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We calculate the spectral function of the one-dimensional Hubbard-Holstein model using the time-dependent
density matrix renormalization group, focusing on the regime of large local Coulomb repulsion, and away from
electronic half-filling. We argue that, from weak to intermediate electron-phonon coupling, phonons interact only
with the electronic charge, and not with the spin degrees of freedom. For strong electron-phonon interaction,
spinon and holon bands are not discernible anymore and the system is well described by a spinless polaronic
liquid. In this regime, we observe multiple peaks in the spectrum with an energy separation corresponding
to the energy of the lattice vibrations (i.e., phonons). We support the numerical results by introducing a well
controlled analytical approach based on Ogata-Shiba’s factorized wave function, showing that the spectrum can
be understood as a convolution of three contributions, originating from charge, spin, and lattice sectors. We
recognize and interpret these signatures in the spectral properties and discuss the experimental implications.
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I. INTRODUCTION

In the past two decades, we have witnessed a tremendous
improvement in the energy and momentum resolution of
angle-resolved photoemission spectroscopy (ARPES), which
is one of the most powerful experimental tools for investigating
strongly correlated materials. In particular, recent ARPES
spectra of high-TC cuprates [1,2], alkali-doped fullerides [3],
and manganites [4], have shown that the interplay of electron-
electron (e-e) and electron-phonon (e-ph) interactions have an
important role in the qualitative and quantitative understanding
of the experiments.

When considering systems of low dimensionality, the situa-
tion is even more complicated. In one dimension (1D), the low-
energy states separate into spin (spinon) and charge (holon)
excitations that move with different velocities and are at
different energy scales [5–7]. Spin-charge separation has been
observed experimentally in semiconductor quantum wires [8],
organic conductors [9], carbon nanotubes [10], atomic chains
on semiconductor surfaces [11], and recently predicted to
be achieved in optical lattices of ultracold atoms [12–14].
A clear detection of the phenomenon has been proposed
theoretically in Ref. [15] using time-resolved spin-polarized
density measurements. Evidence of spin-charge separation
has been observed also in photoemission experiments on
quasi-1D cuprate SrCuO2 [16] and on organic conductor
TTF-TCNQ [17]. In these quasi-1D materials, the coupling
to the lattice is considered to be responsible for the unusual
spectral broadening of the spin and charge peaks observed
by ARPES. Recently, the interplay between spin, charge, and
lattice degrees of freedom has also been investigated in the
family of quasi-1D cuprates Ca2+5xY2−5xCu5O10, using high
resolution resonant inelastic x-ray scattering (RIXS) [18,19].

In 1D systems and in the absence of e-ph interaction, the
spin excitations are described by a band whose curvature is
proportional to the exchange energy scale J , while the charge
excitation dispersion width is comparable to the electronic
hopping (�4t). Moreover, the collective excitation spectrum
of 1D systems presents spectral weight (shadow bands) at

momenta larger than the Fermi momentum kF due to their
Luttinger liquid nature. It is therefore of paramount importance
to study the behavior of the photoemission spectrum of
materials where it is believed that a strong interaction with
the lattice degrees of freedom is present. In particular, this
aspect is not entirely understood and one expects that the
interplay between e-e and e-ph interactions has a profound
effect on spin-charge separation and on the interpretation of
the experiments.

The basic lattice model used to describe e-e and e-ph
interactions in 1D is the so-called Hubbard-Holstein (HH)
Hamiltonian, which contains nearest-neighbor hopping t , on-
site Coulomb repulsion U , and a linear coupling between the
charge density and the lattice deformation of a dispersionless
phonon mode (see Sec. II). Within this model, the elec-
tronic spectral properties have been studied by Refs. [20,21],
where the adiabatic limit (phonon frequency smaller than
the electronic hopping) is mostly analyzed at half electronic
filling in the regime of weak to intermediate e-ph coupling.
In the first paper, the authors use dynamical density matrix
renormalization group (D-DMRG) and assess the robustness
of spin-charge separation against e-ph coupling, interpreting
the spectral function as a superposition spectra of spinless
fermions dressed by phonons. In particular, a peak-dip-hump
structure is found, where the dip energy scale is given by the
phonon frequency and originated from the charge-mediated
coupling of phonons and spinons. In the second paper, the
authors use cluster perturbation theory and an optimized
phonon approach observing that e-ph coupling mainly gives
rise to a broadening of the holon band, due to the presence of
many adiabatic phonons.

In contrast to these previous studies, in this paper we
consider the case of a phonon frequency larger than the
electronic hopping (antiadiabatic limit) and a finite hole doping
(or equivalently electronic density below half-filling), a regime
that could be currently accessible in the experiments [19]. We
develop a controlled analytical approach for the calculation of
the spectral function (photoemission spectrum, PES) which is
rigorously valid in the presence of an infinitely large Coulomb
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repulsion, and in the antiadabatic limit. In this regime, the
exchange J is a small energy scale (of the order of t2/U ) in
the problem, but it is not zero as in the spinless Holstein
model.1 Our theory relies on Ogata-Shiba’s Bethe ansatz
solution [34] of the U → ∞ Hubbard model, combined with
the Zheng, Feinberg, and Avignon (ZFA) treatment [35] of
the e-ph interaction. In order to support the analytical results,
we numerically calculate the PES using the time-dependent
DMRG [36,37] (tDMRG) finding a quantitative and qualitative
agreement with the analytical approximation for weak and
strong e-ph interaction. One of the main observations is that the
e-ph interaction induces a reduction of the spinon and the holon
bandwidths. For strong e-ph interaction, we observe spectral
side bands separated by energy gaps with width proportional
to the phonon frequency. Eventually, the separation of spin
and charge spectral peaks is not appreciable anymore being
spinon and holon bands merged in one main band. In this
case, the system can be described as a polaronic liquid, with
the spectral weight extended well beyond Fermi momentum
kF . The tDMRG simulations show that at weak coupling
spin-charge separation is robust against e-ph coupling, and
spinon and holon bands are well resolved. Therefore, we argue
that, from weak to intermediate e-ph coupling, phonons are
mainly coupled to the charge degrees of freedom while the
spinon is pretty much unaffected within good approximation.
Finally, the PES is investigated with tDMRG decreasing the
phonon frequency and exploring also the adiabatic limit. In
this case, we reproduce the results of Ref. [20] finding the
characteristic spectral peak-dip-hump structure.

The paper is organized as follows: In Sec. II the HH model
is briefly introduced. In Sec. III we present an analytical
method for calculating the PES, and discuss the validity of
the approximations used. In Sec. IV, the numerical results
obtained with the tDMRG, and a comparison with the
analytical results are discussed. We finally conclude discussing
the implications of the results for the experiments.

II. THE 1D HUBBARD-HOLSTEIN MODEL

The HH model describes Einstein phonons locally coupled
to electrons described by the Hubbard Hamiltonian. In 1D, it
can be written as

H = −t
∑

i,σ

(c†i,σ ci+1,σ + H.c.) + U
∑

i

ni,↑ni,↓

+ω0

∑

i

a
†
i ai + gω0

∑

i,σ

niσ (ai + a
†
i ), (1)

where t is the hopping amplitude between nearest neighbor
sites, the total number of lattice sites is L, U is the on-site
Coulomb repulsion, ω0 is the phonon frequency, g is the e-ph
coupling constant, c

†
i,σ (ci,σ ) is the standard electron creation

(annihilation) operator on site i with spin σ = ↑,↓, ni,σ =
c
†
i,σ ci,σ is the electronic occupation operator, and a

†
i (ai) is the

1In the literature the strong Hubbard-U (U is the on-site Coulomb
repulsion) limit of the HH model is usually considered as the spinless
Holstein model. For this model, the dynamical properties have been
thoroughly studied both analytically and numerically [22–33].

phonon creation (annihilation) operator. The Planck constant
is set to � = 1, the lattice parameter a = 1, and all of the
energies are in the units of the hopping t .

It is well known that the HH model is extremely com-
plicated and impossible to solve analytically. Its phase dia-
gram and ground-state static properties [38–49] have been
thoroughly studied in the literature, using different numerical
techniques, including DMRG [50–52]. The main difficulty
consists of handling the phononic degrees of freedom, which
need to be described in principle by an infinite-dimensional
Hilbert space at every lattice site. Different truncation schemes
for the phononic Hilbert space have been proposed, including
the possibility of using optimal phonon bases [53–55]. Still,
solving the problem numerically remains remarkably time
consuming, especially for the calculation of the dynamical
properties such as the spectral function. We remark that a
semiclassical treatment of the lattice degrees of freedom has
been recently adopted for the study of spectral and transport
properties of organic semiconductors [56,57] and the transport
properties of suspended carbon nanotubes [58,59]. We point
out that throughout the paper, the Coulomb repulsion is
considered large enough to avoid competition with other
phases such as the charge-density wave Peierls state [38].

III. THE ZFA APPROACH

In this section we present an analytical method that allows
us to calculate the photoemission part of the spectral function

B(k,ω) = − 1

π
ImG(k,ω) for ω < μ, (2)

where G(k,ω) is the electronic retarded single particle Green’s
function and μ is the chemical potential. The method consists
of a variational canonical transformation originally proposed
by Zheng, Feinberg, and Avignon in Ref. [35] and then
employed in Ref. [60] for calculating the spectral and optical
properties of the spinless Holstein model. The starting point
of the approach is the assumption that, in the limit of strong
e-ph coupling, U → ∞, and infinity phonon frequency ω0,
the model is described by spinless polarons. Then, the ZFA
approach extends the polaron formation to the intermediate e-
ph coupling regime, recovering the mean field solution at zero
phonon frequency. We introduce the generator of the so-called
variational Lang-Firsov transformation [61], given by

T [f,�] = eg
∑

j [nj f +�](aj −a
†
j ), (3)

where nj = nj,↑ + nj,↓, and f and � are variational
parameters whose meaning will be described below. The
transformed Hamiltonian is

H̃ [f,�] = T −1HT = −t
∑

i,σ

(c†i,σX
†
i Xi+1ci+1,σ + H.c.)

+ (U − 2g2f 2ω0)
∑

i

ni,↑ni,↓ + ω0

∑

i

a
†
i ai

+Lg2ω0�
2 + gω0(1 − f )

∑

i

ni(ai + a
†
i )

− gω0�
∑

i

(ai + a
†
i ) + η

∑

i

ni, (4)
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where we have defined a phonon operator Xi = egf (ai−a
†
i ) and

η = g2ω0f (f − 2) + 2g2ω0(f − 1)�. In the next section, we
will show the actual procedure employed for the calculation of
the variational parameters f and �. Also, it will be shown that
the variational parameter � can be obtained as a function of f

[� = (1 − f )N/L], and one is thus left with only one varia-
tional parameter. Assuming f̃ is the optimal choice for f , one
can thus proceed by writing the transformed Hamiltonian as

H̃ [f̃ ] = H̃0 + V, (5)

where H̃0 is the unperturbed part given by strongly correlated
electrons and noninteracting phonons,

H̃0[f̃ ] = −te−g2f̃ 2
∑

i,σ

(c†i,σ ci+1,σ + H.c.)

+ (U − 2g2f̃ 2ω0)
∑

i

ni,↑ni,↓ + ω0

∑

i

a
†
i ai + η̃N

− gω0(1 − f̃ )
N

L

∑

i

(ai + a
†
i ) + g2ω0(1 − f̃ )2 N2

L
,

(6)

with η̃ = g2ω0f̃ (f̃ − 2) − 2g2ω0(1 − f̃ )2N/L, while V is a
many-body interaction operator

V = −t
∑

i,σ

[c†i,σ (X†
i Xi+1 − e−g2f̃ 2

)ci+1,σ + H.c.]

+ gω0(1 − f̃ )
∑

i

ni(ai + a
†
i ). (7)

The PES is now calculated approximately by neglecting the
perturbation V . One can use perturbation theory and consider
the effect of V in higher orders of perturbation after the calcu-
lation of the PES, but in this paper we are only taking the zeroth
order into account. In fact, the determination of the optimal pa-
rameter f̃ is meant to minimize the error produced by neglect-
ing the interaction term V from the Hamiltonian (5). The un-
perturbed Hamiltonian H̃0[f̃ ] still contains information about
e-ph interacting terms in the original Hamiltonian (1), since all
the parameters of H̃0[f̃ ] are renormalized by our variational
technique. Indeed, H̃0[f̃ ] consists of free phonons and a Hub-
bard model with a shift η̃ of the chemical potential, a hopping t̃ ,
and an on-site repulsion Ũ renormalized by the e-ph interaction

t̃ = te−g2f̃ 2
, Ũ = U − 2g2f̃ 2ω0. (8)

In this limit, in the transformed space electronic and lattice
degrees of freedom are governed by independent Hamiltonians

H̃0[f̃ ] = H̃el + H̃phonon, (9)

and the total wave function can be factorized in two parts:

|ψ〉 = |�〉 ⊗ |{nph}〉, (10)

where |�〉 describes the electrons, and |{nph}〉 is given by the
product of L separate noninteracting phononic wave functions,
each one containing an integer number of phonons (|{nph}〉 =
|{n0

ph}〉 ⊗ |{n1
ph}〉 ⊗ · · · |{nL−1

ph }〉). It is trivial to show that the
PES in the original space is now given by

B(k,ω) =
∑

ñ

|〈ñ|X0|0〉|2Be(k,ω + ñω0), (11)

where Be(k,ω) is the PES in the transformed space and the sum
is extended over all the phonon states ñ of a single site phonon.
Be(k,ω) is now evaluated in the Lehmann representation

Be(k,ω) = L
∑

z,σ

|〈z,N − 1|ck,σ |GS,N〉|2

×δ
(
ω − EN

GS + EN−1
z

)
, (12)

where ck,σ destroys an electron with momentum k and spin σ

(cj,σ = 1√
L

∑
k′ eik′j ck′,σ ), N is the total number of electrons,

and z the final state with N − 1 electrons. EN−1
z represents the

total energy of the final state, and EN
GS describes the energy

of the ground state of the original Hamiltonian (1) with N

electrons. Since Einstein phonons carry no momentum, we can
impose the momentum conservation with the term δk,P N

GS−P N−1
z

to reduce Eq. (12) to a calculation involving only site 0 in the
real space and one phonon mode at that site:

Be(k,ω) = L
∑

z,σ

|〈z,N − 1|c0,σ |GS,N〉|2

×δ
(
ω − EN

GS + EN−1
z

)
δk,P N

GS−P N−1
z

. (13)

Up to here, no assumptions have been made on the electronic
spectral function and the general form shown above is
extremely complex. However, in the limit of Ũ � t̃ one can
use Ogata-Shiba’s factorization [34] to show that the electronic
wave function |�〉 in Eq. (10) is split into spin and charge parts.
The total wave function |ψ〉 can be therefore factorized as

|ψ〉 = |φ〉 ⊗ |χ〉 ⊗ |{nph}〉, (14)

where |φ〉 describes spinless charges and |χ〉 is the spin wave
function that corresponds to a “squeezed” chain of N spins,
where all the unoccupied sites have been removed. In this limit,
charge, spin, and lattice degrees of freedom are governed by
independent Hamiltonians

H̃0[f̃ ] = H̃charge + H̃spin + H̃phonon. (15)

Due to this simplification, we are now able to tackle the
problem and calculate the PES. Indeed, operator c0,σ after
the polaron transformation will look like c0,σ X0. Moreover,
using the Ogata Shiba’s formalism [34] one can factorize the
electronic annihilation operator c0,σ as c0,σ = Z0,σ b0, where
b0 is a spinless fermionic operator acting on the (spinless)
charge part of the wave function |φ〉, and Z0,σ is acting on the
spin part |χ〉. The Z0,σ operator has a very peculiar behavior,
destroying the spin σ at site i = 0 as well as the site, making the
chain L − 1 sites long. For details about the use of the Z0,σ

operator we refer the reader to Refs. [62–64]. The spectral
function can be therefore expressed as a convolution

Be(k,ω) =
∑

ω′,Q,σ

Dσ (Q,ω′)BQ(k,ω − ω′), (16)

where Dσ (Q,ω) is the spin spectral function with momentum
Q, and

BQ(k,ω) = L
∑

{I }

∣∣〈ψN−1
L,Q {I }|b0|ψN,GS

L,π

〉∣∣2

× δ
(
ω − EN

GS + EN−1
z

)
δk,P N

GS−P N−1
z

(17)
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describes the charge part. By following the approach in-
troduced in Ref. [62], one can calculate numerically both
Dσ (Q,ω) and BQ(k,ω).

A. Variational calculation of the parameter f

In this section we determine the variational parameters
f and � appearing in the transformed Hamiltonian (4) of
the previous section. An effective electronic Hamiltonian,
Heff , is used, which is obtained by averaging Eq. (4) on
the phononic vacuum of the transformed Hilbert space,
Heff[f,�] = 〈Oph|H̃ |Oph〉,

Heff[f,�] = −te−g2f 2
∑

i,σ

(c†i,σ ci+1,σ + H.c.)

+ (U − 2g2f 2ω0)
∑

i

ni,↑ni,↓

+ η
∑

i

ni + Lg2ω0�
2. (18)

The parameter � is simply obtained by using the Hellmann-
Feynman theorem

∂

∂�
〈GSeff|Heff|GSeff〉 = 0 ⇒ � = (1 − f )

N

L
,

where N is the total number of electrons, N/L is the electronic
density, and |GSeff〉 is the ground state of Heff . One is now left
only with the determination of the parameter f , which will be
found by solving the Hamiltonian

Heff[f ] = −te−g2f 2
∑

i,σ

(c†i,σ ci+1,σ + H.c.)

+ (U − 2g2f 2ω0)
∑

i

ni,↑ni,↓

+ g2ω0(1 − f )2N2/L + ηN, (19)

by using the static DMRG and minimizing the ground-state
energy of this new Hamiltonian as a function of f . For each set
of values U , t , g, and ω0, one can obtain an optimal polaronic
parameter f̃ . In Fig. 1(a), the ground-state energy of Heff[f ]
as a function of f for two different values of e-ph coupling
g = 0.8 and g = 1.8 is shown. Here N/L = 0.75, U = 20,
and ω0 = 2.0. For g = 1.8 the value of f̃ obtained is close to
0.8 meaning that for these sets of parameters the system is near
the polaronic regime, which ideally is expected to be reached
for stronger e-ph coupling and phonon frequency. Indeed, for
f̃ = 1 one has well-defined polarons, while, for f̃ = 0, the
unitary transformation, Eq. (3), becomes trivially the identity.
In Fig. 1(b), the optimal polaronic parameter f̃ as a function
of e-ph is shown. As will become clear in the next section, f̃

describes the degree of polaron formation, which is the amount
of spectral weight redistribution in phonon side bands.

B. Analytical results

Once the optimal f̃ is determined, one can finally study and
analyze the properties of the PES calculated from Eqs. (16)
and(11). We start by considering a phonon frequency ω0 >

1 (antiadiabatic limit) and choose, in particular, ω0 = 2.0.
Moreover, throughout this paper, we consider an electronic

FIG. 1. (Color online) The parameter f̃ is obtained by minimiz-
ing the ground-state energy of Hamiltonian (19) with respect to
f . Panel (a) shows DMRG calculations for two different values of
e-ph coupling g (the potential curve obtained for g = 1.8 has been
shifted in energy by an arbitrary constant, which is irrelevant in our
description where only the position of the minimum is important).
Panel (b) shows f̃ as a function of g. All results are for density
N/L = 0.75.

filling equal to N/L = 0.75. Figure 2 shows B(k,ω) from
weak e-ph coupling g = 0.2 up to strong interaction g = 2.0.
In order to interpret the results in more detail, Fig. 3 is showing
three vertical cuts at k = 0, k = kF (kF = πN/2L = 0.375π ),
and k = 2kF of the same spectrum [dashed (red) lines]. We
note that the spectrum for g = 0.2 is very similar to the g = 0
PES (not shown): The presence of spin-charge separation is
evident [20,21,65], where the spectral weight concentrated
on the spinon and holon bands forming a triangular spectral
structure between −kF and +kF (Fig. 2). As expected for
a Luttinger liquid, the shadow bands extend beyond kF . A
closer look at the cuts in Fig. 3 in this weak-coupling regime,
shows that phonon effects are negligible: One can observe
clearly the higher spinon peak at the top of the spectrum (at
ω − μ � −0.05 for k = kF ), and a shifted holon peak.

At g = 0.6, phonon effects start to become appreciable
with interesting features at all momenta. One can observe
a reduction of the spinon and holon bandwidth, as the
triangular spectral structure comprising the spinon and holon
bands gets squeezed. Indeed, the reduction of the spinon and
holon bandwidths is due to the fact that the e-ph coupling
renormalizes the hopping parameter t̃ = te−g2f̃ 2

exponentially
[see Hamiltonian H0[f̃ ], Eq. (5)]. Moreover, one starts to see
a replica of the entire spectrum appearing shifted below the
main band by an energy amount exactly equal to the phonon
frequency ω0. As one can observe in Fig. 1, for the set of
parameters used in this paper f̃ assumes a value of 0.4 for
g = 0.2 increasing slightly up to 0.5 for g = 1.2, pointing out
that strong Coulomb repulsion and the large phonon frequency
already give a sizable spectral redistribution from weak to
intermediate e-ph couplings.
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FIG. 2. (Color online) Photoemission spectrum calculated with
the ZFA method in the antiadiabatic regime (ω0 = 2.0) for different
e-ph couplings g = 0.2,0.6,1.0,1.2,1.5,2.0. Here L = 32 sites,
U = 20, and filling N/L = 3/4.

Increasing the e-ph coupling, the spectral weight redis-
tribution in identical replicas continues (see panels g = 1.0,
g = 1.2, and g = 1.5 of Fig. 2), until the triangular structure
is almost collapsed into a flat line for g = 1.5. Moreover, For
g � 1.5, the PES is broken in spectral replicas (at least five for

g=
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FIG. 3. (Color online) Three cuts at k = 0,kF ,2kF of photoemis-
sion spectrum calculated with the ZFA approach [dashed (red) line]
and using the tDMRG [solid (black) line].

g = 1.5) whose weight decreases from the first structure to the
following’s. This is not true anymore for the case of g = 2.0. In
this case, one can observe more than ten spectral replica lines
with a Gaussian distribution of the spectral weights typical of
the polaronic regime [66]. In this case, the separation between
the holon and the spinon peak is not discernible anymore,
suggesting that the system is in a state that can be described
in terms of a spinless polaronic liquid where the spins are
completely uncorrelated. It is now clear that the quantity f

governs the magnitude of the antiadiabatic polaronic effect,
which mainly consists in a spectral redistribution in phonon
replicas. It is important to point out that it also provides a
shift of the chemical potential given by the quantity η̃ =
g2ω0f̃ (f̃ − 2) + 2g2ω0(f̃ − 1)�. All the spectra shown in
Fig. 2 are shifted by correct chemical potential μ calculated
with static DMRG (μ = EN+1 − EN , where Em is the ground-
state energy of the system with m particles) and furthermore
displaced by η̃, a quantity that increases quadratically as a
function of the variational parameter f̃ as the e-ph is increased.

In the next section we present a numerical calculation of
the PES with the tDMRG, which will allow us to verify and
support the results of the ZFA approach.

IV. SPECTRAL FUNCTION WITH tDMRG

In order to obtain dynamical properties of 1D quantum
lattice models in the presence of phonons, several techniques
such as dynamical DMRG [20] and exact diagonalization
combined with cluster perturbation theory have been used in
the literature [21]. In contrast to these approaches, here the
PES is calculated using the tDMRG with Krylov expansion
of the time-evolution operator [67–71]. The time evolution is
computed using m = 400 DMRG states and the bare phonon
bases are truncated keeping up to nine phonons per site.
Unless otherwise stated, a lattice with L = 32 sites, N = 24
electrons, and open boundary conditions is considered. In
order to calculate the PES, we measure the time-dependent
correlation function

Bi,j (t) = i〈
0|eiHtc
†
i e

−iH t cj |
0〉, (20)

where |
0〉 is the ground state of Hamiltonian (1). |
0〉 and
the ground-state energy are calculated using static DMRG. Ex-
cited states |
j 〉 = cj |
0〉 and their time evolution |
j (t)〉 =
e−iH t |
j 〉 are then calculated with the tDMRG. Since the time
evolution of the ground state is trivial 〈
0|eiHt = eiEGSt 〈
0|,
Eq. (20) reduces to

Bi,j (t) = ieiEGSt 〈
0|c†i |
j (t)〉, (21)

which has been calculated for all pairs (i,j ) with i,j = 0,

L − 1. Long time evolutions up to Tend = 14 with time
steps of �t = 0.01 are considered, and B(k,ω) is obtained
by a space-time Fourier transform performed using a Hann
window function [H (x) = 1

2 [1 + cos(xπ )] with x = 2t/Tend],
giving a broadening of the spectral peaks approximately given
by δ � 0.25 (the details of the procedure are reported in
Refs. [36,72]). Here, k and ω are the momentum and energy
of the electron.
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FIG. 4. (Color online) Photoemission spectrum of the HH model
calculated with tDMRG for the same frequency and e-ph coupling
values considered in Fig. 2. Here L = 32 sites, U = 20, and filling
N/L = 3/4.

A. Numerical results

Figure 4 shows the PES calculated with the tDMRG in
the antiadiabatic regime, for the same regime of parameters
of Fig. 2. In analogy with the results obtained with the ZFA
approach, we also show three vertical cuts of the spectrum at
k = 0, k = kF , and k = 2kF in Fig. 3 [solid (black) lines]. It
is important to point out that, even within the ZFA approach, a
broadening of the spectral peaks of the order of δ � 0.25 has
been used.

As stated in the previous section, one expects that the ZFA
approach is a good approximation of the results in the regime
where Ũ � t̃ and ω0 > t̃ . In particular, as one can see in
the top row of panels of Fig. 3, for g = 0.2 a very good
agreement between ZFA and the tDMRG results is obtained.
This characteristic is also evident at all momenta if one looks
at the upper left panels of Figs. 4 and 2.

Noticeable differences between the ZFA approach and
the tDMRG results can be observed in the intermediate
e-ph coupling regime (g = 0.6,1.0,1.2). In this case, the
ZFA approach is qualitatively reproducing the reduction of
the spinon and holon bandwidths, which are parametrized
by the renormalized hopping parameter t̃ = te−g2f̃ 2

in the
Hamiltonian H0[f̃ ], Eq. (5). While reproducing the correct
position of the spectral side bands, the ZFA approach provides
access to their internal structure, showing that the separation
between the holon and spinon peaks is still well defined.

For g = 0.6, tDMRG results show an apparent suppression
of the spectral weight or gap seems to appear at ω − μ � −2
with the formation of a new band ranging from ω − μ � −2 to
ω − μ � −4, whose dispersion resembles those of the holon
and shadow bands. The same characteristics are visible in
Fig. 3 for k = 0, where the distance between the spinon peak
and the holon peak is reduced and a side band at the left of
the holon peak is formed. This new spectral feature seems to
originate from the holon band, while the height of the spinon
peak is practically unchanged going from g = 0.2 to g = 0.6.

At g = 1.0, the progressive reduction of the electronic
bandwidth (both of the spinon and holon bands) is even
more evident, and the triangular spectral structure has almost
collapsed. The new band formed at g = 0.6 is now separated
by a larger gap with respect to the main spectrum, while the
spectral redistribution creates a newer side band whose width is
smaller and ranging from ω − μ � −4 to ω − μ � −6.2. As
one can see, in Fig. 3 for k = 0, several side bands separated
in energy by a quantity proportional to ω0 are visible. The
side bands present no internal structure and suggest that,
up to g = 1.0, they originate from the holon bands without
contribution from the spinons. These results indicate that,
from weak to intermediate g, spin-charge separation is robust
against e-ph coupling: The phonons couple mainly with charge
degrees of freedom, leaving the spinon band almost unaffected.

For g = 1.2, the original triangular feature in the PES is
completely collapsed to a flat structure. Also, if one looks
at Fig. 3 for k = 0 and k = kF for the same value of g, the
height of the first spectral peak is dramatically increased with
respect to the case of g = 1.0. This indicates that one is entered
in the strong e-ph coupling regime where the main band is
followed by many side bands coming from both holon and
spinon bands. This description, as one can see in Fig. 4, is
even more evident for g = 1.5, where the PES is broken in
spectral lines whose weight decreases from the first structure
to the following’s and extends beyond the Fermi momentum
kF . Besides, the separation between the holon and the spinon
peak is not discernible anymore, suggesting that the system is
going towards a state that can be described in terms of a spinless
polaronic liquid where the spins are completely uncorrelated.
Indeed, for g = 2.0, the physics of phonon side bands is
dominating the PES, observing several spectral structures have
a smaller width (compared to g = 1.5 results), bigger height,
and that the first spectral structure has less weight than the
second one.

At strong e-ph coupling, the ZFA approach provides f̃ =
0.675 for g = 1.5 and f̃ = 0.975 for g = 2.0. In these cases,
the PES calculated within the ZFA approach gives the same
number of phonon side bands with widths and heights of the
same order of magnitude of the tDMRG results. Moreover,
tDMRG results automatically contain information about the
shift in the chemical potential mentioned in the previous
section. The optimal shift given by the ZFA approach is in total
agreement with the chemical potential calculated with static
DMRG in the entire range of e-ph couplings. Strikingly, the
ZFA approach is giving qualitatively the same nonzero spectral
weight distribution at momenta larger than kF , confirming that,
in this case, the system can be described as a polaron liquid.

In order to further investigate this behavior, we have
studied the ground-state momentum distribution function
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FIG. 5. (Color online) Momentum distribution function for the
same parameter values as in Fig. 4. Solid (black), dashed (red),
dotted (green), dashed-dotted (blue), dashed-dotted-dashed (cyan),
short-dashed (magenta), represent respectively g = 0.2,0.6,1.0,

1.2,1.5,2.0. Inset: Luttinger parameter K as a function of g, extracted
from the electronic density-density correlation function.

nk = (1/L)
∑

i,j e−ik(i−j )〈c†i cj 〉 and the spin-spin correlation
function in real space, 〈Sz(L/2)Sz(L/2 + i)〉, from the center
of the chain. As expected for correlated 1D systems, the
momentum distribution function shown in Fig. 5 presents a
smooth crossover at the Fermi momentum kF for all e-ph
coupling values. We point out that the e-ph coupling reduces
the decrease at kF and, globally, it broadens the momentum
distribution function. Eventually, for g = 2.0, one gets an
almost flat profile with nk=0 � 0.45 and nk=π � 0.325. In
the inset of Fig. 5, the Luttinger parameter K extracted
from the density-density correlation function slope at small
momentum [73] is plotted as a function of the e-ph interaction.
According to Luttinger liquid theory [74], in the weak e-ph
coupling regime one has K = 1/2 as in the U → ∞ limit
without phonons. By increasing the e-ph interaction, K

remains constant and equal to 1/2 up to g = 1.2, and then
increases because the e-ph coupling reduces the effective e-e
interaction (Ũ = U − 2g2ω0).

In Fig. 6, the spin-spin correlations as a function of the
distance from the center of the chain is shown both in
logarithmic [panel (a)] and in linear scale [panel (b)]. In the
first case, it decreases linearly and its slope is decreasing as a
function of the e-ph interaction [see inset of panel (a)]. Up to
g = 1.6, spin-spin correlations decay approximately with the
same behavior. For g > 1.6, one observes a smooth crossover
towards a polaronic regime where spin degrees of freedom
are completely uncorrelated and correlations decay faster and
faster with respect to distance from the center of the system
[see panel (b)].

B. tDMRG results for intermediate e-ph coupling

In this section, we extend the analysis by discussing the
tDMRG results for intermediate e-ph coupling g = 1.0, as a
function of the phonon frequency ω0. The results are shown
in Fig. 7. For ω0 = 0.5, we observe a behavior different from
that discussed in the previous section. For instance, at k = 0,
a dip structure at the left side of the spinon peak is shifted

FIG. 6. (Color online) Panels (a) and (b) show the spin-spin
correlation function from the center of the chain for different g’s
in logarithmic (absolute value) and linear scale, respectively. Inset
of panel (a): slope of a linear fit for the spin-spin correlation in
logarithmic scale.

by a quantity equal to ω0 = 0.5, reproducing qualitatively the
results discussed in Ref. [20]. In this reference, the PES is
constructed by a superposition of a set of holon dispersions
forming a cosine band with width 4t in the absence of e-ph
interaction. Moreover, each holon dispersion is characterized
by one spinon momentum. In the presence of e-ph interaction,
due to spin-charge separation each holon couples with phonons
independently and the PES is interpreted as a spectrum of
spinless electrons dressed by Einstein phonons. This generates
a split of the holon dispersion that is away from the top of the
spectrum by a shift equal to ω0, and a transfer of spectral weight
to high energy giving a characteristic peak-dip-hump structure.
Our results are consistent with this picture, confirming that

FIG. 7. (Color online) Panel (a) shows the photoemission spec-
trum for g = 1.0, and different phonon frequencies ω0 = 0.5,1.0,2.0.
Panel (b) shows three cuts at k = 0, k = kF , and k = 2kF of the
photoemission spectrum reported in panel (a).
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spin-charge separation is robust in this regime. In contrast
to what was discussed in the previous section for ω0 = 2.0,
where polaronic effects dominate and the phonon frequency is
smaller than the hopping t , the e-ph coupling effect gives rise
to a dip in between the holon and spinon peak. Moreover, this
dip structure in the spectrum shifts by an energy proportional
to ω0 [see panel (b) of Fig. 7 for ω0 = 1.0 and k = 0]. In
this case, our data shows also a shoulder on the left side of
the holon peak, in contrast to what was found in Ref. [20].
In our calculation, this feature can be interpreted as the onset
of phonon side bands. Increasing the phonon frequency to
ω0 = 2.0, several sidebands in the PES are found as discussed
in the previous section. Interestingly, at k = kF , instead of a dip
we find a peak separated from the spinon band by an energy
difference equal to ω0. Eventually, at the Fermi momentum
and for larger frequencies, these features become part of the
first and the higher side bands.

V. CONCLUSION

We have studied the spectral function of the 1D HH model
using the tDMRG method, in the limit of large Coulomb
repulsion, and away from electronic half-filling. The entire
range of the e-ph coupling has been studied. Our results indi-
cate that from weak to intermediate g spin-charge separation
is robust against e-ph coupling: The phonons couple mainly
with the charge degrees of freedom, leaving the spinon band
almost unaffected. For sufficiently strong e-ph interaction, the
PES weight is redistributed in phonon side bands, and the
spinon and holon spectral features are not discernible anymore.
In this regime, we support the numerical tDMRG results

with an analytical calculation, determining variationally the
amount of spectral redistribution and approximating the wave
function as a convolution of charge, spin, and phonon parts. In
this case, a very good qualitative and quantitative agreement
with tDMRG results is obtained, and the system can be
described as a polaronic liquid, with nonzero spectral weight at
momenta larger than the Fermi momentum. We can now briefly
discuss the results described above making a contact with the
experiments described in Ref. [18]. In this paper, the authors
measure the RIXS spectra of a family of quasi-1D cuprates
Ca2+5xY2−5xCu5O10, an insulating system that can be doped
over a wide range of hole concentrations. The experiment
reveals a phonon with energy equal to 70 meV (a quantity
larger than the typical transfer hopping t along the chains in
quasi 1-D cuprates) strongly coupled to the electronic state at
different hole dopings. It is found that the spectral weight of
phonon excitations in the RIXS spectrum is directly dependent
on the e-ph coupling strength and doping, producing multiple
peaks in the spectrum with an energy separation corresponding
to the energy of the quanta of the lattice vibrations, in a fashion
similar to what we obtain in the present paper. We believe
that, even in the ARPES spectra of these materials, phonon
side-band structures could be experimentally observable in
the PES.
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