselves hereafter
to gz > 0: our final conclusions on the behavior dictated by
the two distinct dimerization patterns will be exchanged in the
case gz < 0.
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For σ = +, in this semiclassical approach we obtain an
effective Hamiltonian for the antisymmetric mode φa ,

H eff
a =

∫
dx

{
ua

2π

[
1

Ka

(∂xφa)2 + Ka(∂xθa)2

]

+ g cos(
√

2θa) + 2gP cos(
√

2φa)

}
, (18)

where the last term results from the substitution sin(
√

2φs) ∼=
sin(

√
2〈φs〉) = 1 in H+

as [Eq. (16)]. H eff
a belongs to a class

of self-dual sine-Gordon models that have known solutions
[33]. This will be analyzed in detail in the next section,
and it will be shown to yield a gapped, plaquette-ordered
ground state. However, for σ = −, this naive semiclassical
approximation would result in H−

as = 0, since cos(
√

2φs) ∼=
cos(

√
2〈φs〉) = 0. This would imply that the leg dimerization is

completely suppressed, and by tuning g to zero one recovers a
gapless Luttinger liquid state in the antisymmetric sector. Since
Hσ

P = Hσ
as is strongly relevant, it seems improbable that it can

vanish completely from the low-energy theory; rather, this is an
artefact of the naive assumption 〈cos(

√
8φs)〉 = −1. Quantum

fluctuations generally induce a finite expectation value that
may be different from −1, in which case H−

as does not vanish.
In the next section, we discuss its contribution more carefully.

III. PHASE DIAGRAM

In what follows, we focus on the properties of the model for
K ∼ K∗ ≈ 1/

√
2, in which, as noted in the previous section,

the terms responsible for the formation of leg and rung singlets
are equally relevant. We derive a general theory that accounts
for both the SD and CD configurations of the leg dimerization,
given in terms of an effective Hamiltonian similar in form to
Eq. (18). As we show below, this effective model indicates the
potential formation of a “plaquette order” phase.

A. Emergence of plaquette order

As a first step in our analysis of the Hamiltonian Eq. (13),
we introduce an auxiliary Z2 order-parameter field τ̂ that
allows us to explore the potential for spontaneous breaking
of reflection symmetry across the ladder. When this occurs,
this field acquires an expectation value τ = ±1. As we show
below, the value of τ dictates a broken symmetry ground state
where dimerization on one leg of the ladder is stronger than the
other. We then define new bosonic fields via the transformation

φp,τ = φs + τφa, θτ = τθa,

φf,τ =
√

2φs, θf,τ = 1√
2

(θs − τθa), (19)

which preserve the canonical commutation relations

[φl,τ (x),θl′,τ (x ′)] = iπδll′sgn(x − x ′). (20)

Note that from Eq. (9), φp,τ and θf,τ are simply related to the
original fields φν,θν on the isolated legs ν = 1,2: for τ = +,
φp,τ = √

2φ1 and θf,τ = θ2; and for τ = −, the roles of 1,2 are
interchanged. Substituting Eq. (19) in Eq. (13) and removing

the least relevant term cos(
√

8φa), we get

H = Hσ
p + Hf + Hσ

pf ,

Hσ
p = up

2π

∫
dx

[
1

Kp

(∂xφp,τ )2 + Kp(∂xθp,τ )2

]

+ g

∫
dx cos(

√
2θp,τ ) + gP (δτ,−σ + σδτ,σ )

×
∫

dx sin(
√

2φp,τ ),

Hf = uf

2π

∫
dx

[
1

Kf

(∂xφf )2 + Kf (∂xθf )2

]
(21)

+ gz

∫
dx cos(2φf ),

Hσ
pf =

∫
dx

{
−

√
2ua

Ka

∂xφf ∂xφp,τ + 2
√

2usKs∂xθf ∂xθp,τ

+ gP (δτ,σ + σδτ,−σ )[sin(2φf ) cos(
√

2φp,τ )

− cos(2φf ) sin(
√

2φp,τ )]

}

(for abbreviation, we removed the index τ on the f -sector
fields, where it turns out to be of no significance). Here the
velocities are given by

up = ua

√
uaKa + usKs

uaKa

∼=
√

2u(1 − γ ),

uf =
√

usKs

(
ua

Ka

+ us

Ks

)
∼=

√
2u (22)

and the Luttinger parameters are

Kp =
√

Ka(uaKa + usKs)

ua

∼=
√

2K(1 + γ ),

Kf =
√

4usK2
s Ka

uaKs + usKa

∼=
√

2K, (23)

where in the final approximations we neglect terms of order
γ 2.

Next we use the fact that for K ∼= 1/
√

2 such that Kf
∼= 1,

the f sector reduces to a model of gapped free fermions.
Employing Eq. (5) (with φν,θν replaced by φf ,θf ), the cosine
term in Hf can be refermionized to give

cos(2φf ) = πa(ψ†
RψL + ψ

†
LψR). (24)

This term opens a gap to excitations given by

 = πagz (25)

(see Appendix A for details). For low T � , we can simplify
the interaction term Hσ

pf by a mean-field approximation. This
amounts to replacing cos 2φf as well as ∂xφf , ∂xθf , and
sin 2φf in Hσ

pf [Eq. (21)] by their expectation values. To
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leading order in a/uf , this yields

〈sin 2φf 〉 = 0, 〈∂xφf 〉 = 0, 〈∂xθf 〉 = 0, (26)

Of ≡ 〈cos 2φf 〉 ∼ − ||
uf /a

ln

[
uf /a

||
]

. (27)

Substituting back into Eq. (21), we obtain an effective model
for the p sector:

Hσ,eff
p = up

2π

∫
dx

[
1

Kp

(∂xφp,τ )2 + Kp(∂xθp,τ )2

]

+ g

∫
dx cos(

√
2θp,τ )

+ g̃P (σ,τ )
∫

dx sin(
√

2φp,τ ),

g̃P (σ,τ ) ≡ (δτ,−σ + σδτ,σ )gP [1 − σOf ]. (28)

The leg dimers configuration on the ladder, CD (σ = +) or
SD (σ = −), is encoded in the effective Hamiltonian Eq. (28)
by the parameter g̃P (σ,τ ). Its dependence on σ,τ reflects a
crucial distinction between the two patterns: first, in the CD
case this effective parameter is symmetric in τ , g̃P (+,+) =
g̃P (+,−); i.e., the Hamiltonian is identical for τ = ±. In
contrast, the SD configuration yields g̃P (−,+) = −g̃P (−,−),
namely two distinct effective Hamiltonians for τ = ±. Second,
since Of < 0 [see Eq. (27)], g̃P (+,τ ) is always finite and
obeys |g̃P (+,τ )| > |g̃P (−,τ )|. Most prominently, only in the
SD case (σ = −) can a gapless liquid phase be reached. This
occurs for very special values of the exchange interactions
where both g and g̃P (−,τ ) vanish: when J

xy

⊥ = 2J
xy

d (i.e.,
at the critical point of the NT model), and at the same time
(J z

⊥ − 2J z
d ) ∼ J‖ so that Of ∼ 1 [34]. Then all the interaction

terms vanish and we are left with a Luttinger-liquid model. For
this extremely-fine-tuned point, this analysis gives a Luttinger
liquid phase in the case in which the dimerization on the legs of
the ladder is of the SD type [Fig. 2(b)]. This Luttinger liquid
then describes gapless spinons on a single chain composed
of the interlaced chains 1 and 2. It is essentially the same
as the “snake chain” described in Ref. [24] for the isotropic
Heisenberg spin ladder. We note, however, that under these
conditions, another ordered ground state is likely to be favored,
as will be discussed in Sec. III B.

To explore the more generic case in which g and/or g̃P are
finite, we next rescale the fields φ̃p,τ = φp,τ√

2
, θ̃p,τ = √

2θp,τ

and accordingly the Luttinger parameter K̃p = Kp

2 to obtain

Hσ
eff =

∫
dx

{
up

2π

[
1

K̃p

(∂xφ̃p,τ )2 + K̃p(∂xθ̃p,τ )2

]

+ g cos(θ̃p,τ ) + g̃P (σ,τ ) sin(2φ̃p,τ )

}
. (29)

For g > 0, the interaction terms cos(θ̃p,τ ), sin(2φ̃p,τ ) are
dimerization operators, where each one creates different
dimers: the cos(θ̃p,τ ) creates dimers along the rungs of the
ladder, and sin(2φ̃p,τ ) creates dimers along the legs of the
ladder. It is convenient to define φ̃τ = φ̃p,τ − π/4, so that
sin(2φ̃p,τ ) = cos(2φ̃τ ), and we arrive at a self-dual sine-

Gordon model,

Hσ
eff =

∫
dx

{
up

2π

[
1

K̃p

(∂xφ̃τ )2 + K̃p(∂xθ̃τ )2

]

+ g cos(θ̃τ ) + g̃P (σ,τ ) cos(2φ̃τ )

}
. (30)

This is a special case of a series of models reviewed in
Ref. [33]. In our case, the choice K ∼ 1/

√
2 dictates Kp ∼ 1

and hence K̃p ∼ 1/2, i.e., the quadratic part of the model is at
the Heisenberg point, which is invariant under spin rotations.
Then, we use the following relations:

cos(θ̃τ ) ∼ (−)xσx, cos(2φ̃τ ) ∼ (−)xσz, (31)

where the σa operators are Pauli matrices representing ficti-
tious local spins. The resulting (fictitious) spin model is

Hσ
eff =

∑
i

[Jσi · σi+1 + (−)xB · σi],

B = g̃P (σ,τ )ẑ + gx̂. (32)

Equation (32) describes a spin-chain model in a staggered
magnetic field in the z-x plane, at an angle

ατ = arctan (g/g̃P (σ,τ )) (33)

from the ẑ direction. Now we rotate the coordinate system so
that the field will be in the ẑ direction:

x̂ ′ = cos ατ x̂ − sin ατ ẑ, ẑ′ = sin ατ x̂ + cos ατ ẑ. (34)

The σa spins are then related to the rotated spins σ ′
a by

σx = σ ′
x cos ατ + σ ′

z sin ατ ,

σz = σ ′
z cos ατ − σ ′

x sin ατ . (35)

After this rotation, the model is mapped onto a spin chain
in a staggered magnetic field along the ẑ direction, which in
bosonization gives a regular sine-Gordon model with rotated
fields φ′

τ ,θ
′
τ :

Hσ
eff =

∫
dx

{
u′

2π

[
1

K ′ (∂xφ
′
τ )2+K ′(∂xθ

′
τ )2

]
+ g′

τ cos(2φ′
τ )

}
,

g′
τ ≡

√
g̃2

P (σ,τ ) + g2, u′ = up, K ′ = K̃p = Kp

2
. (36)

The cos(2φ′
τ ) term opens a gap ′ and obtains a finite

expectation value. This term is also the order parameter of
this model. Recalling that K ′ ∼ 1/2, the system is deep in the
gapped phase where a semiclassical approximation is justified
to evaluate ′. A variational calculation (see, e.g., Ref. [32]
for details) yields

′ ∼ u′�
(

K ′g′
τ

u′�2

)1/(2−K ′)

(37)

with � ∼ 1/a. The expectation value of the order parameter
is subsequently given by

〈cos 2φ′
τ 〉 ∼ −

(
g′

τ

u′�2

)K ′

∼ −
(

′

u′�

)(2−K ′)K ′

. (38)
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Substituting K ′ = 1/2, this yields

′ ∼ u′�
(

g′
τ

u′�2

)2/3

, 〈cos 2φ′
τ 〉 ∼ −

(
g′

τ

u′�2

)1/2

. (39)

Note that generically g′
τ > g,g̃P (σ,τ ) [Eq. (36)]; rather than

competing with each other, the two self-dual interaction terms
in Eq. (30) cooperate to form an ordered ground state that
smoothly evolves upon tuning of the parameters, and there is
no phase transition.

We next discuss the interpretation of the ordered state in
terms of the physical spin system. Using Eqs. (31), (33), and
(35), we express the order-parameter field in terms of the fields
φ̃τ and θ̃τ :

Pτ ≡ cos(2φ′
τ ) = cos ατ cos(2φ̃τ ) + sin ατ cos(θ̃τ ),

(40)

cos ατ = g̃P (σ,τ )√
g̃2

P (σ,τ ) + g2
, sin ατ = g√

g̃2
P (σ,τ ) + g2

.

In both the CD (σ = +) and SD (σ = −) configurations, the
ground state spontaneously breaks reflection symmetry across
the ladder, with two distinct ground states (corresponding to
τ = ±) of identical energies. To understand their physical sig-
nificance, recall that cos(2φ̃τ ) and cos(θ̃τ ) create longitudinal
(on legs 1 and 2) and transverse dimers, respectively. The
corresponding local dimer operators are (see Appendix B)

εl1 ≡ S+
j,1S

−
j+1,1 − S−

j,1S
+
j+1,1 ∼ O

1−τ
2

f cos(2φ̃τ ),

εl2 ≡ S+
j,2S

−
j+1,2 − S−

j,2S
+
j+1,2 ∼ O

1+τ
2

f cos(2φ̃τ ), (41)

εt ≡ S+
j,1S

−
j,2 + S−

j,1S
+
j,2 ∼ cos(θ̃τ ),

where Of is given by Eq. (27). Hence Eq. (40) implies that the
order parameter is an entangled superposition of longitudinal
and transverse dimers on plaquettes of four spins, i.e., a
resonating valence bond within the plaquette; since Of < 1,
for τ = +1 (τ = −1) the dimer operator on leg 1 (2) has
a larger overlap with Pτ . The ground state is a crystal of
such plaquettes, as illustrated in Fig. 3. Since the dimers on
chains 1 and 2 have two possible configurations, CD and SD,
the plaquettes are also of two distinct types: closed and open
rectangular plaquettes, corresponding to the CD and SD states,
respectively. The open rectangular plaquette order is relatively
fragile, and under extreme conditions in which g′

τ = 0, a
gapless liquid state can be recovered. In comparison, the closed
rectangle order is more robust and is lower in energy for a given
strength of the exchange interactions.

The long-range order of dimers on distant plaquettes is
reflected by the behavior of dimer-dimer correlation functions,
which do not decay with increasing distance. We define

χab(x,t) ≡ 〈εa(x,t)εb(0,0)〉 (a,b = l1,l2,t), (42)

where εa are given by Eq. (41). For T � ′ and x � ξ , where
ξ = u′/′ is the correlation length, these are approximated by
constant asymptotic values:

χlμlν (x � ξ ) ∼= O
Nτ

μν

f cos2(ατ )(�ξ )−2K ′
,

χtt (x � ξ ) ∼= sin2(ατ )(�ξ )−2K ′
, (43)

χlν t (x � ξ ) ∼= O
Nτ

νν/2
f

1
2 sin(2ατ )(�ξ )−2K ′

,

(a)

(b)

FIG. 3. (Color online) Two possible types of plaquette order on
the frustrated dimerized ladder: (a) closed plaquettes corresponding
to σ = +, (b) open plaquettes corresponding to σ = −. Dark purple
ellipses represent strong dimers, and light purple ellipses weakened
dimers. In each case, two distinct plaquette-ordered ground-state
configurations emerge (corresponding to τ = ±), with spontaneously
broken reflection symmetry.

where Nτ
μν are given by

Nτ
11 = 1 − τ, Nτ

22 = 1 + τ, Nτ
12 = Nτ

21 = 1 (44)

(see details of the calculation in Appendix B). In particular, the
long-range nature of χlν t , describing the correlation between a
longitudinal and a transverse dimer, indicates the entanglement
between two types of dimers within a plaquette, which is a
consequence of the order parameter Pτ being a superposition
of longitudinal and transverse dimers [Eq. (40)]. In the limit
cases in which either gP or g vanishes, χlν t = 0 and one
recovers the rung or leg dimer VBC states, respectively.

B. Phase transition from VBC to plaquette order

The calculation presented in Sec. III B suggests that away
from the NT quantum critical point, and particularly for suf-
ficient XXZ anisotropy of the rung coupling, the competition
between the transverse and longitudinal dimerization terms
may give rise to an ordered state of plaquette dimers. However,
since the leg dimerization term is strongly relevant, as long as
gP is still relatively large, the ground state will be dominated
by the leg dimerization term, and a VBC state (as depicted in
Fig. 2) will likely be favorable. This is especially notable in
the case of the SD configuration (σ = −), where the plaquette
order is partially frustrated. When g and gP are comparable, a
first-order transition from the VBC order to the plaquette order
may occur, tuned by the ratio of g and gP . The transition line
in the phase diagram, given in terms of the parameters g and
gP , can be derived from energy considerations. Toward that
end, we calculate the gain in energy for each phase to form,
and we compare them. The energy gain of a massive phase
due to the ordering of a relevant operator is given by

δE ∼ −2

E0
, (45)

where  is the gap, and E0 = u� (with u a typical velocity) is
the high-energy cutoff. Similarly to the derivation of Eq. (37)
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Plaquette Order

VBC Order

gP

g

1.3 1.4 1.5 1.6 1.71.3

1.4

1.5

1.6

1.7

1.8

1.9

FIG. 4. (Color online) g-gP phase diagram in arbitrary units for
fixed gz = 1.5, σ = −, K = 1/

√
2, γ = 0.1, u = 6.15, and � = π .

The phase boundary line denotes a first-order transition.

for the gap in the plaquette ordered state, we employ a
variational approach to evaluate the gap opened by all relevant
operators in terms of the parameters gP and gz. This gives

z ∼ us�

(
Ksg

z

us�2

) 1
2−2Ks

,

P ∼ u�

(
KgP

u�2

) 1
2−K

, (46)

where z is the gap opened by gz cos(
√

8φs) of Eq. (13) and
P is the gap opened by the original leg dimerization term
Hσ

P [Eq. (12)]. Using these expressions, we can calculate the
gain in energy for the competing phases due to these operators.
Forming a plaquette order will benefit the energy due to the
gap ′ and the energy due to the gap z. Forming a VBC
state will benefit the energy due to the gap opened by the leg
dimerization, that is, twice (counted once for each chain) the
energy gain from P . Therefore, we obtain the overall gain in
energy for the competing phases to form

δEplaq = −(′)2/�u′ − (z)2/�us,

δEVBC = −2(P )2/�u. (47)

A transition between VBC order and plaquette order occurs
when δEplaq = δEVBC. Using Eqs. (36), (37), (46), and (47),
we plot a phase diagram for the transition from VBC order
to plaquette order as a function of the strength of the rung
dimerization g and the leg dimerization gP for constant gz.
The result is presented in Fig. 4.

IV. SUMMARY AND DISCUSSION

We studied a model for a dimerized frustrated ladder,
namely a two-leg ladder version of the anisotropic NT model
[8] in the presence of dimerization on the legs. Two types of
dimerized patterns were considered: columnar dimers (CDs)
and staggered dimers (SDs), which are, respectively, even and
odd under reflection across the ladder (see Fig. 2). The effect of
rung exchange interactions (J⊥,Jd ) on the two configurations
is distinct; for instance, effectively antiferromagnetic rung

coupling (J⊥ − 2Jd > 0) strengthens the ordering due to a
CD instability while it frustrates the SD configuration (and
the reverse for J⊥ − 2Jd < 0). We focus in particular on the
case of an intermediate anisotropy on the legs of the ladder
where the Luttinger parameter K ≈ 1/

√
2 [i.e., J z

‖ /J‖ ≈ 0.6;
see Eq. (8)], in which the leg dimerization terms and the rung
interactions are equally relevant. By mapping the resulting
effective model to a spin chain in a staggered magnetic
field, we found that the interplay between these interactions
tends to form a “plaquette-ordered” phase: a crystal of
resonating valence bond plaquettes where reflection symmetry
across the ladder is spontaneously broken (see Fig. 3).
The order parameter in this phase is a coherent superposition
of longitudinal and transverse dimers, hence all types of
dimer-dimer correlations are long-range.

The analysis leading to the above result relies on a mean-
field approximation, justified when the rung exchange is tuned
far enough from the NT quantum critical point J⊥ = 2Jd .
The resulting gap to excitations is smaller in one of the
dimerized configurations [e.g., for (J⊥ − 2Jd ) > 0 it is the SD
configuration], and it can even be tuned to zero for an extreme
limit of the parameters. Under these extreme conditions, one
apparently expects the formation of a gapless, Luttinger liquid
mode (which can be interpreted as a spin-1/2 chain meander-
ing between the two legs of the ladder). Note that for more
generic parameters, quantum fluctuations not accounted for
in our low-energy approximations might also soften the gap:
these introduce dynamics of the isospin auxiliary field τ̂ , and
consequently drive a transition of the Ising type to a liquidlike
disordered phase with restored reflection symmetry. However,
typically a gapless liquid state is unstable to other forms
of order. In particular, for sufficiently strong dimerization
(of either the CD or SD type), the Plaquette-ordered phase
always gives way to the VBC state (i.e., a dimer crystal of the
corresponding structure) via a first-order transition. A typical
phase diagram is depicted in Fig. 4.

It should be noted that while the analysis presented in the
previous sections was focused on a special value of the leg
anisotropy (K = 1/

√
2), allowing the exact mappings to free

fermions and the Heisenberg chain in a staggered field, the
conclusions are more general. The formation of a plaquette
ordering essentially arises from the interplay of two highly
relevant dimerization interactions, when their gap scales (as
calculated for each interaction independently) are comparable.
Deviations from K = 1/

√
2 will thus lead to quantitative

rather than qualitative corrections of our main results.
As a final remark, it is suggestive that our findings for

the two-leg ladder version of the NT model are the key
to understanding the behavior in physical realizations of
the full-fledged 2D model such as the compound NOCuNO
studied in Ref. [15]. Similarly to the CD and SD instabilities
introduced in this paper, in a multichain system a variety of
lattice distortions generated by the softening of certain phonon
modes may occur. This is especially expected in the presence of
strong spin-phonon coupling. The resulting interplay between
leg and rung dimerization interactions may give rise to
various ordered states involving a superposition of transverse
and longitudinal dimers, such as the generalizations of the
plaquette-ordered phase discussed in this paper. Moreover,
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several distinct broken symmetry states with identical or
comparable energy may compete. As a consequence, one
generically expects the formation of domains with different
ordered spin-gapped configurations. The boundaries between
domains can potentially support gapless liquid of spinons.
This would be manifest as a partial contribution of gapless
spinons to thermodynamic coefficients, as observed in the
experiment [15].
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APPENDIX A: REFERMIONIZATION OF H f

AND MEAN-FIELD APPROXIMATION

Below, we derive the mapping of Hf [Eq. (21)] to gapped
free fermions, and we calculate the expectation values of
operators in the f sector using the refermionized version of
these operators. Toward that end, we employ Eq. (5) (with
φν,θν replaced by φf ,θf ). For Kf = 1, the first term in Eq. (21)
reduces to a kinetic energy,

HK
f = −iuf

∫
dx{ψ†

R∂xψR − ψ
†
L∂xψL}, (A1)

and the second term is given by Eq. (24). Transforming to
momentum space, we thus obtain

Hf =
∑

k

uf k(c†R,kcR,k − c
†
L,kcL,k)

+ 
∑

k

(c†R,kcL,k + c
†
L,kcR,k),

 ≡ πagz. (A2)

This Hamiltonian can be diagonalized by a Bogoliubov
transformation [32]

c
†
+,k = αkc

†
R,k + βkc

†
L,k, c

†
−,k = −βkc

†
R,k + αkc

†
L,k, (A3)

with

αk = 1√
2

[
1 + uf k√

(uf k)2 + 2

]1/2

,

βk = 1√
2

[
1 − uf k√

(uf k)2 + 2

]1/2

, (A4)

after which Hf becomes

Hf =
∑

k

∑
ν=±

Eν,kc
†
ν,kcν,k,

E±,k = ±
√

(uf k)2 + 2. (A5)

For low T � , this justifies a mean-field approximation
where we replace cos 2φf as well as ∂xφf , ∂xθf and sin 2φf in

Hσ
pf by their expectation values. In terms of fermionic fields,

these operators are given by

sin 2φf = −iπa(ψ†
RψL − H.c.),

∂xφf = −π (ψ†
RψR + ψ

†
LψL), (A6)

∂xθf = −π (ψ†
RψR − ψ

†
LψL).

Fourier transforming and using Eq. (A3), we get (to leading
order in a

uf
)

〈sin 2φf 〉 = 0, 〈∂xφf 〉 = 0, 〈∂xθf 〉 = 0,

Of ≡ 〈cos 2φf 〉 = πa〈ψ†
RψL + ψ

†
LψR〉

=
∑

k

{
αkβk〈c†+,kc+,k − c

†
−,kc−,k〉

+ (
α2

k − β2
k

)〈c†+,kc−,k + c
†
−,kc+,k〉

}
, (A7)

which yields

Of ∼ − ||
uf /a

ln

[
uf /a

||
]

. (A8)

Here we have used 〈c†μ,kcν,k′ 〉 = δμνδk,k′fμ,k (for μ,ν = ±),
with f±,k = (1 + eE±,k/T )−1 the Fermi distribution function,
approximated by f− ≈ 1,f+ ≈ 0 for T � . Substituting
back into Eq. (21), this yields the effective Hamiltonian
Eq. (28).

APPENDIX B: DIMER CORRELATION FUNCTIONS

We are interested in the correlations between dimers of
spins in the plaquette-ordered state. Toward that end, we define
the local dimerization operators (at x = ja)

εlν = S+
j,νS

−
j+1,ν − S−

j,νS
+
j+1,ν = 2i sin(2φν) (ν = 1,2),

εt = S+
j,1S

−
j,2 + S−

j,1S
+
j,2 = 2 cos(

√
2θa), (B1)

where the indices l1/2,t stand for longitudinal (on chain 1 or 2)
and transverse dimers, respectively; note that in the expression
for εl1 , the site index j is even while in εl2 it is even (odd) for
σ = + (σ = −). Recasting the bosonic fields φν and θa in
terms of the fields defined via the transformation Eq. (19) [and
subsequently in terms of φ̃τ , θ̃τ appearing in Eq. (30)], after
using the mean-field result Eq. (26) we get

sin(2φ1) ∼ O
1−τ

2
f cos(2φ̃τ ),

sin(2φ2) ∼ O
1+τ

2
f cos(2φ̃τ ), (B2)

cos(
√

2θa) = cos(θ̃τ ).

Employing the mapping to fictitious spins [Eq. (31)], a similar
mapping of cos(2φ′

τ ) and cos(θ ′
τ ) to σ ′

x , σ ′
z and the rotation

Eq. (35), one obtains

cos(2φ̃τ ) ∼ cos(2φ′
τ ) cos ατ − cos(θ ′

τ ) sin ατ ,

cos(θ̃τ ) ∼ cos(θ ′
τ ) cos ατ + cos(2φ′

τ ) sin ατ . (B3)

The correlation functions between dimers are defined as

χμν(x,t) = 〈εμ(x,t)εν(0,0)〉 (μ,ν = l1,l2,t). (B4)
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Using Eqs. (B1)–(B3), we thus obtain expressions for χμν(x,t)
in terms of correlation functions of two types of operators:
cos(2φ′

τ ) and cos(θ ′
τ ).

To calculate the correlation functions of the sine-Gordon
model, we use the fact that in the gapped phase, the cosine
term can be expanded around the average value of φ′

τ , so that
cos(2φ′

τ ) ∼= 2(φ′
τ − π/2)2 − 1. Then, changing to a new field

ϕτ = φ′
τ − π/2, we arrive at a quadratic Hamiltonian for the

massive field ϕτ ,

H = u′

2π

∫
dx

[
1

K ′ (∂xϕτ )2 + K ′(∂xθ
′
τ )2 + (′)2

K ′(u′)2
ϕ2

τ

]
,

(B5)

with the gap ′ given by Eq. (37). The correlation functions of
a Gaussian theory can be readily calculated using the methods
shown in Appendix C of Ref. [32]. The correlations of the form
〈cos (θ ′

τ (x,t)) cos (θ ′
τ (0))〉 decay exponentially because due to

the uncertainty principle, when φ′
τ is ordered, θ ′

τ fluctuates.
Therefore, at T � ′ the only contributions to χμν(x,t) arise
from the correlation function

Cϕ(r) ≡ 〈cos[2ϕτ (r) + π ] cos[2ϕτ (0) + π ]〉 ∼ e−2K ′Gϕ (r),

(B6)
where the propagator Gϕ(r) ≡ 〈[ϕτ (r) − ϕτ (0)]2〉 is given by

Gϕ(r) = 1

β�

∑
q

[1 − cos(q · r)]
2πu′

ω2
n + (u′k)2 + (′)2

; (B7)

here r = (x,u′τ ) with τ the imaginary time, q = (k,ωn/u
′),

β = 1/T , and � is the length. In the limit β,� → ∞, the sum

can be transformed into an integral and one obtains

Gϕ(r) = u′

2π

∫ �

0
q dq

∫ 2π

0
dθq

1 − cos[qr cos(θq)]

(u′q)2 + (′)2
, (B8)

where θq is the angle between q and r, q = |q|, and r = |r|.
The result for Gϕ(r) is

Gϕ(r) = ln(�ξ ) − K0(r/ξ ),

ξ ≡ u′/′, (B9)

where K0(z) is the modified Bessel function. Using the
asymptotic and series expansions of K0(z) for large and small
arguments,

K0(z � 1) ≈
√

π

z
e−z, K0(z � 1) ≈ − ln(z), (B10)

we obtain a result for Cϕ [Eq. (B6)] in the following two limits:

Cϕ(r � ξ ) ∼= (r�)−2K ′
, Cϕ(r � ξ ) ∼= (�ξ )−2K ′

. (B11)

Finally, employing Eqs. (B1)–(B3), this yields the correlation
functions [Eq. (B4)] in the limit r � ξ :

χlμlν (x � ξ ) ∼= O
Nτ

μν

f cos2(ατ )(�ξ )−2K ′
,

χtt (x � ξ ) ∼= sin2(ατ )(�ξ )−2K ′
, (B12)

χlν t (x � ξ ) ∼= O
Nτ

νν/2
f

1
2 sin(2ατ )(�ξ )−2K ′

,

where Nτ
μν are given by

Nτ
11 = 1 − τ, Nτ

22 = 1 + τ, Nτ
12 = Nτ

21 = 1. (B13)
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