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Fate of the excitonic insulator in the presence of phonons
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The influence of phonons on the formation of the excitonic insulator has hardly been analyzed so far. Recent ex-
periments on Ta2NiSe5, 1T -TiSe2, and TmSe0.45Te0.55, being candidates for realizing the excitonic-insulator state,
suggest, however, that the underlying lattice plays a significant role. Employing the Kadanoff-Baym approach
we address this issue theoretically. We show that owing to the electron-phonon coupling a static lattice distortion
may arise at the excitonic instability. Most importantly such a distortion will destroy the acoustic phase mode
being present if the electron-hole pairing and condensation is exclusively driven by the Coulomb interaction. The
absence of off-diagonal long-range order, when lattice degrees of freedom are involved, challenges that excitons
in these materials form a superfluid condensate of Bose particles or Cooper pairs composed of electrons and holes.
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I. INTRODUCTION

The excitonic insulator (EI) is a longstanding problem in
condensed matter physics. Although first theoretical work
dates back almost half a century [1–5], the experimental
realization of the EI phase has proven to be quite challenging.
In recent years a number of mixed-valent rare-earth chalco-
genide and transition-metal dichalcogenide materials have
been investigated [6–8], which are promising in this respect
and have renewed the interest in the EI also from the theoretical
side [9–14].

In particular, the mechanism of the formation of the EI has
been analyzed in detail [9,10,13–16]. In the weak coupling,
semimetallic regime the Coulomb-driven EI formation reveals
a formal analogy to the BCS theory of superconductivity. In the
strong coupling, semiconducting regime, on the other hand,
the transition to the anticipated EI phase is a Bose-Einstein
condensation (BEC) of preformed excitons. Then, within the
EI, a smooth crossover from a BCS- to a BEC-like state should
occur.

An EI instability can be triggered by the Coulomb inter-
action between electrons and holes. Therefore, the theoretical
modeling typically focuses on a purely electronic mechanism.
First attempts to include a coupling to the lattice degrees of
freedom have been made quite recently, motivated by several
experiments indicating that the lattice is involved at the phase
transition to the anticipated EI phase [17–21]. For example, in
the TmSe0.45Te0.55 compound a drop of the specific heat and an
increase of the lattice constant have been interpreted as a strong
coupling between excitons and phonons [22]. Furthermore, in
1T -TiSe2 there is a longstanding debate whether the charge-
density wave and the concomitant structural phase transition
observed in this material are the results of an excitonic [7,11] or
a lattice instability [23,24]. A combination of both instabilities
was also proposed [25,26]. Without any doubt, lattice effects
are crucial in this material. Finally, at the transition to
the suggested EI phase in Ta2NiSe5 the lattice structure
changes from orthorhombic to monoclinic, although the charge
does not modulate [18,19,27]. Therefore, the electron-phonon
interaction seems non-negligible in this material as well.

Motivated by these findings, we analyze the EI formation
in the framework of a rather generic two-band model that

comprises both the Coulomb interaction and an explicit
electron-phonon coupling. Besides its relevance to the ma-
terials under study, some fundamental theoretical questions
are brought up in this model. So we address the electron-hole
pair spectrum and the nature of the ordered ground state.

The paper is organized as follows. In Sec. II we introduce
our model. A mean-field treatment in terms of the electron
Green functions is given in Sec. III. In Sec. IV we calculate
the electronic self-energies using a Kadanoff-Baym approach.
From this, we argue that the considered electron-phonon
interaction does not lead to a qualitative modification of the
single-particle spectra. The electron-hole pair spectrum, on
the other hand, indicates a strong influence of the phonons.
This is shown in Sec. V. How the lattice dynamics affects
the electron-hole pairing is analyzed in the framework of the
Kadanoff-Baym scheme. We present some numerical results in
Sec. VI and show that the purely electronic model possesses an
acoustic mode, whereas the collective mode becomes massive
if phonons participate. In Sec. VII we discuss the problem of
off-diagonal long-range order. A short summary of our results
is given in Sec. VIII.

II. MODEL

For our analysis, we start from a two-band model with in-
terband Coulomb interaction and an explicit electron-phonon
coupling,

H = He + He-e + Hph + He-ph. (1)

The noninteracting band-electron contribution is given by

He =
∑

k

εkvc
†
kvckv +

∑
k

εkcc
†
kcckc, (2)

where c
(†)
kσ is the annihilation (creation) operator for an electron

with momentum k in the valence band (band index σ = v) or in
the conduction band (σ = c). The corresponding band disper-
sions are denoted as εkσ . We consider a valence band (conduc-
tion band) with a single, nondegenerate maximum (minimum).
Moreover, the electron-electron interaction is supposed to be

He-e =
∑

k,k′,q

V (q)

N
c
†
kcck+qcc

†
k′vck′−qv, (3)
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where V (q) is the effective Coulomb repulsion. N is the
number of unit cells. In harmonic approximation, the phonon
Hamiltonian reads

Hph =
∑

q

ωqb
†
qbq, (4)

where ωq is the bare phonon frequency, and b
(†)
q is the

annihilation (creation) operator for a phonon with momentum
q. Throughout this paper we set � = 1.

If the electron-phonon interaction is assumed to be

He-ph =
∑
k,q

[
g−q√

N
(b†−q + bq)c†k+qcckv

+ gq√
N

(b†q + b−q)c†kvck+qc

]
, (5)

the phonon directly couples to an electron-hole pair with the
(real) coupling constant gq. Then, the annihilation of a phonon
is inevitably connected with a transfer of an electron from
the valence band to the conduction band and vice versa. Such
a coupling of phonons to excitons may look rather specific,
but for materials near the semimetal-semiconductor transition
(SM-SC) it is of relevance.

In order to model the SM-SC transition, we consider the
case of half-filling,

nc + nv = 1, (6)

where nσ = 1
N

∑
k〈c†kσ ckσ 〉.

III. MEAN-FIELD GREEN FUNCTIONS

The electron-phonon coupling (5) may cause a deformation
of the lattice at sufficiently low temperatures [28]. A static
lattice distortion is characterized by

δQ̄ = 2√
N

gQ̄〈b†Q̄〉, (7)

where the ordering vector of the dimerized phase is denoted
as Q̄. Working at half-filling, we assume that Q̄ is either
zero or half a reciprocal lattice vector. Then b

†
Q̄ = b

†
−Q̄.

As a consequence, the parameter δQ̄ is a real number that
measures the amplitude of the static lattice distortion. For
charge-density-wave systems with more complex lattice defor-
mations, e.g., the chiral charge-density wave in the transition
metal-dichalcogenide 1T -TiSe2, δQ̄ might be complex [20].
Nevertheless, since δ∗̄

Q = δ−Q̄, the static lattice distortion—in
real space—is a real quantity. Adopting the frozen phonon
approximation, we replace the phonon operators by their
averages. Then, the Hamiltonian (1) describes an effective
electronic system.

Applying subsequently a Hartree-Fock decoupling scheme,
our model reduces to

H MF =
∑

k

ε̄kvc
†
kvckv +

∑
k

ε̄k+Q̄c c
†
k+Q̄c

ck+Q̄c

+
∑

k

(xkQ̄c
†
k+Q̄c

ckv + x∗
kQ̄c

†
kvck+Q̄c

) + Cdec, (8)

with renormalized dispersions ε̄kσ = εkσ + V (0)n−σ . In
Eq. (8),

xkQ̄ = δQ̄ − �kQ̄ (9)

is the gap parameter,

�kQ̄ = 1

N

∑
k′

V (k′ − k + Q̄)〈c†k′vck′+Q̄c
〉 (10)

is the Coulomb-induced hybridization between the valence
band and the conduction band, and

Cdec = 1

N

∑
k,k′

V (k′ − k + Q̄)〈c†k+Q̄c
ckv〉〈c†k′vck′+Q̄c

〉

+ N

4

ωQ̄

|gQ̄|2 δ2
Q̄ − NV (0)ncnv. (11)

For an undistorted lattice �kQ̄ serves as the EI order parameter,
whose phase is undetermined and can be chosen arbitrar-
ily [20,29]. A finite electron-phonon interaction removes this
freedom.

The gap equation that determines �kQ̄ and the conservation
of the particle number [Eq. (6)] are valid on both sides of the
SM-SC transition, i.e., these relations hold in the BCS as well
as BEC regimes [14].

In mean-field approximation the electronic Green functions
become

Gv(k,z1) = 〈〈ckv; c†kv〉〉
= v2

kGA(k,z1) + u2
kGB(k,z1), (12)

Gc(k + Q̄,z1) = 〈〈ck+Q̄c
; c†k+Q̄c

〉〉
= u2

kGA(k,z1) + v2
kGB(k,z1), (13)

F (k,z1) = 〈〈ck+Q̄c
; c†kv〉〉

= −ukvk[GB(k,z1) − GA(k,z1)]

= 〈〈ckv; c†k+Q̄c
〉〉 = F †(k,z1), (14)

where z1 denotes fermionic Matsubara frequencies, and

GA/B(k,z1) = 1

z1 − EkA/B

, (15)

EkA/B = 1

2
(ε̄k+Q̄c + ε̄kv) ±

√
1

4
(ε̄k+Q̄c − ε̄kv)2 + |xkQ̄|2,

(16)

u2
k/v

2
k = 1

2
±

1
4 (ε̄k+Q̄c − ε̄kv)√

1
4 (ε̄k+Q̄c − ε̄kv)2 + |xkQ̄|2

. (17)

One can easily show that |�kQ̄| ∝ |δQ̄| [20]. Moreover,
δQ̄ and �kQ̄ couple to the same set of operators and,
therefore, enter the quasiparticle dispersion in an equal manner.
Hence, at the mean-field level of approximation we cannot
discriminate between a Coulomb-driven or a phonon-driven
phase transition.
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IV. ELECTRONIC SELF-ENERGY

We now analyze self-energy effects. To this end we use the
technique developed by Kadanoff and Baym and determine the
self-energy of the electrons [30]. The imaginary-time Green
functions are defined as

Gv(k,t − t ′) = −i〈T [ckv(t)c†kv(t ′)]〉, (18)

Gc(k,t − t ′) = −i〈T [ckc(t)c†kc(t ′)]〉, (19)

F (k,t − t ′) = −i〈T [ck+Q̄c
(t)c†kv(t ′)]〉, (20)

F †(k,t − t ′) = −i〈T [ckv(t)c†k+Q̄c
(t ′)]〉, (21)

with imaginary-time variables t and t ′.
We start from the equation of motion (EOM) for the

valence-electron Green function,

(
i

∂

∂t
− εkv

)
Gv(k,t − t ′)

= δ(t − t ′) − i
∑

q

gq√
N

GP
2 (k,q,t,t ′)

− i
∑
k′,q

Vc(q)

N
GV

2 (k,k′,q,t,t ′), (22)

where

GV
2 (k,k′,q,t,t ′) = 〈T [ck−qv(t)c†k′c(t)ck′+qc(t)c†kv(t ′)]〉, (23)

GP
2 (k,q,t,t ′) = 〈T [(b†q(t) + b−q(t))ck+qc(t)c†kv(t ′)]〉, (24)

and proceed as follows: The auxiliary correlation func-
tions (23) and (24) are expanded up to first order in the
interactions they couple to, i.e., GV

2 (k,k′,q,t,t ′) is expanded
up to linear order in Vc(q), and GP

2 (k,q,t,t ′) is expanded up to
linear order in gq. Subsequently, we decouple the correlation
functions taking only electron-hole fluctuations into account.

Straightforward calculation yields

(
i

∂

∂t
− ε̄kv

)
Gv(k,t − t ′)

= δ(t − t ′) + xkQ̄F (k,t − t ′)

−
∫ −iβ

0
dτ σvv(k,t − τ )Gv(k,τ − t ′)

−
∫ −iβ

0
dτ σvF (k,t − τ )F (k,τ − t ′) (25)

(here β is the inverse temperature), with the self-energies

σvv(k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)Gc(k + Q,t − τ )

×G2(Q,k + q′,k − q,τ − t)

− i

N

∑
q

|gq|2D(q,τ − t)Gc(k + q,t − τ ),

(26)

σvF (k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)F (k + Q + Q̄,t − τ )

×F2(Q,k + Q̄ − q′ + Q,k − q,τ − t)

− i

N

∑
q

|gq|2D(q,τ − t)F (k + q + Q̄,t − τ ).

(27)

The electron-hole pair correlation functions are defined as

G2(Q,k,k′,t − t ′) = −〈T [c†kv(t)ck+Qc(t)c†k′+Qc(t ′)ck′v(t ′)]〉,
(28)

F2(Q,k,k′,t − t ′) = −〈T [c†k−Qc(t)ckv(t)c†k′+Qc(t ′)ck′v(t ′)]〉.
(29)

The phonon Green function is given by

D(q,t − t ′) = −i〈T {[b†−q(t) + bq(t)][b†q(t ′) + b−q(t ′)]}〉.
(30)

With the same procedure we obtain the EOM of the
conduction-electron Green function and the EOM of the
anomalous Green function. These equations can be found in
Appendix A.

Note that both the electron-electron interaction and the
electron-phonon interaction couple different species (valence
electrons, conduction electrons, and electrons in the hybridized
state) to each other. The structure of the self-energies shows
that the one-particle spectrum cannot be used—at least at
this level of approximation—to decide whether the ordered
ground state is the effect of the Coulomb interaction alone or if
phonons contribute. Let us therefore analyze the electron-hole
pair spectrum in the following.

V. ELECTRON-HOLE PAIR SPECTRUM

In the Bethe-Salpeter equation, describing the correlations
of electron-hole pairs, the Coulomb interaction is treated in
ladder approximation [31]. In the vicinity of the SM-SC
transition, the small number of free electrons and holes makes
two-particle collisions to be the dominant process. The ladder
approximation takes the sequence of these collisions into
account and is suitable to describe both the build-up of excitons
and the formation of the EI [14].

We now work out the influence of He-ph [Eq. (5)] on
the electron-hole pairs. The four-time electron-hole pair
correlation functions are defined as

G2(Q,k,k′,t1,t2,t3,t4)

= −〈T [c†kv(t1)ck+Qc(t2)c†k′+Qc(t4)ck′v(t3)]〉, (31)

F2(Q,k,k′,t1,t2,t3,t4)

= −〈T [c†k−Qc(t1)ckv(t2)c†k′+Qc(t4)ck′v(t3)]〉. (32)

The relations to the two-time electron-hole pair
correlation functions, occurring in Sec. IV,
are G2(Q,k,k′,t − t ′) = G2(Q,k,k′,t,t,t ′,t ′) and
F2(Q,k,k′,t − t ′) = F2(Q,k,k′,t,t,t ′,t ′). In order to analyze
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FIG. 1. Diagrams occurring in the equations for the electron-hole pair correlation functions. First row: Single-particle Green functions Gv

[Gc] (left-hand side) and F [F †] (right-hand side). Second row: Ladder approximation for the Coulomb interaction. Third row: Ring diagrams
including the electron-phonon interaction. Fourth row: Ladder diagrams including the electron-phonon interaction. The dashed lines with the
vertex points represent the Coulomb interaction, the wavy lines represent the phonon Green function, and the vertex squares represent our
electron-phonon interaction.

the effects of the phonons within the Kadanoff-Baym
scheme [30], we expand the correlation functions (31)
and (32) to leading order in the electron-phonon coupling.
Restricting ourselves to the study of electron-hole pairs, there
are no incoming or outgoing phonon branches. Hence, the
phonons must be created and annihilated in one diagram,
and the first nonvanishing contribution is of second order in
the electron-phonon coupling constant gq. The many-particle
correlation functions that occur in the leading-order
expansion of G2(Q,k,k′,t1,t2,t3,t4) and F2(Q,k,k′,t1,t2,t3,t4)
are subsequently decoupled into electron-hole pair correlation
functions, electron Green functions, and phonon Green
functions. We identify two effects of He-ph: Excitons can
be created (annihilated) by the annihilation (creation) of a
phonon, and phonons may change the individual momenta
of the electron and the hole in the bound state without
modifying the momentum of the exciton. This is illustrated
by the diagrams depicted in Fig. 1. The explicit equations for
the electron-hole pair correlation functions can be found in
Appendix B.

Following Ref. [4], we analyze the collective modes by
finding poles of the “phase” correlation function

P (Q,zν) = X(Q,zν) − Y (Q,zν), (33)

where

X(Q,zν) =
(

1

−iβ

)2
i

N

∑
k,k′

∑
z2,z3

G2(Q,k,k′,zν − z2,z2,z3),

(34)

Y (Q,zν) =
(

1

−iβ

)2
i

N

∑
k,k′

∑
z2,z3

F2(Q,k,k′,zν − z2,z2,z3).

(35)

VI. RESULTS AND DISCUSSION

In the numerical evaluation of the equations derived
so far we work at zero temperature and assume a local
Coulomb potential [V (q) = U ], a momentum-independent
electron-phonon coupling (gq = gQ̄), and dispersionless Ein-
stein phonons (ωq = ωQ̄). We furthermore consider a direct
band-gap situation, i.e., the valence-band maximum and the
conduction-band minimum are located at the Brillouin-zone
center. Then, the ordering vector of the low-temperature
phase is Q̄ = 0. For Q̄ �= 0 the EI with lattice deformation
is accompanied by a charge-density wave. Apart from that,
the situation for a finite ordering vector corresponds to the
situation considered here.
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To avoid hard numerics, we consider a two-dimensional
(square) lattice. For this, the bare band dispersions εkσ =
Eσ − 2tσ [cos(kx) + cos(ky)] (σ = v,c), where tc sets the unit
of energy. Typical model parameters are Ev = −2.4, Ec = 0,
tv = −0.8, and ωQ̄ = 0.01. Let us emphasize that the present
analytical calculations and the scenario that will be discussed
below hold for both a bare semimetallic and semiconductive
band structure. Furthermore, the two-dimensional (square)
lattice is used for the sake of convenience only, the results
obtained below stay valid also for three-dimensional systems
(and in this case also for finite temperatures). Performing
the analytic continuation zν → ω + iδ we take δ = 2 × 10−3.
Moreover, we utilize the Hartree-Fock single-particle Green
functions in the calculation.

A. Vanishing electron-phonon coupling

We start our analysis for a system, where the phonons are
neglected (gQ̄ = 0). In this case, the correlation function (33)
can be calculated according to

P (Q,zν) = X(0)(Q,zν)[1 + a(−Q, − zν) + b(Q,zν)]

L(Q,zν)

− Y (0)(Q,zν)[1 + a(Q,zν) + b(Q,zν)]

L(Q,zν)
, (36)

where

a(Q,zν) =UX(0)(Q,zν), (37)

b(Q,zν) =UY (0)(Q,zν), (38)

and the denominator reads

L(Q,zν) = [1 + a(Q,zν)][1 + a(−Q, − zν)] − [b(Q,zν)]2.

(39)

The definitions of X(0) and Y (0) are analogous to Eqs. (34)
and (35), respectively, except that we use the [according
to Eq. (B7) transformed] bare electron-hole pair correlation
functions (B2) and (B3).

Figure 2 shows the so-called “phase mode” for weak and
strong couplings. Obviously there exists a gapless phase mode

in the EI state, i.e., ω(Q) → 0 for Q → 0 [4,32–34]. The
appearance of this mode can be attributed to the U (1) symme-
try of the underlying electronic model H = He + He-e [35].
Because of this symmetry the phase of �kQ̄ can be chosen
arbitrarily, which results in such an acoustic mode.

Figure 2 furthermore reveals the different character of the
phase mode for weak- and strong-coupling situations. In the
weak-coupling, BCS-type pairing regime (U = 3.03) ω(Q)
exhibits a steep increase for small momenta and, as a result,
quickly enters the electron-hole continuum, which it leaves
again close to the Brillouin-zone corner. The lower boundary
of the electron-hole continuum is given by

ωC(Q) = mink(Ek+QA − EkB), (40)

where EkA and EkB (EkA > EkB) are the renormalized quasi-
particle energies in the ordered ground state. In Hartree-Fock
approximation EkA,B follow from Eq. (16). The momentum
dependence of the excitation energy of the mode changes
remarkably when the boundary to the electron-hole continuum
is crossed. Contrariwise, in the strong-coupling, BEC-type
pairing regime, the collective phase mode entirely lies below
the electron-hole continuum and is a smooth function [34].

The existence of an acoustic phase mode can be understood
as follows. Here the static uniform limit of the noninteracting
phase correlation function is well defined, i.e.,

lim
ω→0

[ lim
Q→0

P (0)(±Q, ± ω)] = lim
Q→0

[ lim
ω→0

P (0)(±Q, ± ω)]

= lim
ω,Q→0

P (0)(±Q, ± ω)

= P (0)(0,0). (41)

According to Eq. (41) and since we consider only interband
correlations, the static, uniform limit of P (Q,ω) exists,
contrary to the case when additional intraband correlations
are taken into account [36]. We find for the static, uniform
phase correlation function

P (0,0) = P (0)(0,0)

1 + UP (0)(0,0)
. (42)

FIG. 2. (Color online) Electron-hole excitation spectrum at zero temperature without electron-phonon coupling. Black solid lines show the
phase mode, red dashed lines display the lower boundary of the electron-hole continuum. Results are given for the BCS-type pairing regime
with U = 3.03 (left panel) and the BEC-type pairing regime with U = 5.03 (right panel).
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FIG. 3. (Color online) Electron-hole excitation spectrum for a distorted lattice at zero temperature. The black, solid lines show the phase
mode and the red, dashed lines show the lower boundary of the electron-hole continuum.

The (Hartree-Fock) gap equation (9) is

1 + UP (0)(0,0) = 0. (43)

Comparing Eq. (42) with Eq. (43) unveils that P (0,0) exhibits
a pole; hence, the phase mode is acoustic.

B. Static electron-phonon coupling

Let us now discuss the behavior of the phase mode if
the lattice deforms at the EI phase transition, i.e., we have
δQ̄ �= 0. According to the strong coupling of electron-hole
pair fluctuations and phonons, the phonon frequency is
significantly renormalized at the SM-SC transition and might
even vanish at low temperatures, leading to a static deformation
of the lattice [28].

The lattice distortion is contained in the electron Green
functions but does not explicitly appear in the Bethe-Salpeter
equation. Hence, the phase correlation function is determined
by Eq. (36). Figure 3 shows that the phase mode is massive in
this case, i.e., ω(Q) ∝ (Q2 + C) for Q → 0 (with a constant
C > 0). Apart from the uniform limit, the spectrum resembles
the result for the undistorted lattice since the influence of the
phonons is weak for large excitation energies.

The absence of the acoustic phase mode can be shown
analytically. The phase correlation function exhibits a pole at
zν = 0 and Q = 0 if the denominator of Eq. (42) vanishes. For
a deformed lattice the (Hartree-Fock) gap equation takes the
form

0 = 1 +
(

U + 4
|g0|2
ω0

)
P (0)(0,0). (44)

The condition for an acoustic phase mode significantly differs
from Eq. (44). We can argue that the static lattice distortion
breaks explicitly the U (1) symmetry of the model and removes
the phase invariance of �kQ̄. As a consequence, any phase-
mode excitation requires a finite energy. Hence, the phase
mode is massive.

C. Dynamical electron-phonon coupling

As just has been shown, the softening of a phonon mode and
the accompanying lattice deformation lead to a massive phase
mode. Let us now analyze the effect of dynamical phonons that

do not become soft but offer a way to transfer electrons from the
valence band to the conduction band. Thereby, we include the
phonons in the Bethe-Salpeter equations, Eqs. (B1) and (B4),
and take the self-energies resulting from the coupling to the
lattice in the single-particle Green functions into account.

In particular, we ask whether the phase mode in the ordered
ground state is acoustic or not. To this end, we investigate
the static, uniform limit of the phase correlation function with
respect to its pole structure. We note that the electron-phonon
coupling leads to an effective electron-electron interaction
that is nonlocal in (imaginary) time. This complicates the
numerical evaluation considerably. We therefore only consider
the limiting cases of slow phonons and fast phonons in
comparison to the time scale of the electron transport. For these
two limits, we ask whether the additional electron-phonon
interaction supports electron-hole pairing or not. To this end,
we analyze the phonon contribution in the gap equations taking
the following bare phonon contribution into account:

D(q,zν) = − 2ωq

z2
ν − ω2

q
. (45)

First, we assume the phonons to be much slower than the
electrons. We then neglect the frequencies z4 and z5, which
appear in the phonon Green function, in the electron-hole
pair correlation functions since they only can attain small
values. In this limit the equations determine X(Q,zν) and
Y (Q,zν), occurring in Eq. (33), are given in Appendix C. The
corresponding gap equation reads

1 = 1

−iβ

∑
z1

UR(z1)

1 − |g0|2D̄R(z1)
, (46)

where

R(z1) = 1

N

∑
k

i

�(k,z1)
, (47)

�(k,z1) = [z1 − ε̄kv − σvv(k,z1)][z1 − ε̄kc − σcc(k,z1)]

− |�kQ̄ + σFv(k,z1)|2, (48)

D̄ = 1

−iβ

∑
zμ

D(0,zμ). (49)
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FIG. 4. (Color online) Electron-hole excitation spectrum for a dynamical electron-phonon coupling in instantaneous approximation at zero
temperature. The black, solid lines show the phase mode and the red, dashed lines show the lower boundary of the electron-hole continuum.

The z1 (zμ) are fermionic (bosonic) Matsubara frequencies.
The structure of the phase correlation function remains
complicated in this case. We note, however, that the phonon
contribution simply modifies the Coulomb interaction strength
in Eqs. (C9) and (C10). In the gap equation (46), on the other
hand, the phonon contribution enters in a qualitatively different
way. This suggests that P (0,0) does not exhibit a pole and,
consequently, the phase mode is massive.

In the gap equation for slow phonons, Eq. (46), we find D̄ =
−2p(ω0) − 1 < 0 with the Bose distribution function p(x),
and, in that 1

−iβ

∑
z1

R(z1) > 0, we can conclude that the local
Coulomb potential is weakened. Self-evidently slow phonons
give rise to retardation effects and thereby induce an effective
long-ranged electron-hole interaction potential that reduces
the effect of the local Coulomb attraction.

In the opposite limit, when the phonons are much faster
than the electrons, we can integrate out, in principle, the
lattice degrees of freedom (instantaneous approximation).
Considering this limit is technical rather than physically
motivated since in most materials the phonon frequency is
much smaller than the characteristic electronic energy scale.
Due to the fact that the qualitative behavior of the phase mode is
mainly determined by the underlying symmetry of the state, the
instantaneous approximation is nevertheless instructive. In this
limit we can replace the phonon Green function according to
D(q,τ − τ ′) = D(q,0)δ(τ − τ ′). Then, the phase correlation
function in the static, uniform limit becomes

P (0,0) = P (0)(0,0)

1 + [U − |g0|2D(0,0)]P (0)(0,0)
, (50)

and the gap equation is given by

1 = [U + |g0|2D(0,0)]
1

−iβ

∑
z1

R(z1) (51)

(again z1 are fermionic Matsubara frequencies). Obviously
the instantaneous phonons lead to a static renormalization of
the Coulomb interaction. However, in the phase correlation
function (50) the phonon contribution |g0|2D(0,0) enters with
a negative sign, while |g0|2D(0,0) enters with a positive sign in
the gap equation (51). This discrepancy rules out that P (0,zν)

exhibits a pole at zν = 0. Consequently the phase mode is
massive, see Fig. 4.

Obviously, in this limit, there are no retardation effects at
all, and, due to the fact that D(0,0) = 2/ω0 > 0, the phonons
enhance the strength of the local Coulomb interaction [cf.
Eq. (51)].

That is, if the lattice is not deformed statically the phonons
affect the electrons in two ways: They enhance the effective
masses of the electrons and the holes (thereby modifying the
band structure) and renormalize the Coulomb interaction. The
former effect is less important for the basic mechanism of
exciton condensation. The latter effect, on the other hand,
is crucial, since it generates an effective electron-electron
interaction that explicitly breaks the U (1) symmetry. This
is demonstrated by the diagrams shown in Fig. 1. Here the
incoming and outgoing branches at the vertices, i.e., at τ

and τ ′, describe the effective two-particle interaction. For
the Coulomb interaction, diagramed in the second row of
Fig. 1, there is one incoming and outgoing branch for the
valence electrons (labeled with v and v†, respectively) and one
incoming and outgoing branch for the conduction electrons
(labeled with c and c†, respectively). Hence, the interaction
VCoul ∝ c

†
k1c

ck2c
c
†
k3v

ck4v
. In the ladder terms arising from the

electron-phonon coupling (fourth row in Fig. 1) there are two
incoming branches of conduction electrons and two outgoing
branches of valence electrons (or vice versa), which establish
an effective electron-electron interaction

Vph ∝ c
†
k1c

ck2v
c
†
k3c

ck4v
+ c

†
k1v

ck2c
c
†
k3v

ck4c
∝ cos(2φ). (52)

Here φ denotes the phase of �kQ̄. An electron-electron
interaction of identical form might appear if exchange terms
are considered [37,38]. Such an interaction fixes φ and,
consequently, destroys the acoustic phase mode.

Let us note that if the electron-phonon interaction is
neglected, and the Coulomb interaction is of the form (3),
the free energy is independent of φ, which leads to a
gapless electron-hole excitation spectrum [4]. Without loss
of generality the order parameter �kQ̄ can then be assumed
to be real [20,29]. Taking the electron-phonon interaction
into account, a possible static lattice distortion (but also
the coupling of electrons and holes to dynamical phonons
without lattice dimerization) induces a phase fixation and,
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therefore, give rise to a massive phase mode. Of course a more
complicated form of the electron-electron interaction may also
lead to a gapped electron-hole excitation spectrum. The phase
φ is determined by the extremal free energy varying φ (in this
regard the case of a static lattice distortion has been analyzed
in Ref. [20]). If (the momentum-space quantity) δQ̄ is real,
the phase of �kQ̄ is pinned to zero or π , i.e., both �kQ̄ and
the gap parameter xkQ̄ are real. A dynamical electron-phonon
interaction does not necessarily fixate the phase of �kQ̄ to
zero or π , accordingly �kQ̄ and xkQ̄ are, in general, complex
numbers.

The phase stiffness is obtained from the second derivative
of the free energy with respect to φ. It corresponds to the
phase-mode excitation energy for Q = 0. That is, ω(0) can be
taken as a measure for the phase fixation.

VII. DISCUSSION OF OFF-DIAGONAL LONG-RANGE
ORDER OF ELECTRON-HOLE PAIRS

The EI is a promising candidate to observe a BCS-BEC
crossover in an equilibrium situation [9,13,14]. Since both
BCS-type superconductors and Bose-Einstein condensates
exhibit off-diagonal long-range order (ODLRO) [39–41], the
question whether the EI ground state shows ODLRO or not is
obvious. Here we follow (in form) the treatment of ODLRO
for BCS superconductors (see Annett’s textbook [42], Chap.
5.7), and test possible ODLRO for electron-hole pairs [43].

The one-particle density matrix for bound electron-hole
pairs ρX

1 (R − R′) is related to the two-particle density matrix
for electrons and holes by

ρX
1 (R − R′) =

∫
dr

∫
dr′�(r)�(r′)ρe-h

2 (r,r′,R,R′), (53)

where R and R′ denote the center-of-mass coordinates of the
excitons, r and r′ are the relative coordinates of the (bound)
electron and hole in the exciton, respectively, and �(r) denotes
the excitonic wave function. The two-particle density matrix
for electrons and holes in Eq. (53) is given by

ρe-h
2 (r,r′,R,R′)

= 1

N
〈c†c(R + r/2)cv(R − r/2)c†v(R′ + r′/2)cc(R′ − r′/2)〉.

(54)

ODLRO is present if the one-particle density matrix for
electron-hole pairs ρX

1 (R − R′) remains finite for arbitrarily
large separated pairs. That is, ρe-h

2 (r,r′,R,R′) [Eq. (54)] stays
finite for |R − R′| → ∞.

Fourier transformation of ρe-h
2 yields

ρe-h
2 = 1

N2

∑
k,k′,q

〈c†k+q/2 cck−q/2 vc
†
k′−q/2 vck′+q/2 c〉

× eikreik′r′
eiq(R−R′). (55)

At this point we stop in following Ref. [42] because the order
parameter �kQ̄ gives no deeper insights into the nature of
the excitonic ground state. �kQ̄ is finite for low temperatures
regardless of the specific mechanisms which drive the phase
transition and establish long-range order (BCS-type electron-
hole pairing or condensation of tightly bound, preformed

excitons). This is different from BCS superconductors and
Bose-Einstein condensates, where the (mean-field) order
parameters unambiguously characterize superconductivity,
respectively, superfluidity. That is, a decoupling of Eq. (55),
that assigns ρe-h

2 with the order parameter �kQ̄, would be a
too crude approximation in our case. Therefore, we relate the
density matrix to the pair correlation functions which contain
valuable information about the forces driving the electron-hole
pairing and condensation process.

The extent of the excitons, given by |r| and |r′|, are of the
order of the electron-hole pair coherence length, which is small
compared with the system size. We therefore neglect the r and
r′ dependencies in the following and write

ρe-h
2 = − 1

Nβ

∑
q

∑
zν

X(q,zν)eiq(R−R′)

= −
∑

q

eiq(R−R′)Iq, (56)

with X(q,zν) = i
N

∑
k,k′ G2(q,k,k′,zν) (zν are bosonic Mat-

subara frequencies). The condition for ODLRO can only be
satisfied if ρe-h

2 contains averages Iq of the order of unity [41].
Since we have found only one pole for a given momentum

in our numerics, in what follows we restrict ourselves to the
case that X(q,zν) exhibits a single pole (the generalization to
multiple poles would be straightforward). We have

Iq = 1

Nβ

∑
zν

X(q,zν) = 1

N
R(q,ωX), (57)

where R(q,ωX) is the residuum of the pole ωX at momentum
q. For sufficiently low-lying poles we find R(q,ωX) ∝ p(ωX)
(note that the boundary to the electron-hole continuum is
located at finite energies) [14]. For R(ωX) to be of the order
of N , ωX must vanish. That is, the presence of ODLRO of
electron-hole pairs implies a gapless electron-hole excitation
spectrum.

Since any finite electron-phonon coupling introduces a gap,
in our model ODLRO is only present if the EI phase transition
is driven by the electronic correlations caused by the Coulomb
interaction of type Eq. (3).

Regardless of the particular driving mechanism, �kQ̄
serves as an order parameter for the low-temperature long-
range ordered phase. Phase fluctuations of �kQ̄ may de-
stroy the ordered state, e.g., in one-dimensional systems or
two-dimensional systems at finite temperatures [44]. The
lattice degrees of freedom may suppress these fluctuations,
supporting thereby long-range order. In this connection we like
to emphasize that the nature of the ordered low-temperature
phase in the purely electronic model, exhibiting a U (1)
symmetry in the normal phase, significantly differs from the
low-temperature phase in the model containing the coupling
to the lattice, where the U (1) symmetry is absent even in the
normal phase. For the latter, ODLRO is absent (see discussion
above), and we therefore suppose that a finite �kQ̄ is not
indicative of any kind of “electron-hole pair condensate”
with “supertransport” properties. To date the identification
of a measurable quantity verifying ODLRO in the materials
considered as potential candidates for realizing the EI phase
is, to the best of our knowledge, an open problem.
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VIII. CONCLUSIONS

In this work we have revisited on what terms an excitonic
insulator (EI) forms. In particular, we have analyzed the
effects of an explicit electron-phonon interaction He-ph. The
potential EI state then may possess a static lattice distortion.
We have shown that He-ph will not change the single-particle
spectra qualitatively, even if self-energy effects are taken into
account. However, He-ph significantly modifies the electron-
hole pair spectrum. To demonstrate this, we have calculated the
contributions of the electron-phonon interaction to electron-
hole pairing within the Kadanoff-Baym approach including
ring and ladder diagrams. When the electron-phonon coupling
is neglected the phase mode is acoustic. Electron-lattice
coupling destroys the acoustic mode regardless if it causes a
static lattice distortion or renormalizes the effective electron-
electron interaction.

We pointed out that an acoustic phase mode implies
the presence of off-diagonal long-range order (ODLRO),
and therefore indicates—in a strongly coupled electron-
hole system—an exciton “condensate.” This applies to the
EI phase in pure electronic models as, e.g., the extended
Falicov-Kimball model [10,14,45,46]. Since in most of the
(potential) EI materials considered so far, the lattice degrees
of freedom play a non-negligible role, they should prevent,
according to the reasonings of this paper, the appearance
of an acoustic phase mode. Hence these materials embody
rather unusual (gapped) charge-density-wave systems than
true exciton condensates with supertransport properties (cf. the
remark by Kohn in the supplementary discussion in Ref. [5]).

To realize an exciton condensate in equilibrium experi-
mentally, bilayer systems, such as graphene double layers
and bilayers [47–54], are the most promising candidates
at present. Since the interband tunneling processes can be
suppressed by suitable dielectrics, an acoustic collective mode,

and hence ODLRO, may emerge. In these systems electrons
and holes occupy different layers and the exciton condensation
is presumably accompanied by the appearance of supercurrents
in both layers that flow in opposite directions [47], respectively,
the occurrence of a dipolar supercurrent [55].

Let us finally emphasize that the numerical results presented
in this work are obtained using rather crude approximations.
That is why a more elaborated numerical treatment is highly
desirable. A possible next step is to calculate the dynamical
structure factor, which is accessible experimentally by electron
energy-loss spectroscopy [56]. Here collective modes show
up as peaks and one might address the acoustic phase-mode
problem. The phase invariance leading to the acoustic phase
mode might also be reflected in Josephson-like phenomena
induced by tunneling excitons. Moreover, the behavior of
the plasmon mode in the low-temperature state has not
been elaborated yet. This mode is generated by intraband
correlations and shows an acoustic behavior in the normal
phase [57]. We mentioned that the inclusion of exchange terms
in the Coulomb interaction destroys the phase invariance,
just as the electron-phonon interaction considered in this
work [37,38]. However, electron-electron and electron-phonon
interactions do not have to promote the same values for the
phase of �kQ̄; thus it is interesting to analyze the consequences
of their interplay. In particular, cooling down the system, the
phase realized may alter. Another worthwhile continuation
concerns the possible formation and condensation of “polaron
excitons,” i.e., the buildup of a condensate of excitons which
are dressed by a phonon cloud.
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APPENDIX A: EQUATIONS OF MOTION FOR THE SINGLE-PARTICLE GREEN FUNCTIONS

The equation of motion (EOM) for the conduction-electron Green function is given by(
i

∂

∂t
− ε̄kc

)
Gc(k,t − t ′) = δ(t − t ′) + xkQ̄F †(k − Q̄,t − t ′) −

∫ −iβ

0
dτ σcc(k,t − τ )Gc(k,τ − t ′)

−
∫ −iβ

0
dτ σcF (k,t − τ )F †(k − Q̄,τ − t ′), (A1)

with

σcc(k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)Gv(k − Q,t − τ )G2(Q,k + q − Q,k − q′ − Q,t − τ )

− i

N

∑
q

|gq|2D(q,t − τ )Gv(k − q,t − τ ), (A2)

σcF (k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)F †(k − Q,t − τ )H2(Q,k + q′ − Q̄,k + q − Q,τ − t)

− i

N

∑
q

|gq|2D(q,τ − t)F †(k + q,t − τ ), (A3)

and

H2(Q,k,k′,t − t ′) = −〈T [c†kv(t)ck−Qc(t)c†k′v(t ′)ck′+Qc(t ′)]〉. (A4)
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The EOM for the anomalous Green function reads(
i

∂

∂t
− ε̄k+Q̄c

)
F (k,t − t ′) = xkQ̄Gv(k,t − t ′) −

∫ −iβ

0
dτ σFv(k,t − τ )Gv(k,τ − t ′) −

∫ −iβ

0
dτ σFF (k,t − τ )F (k,τ − t ′),

(A5)

with

σFv(k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)F (k + Q̄ − Q,t − τ )H2(Q,k + q′,k + q + Q̄ − Q,τ − t)

− i

N

∑
q

|gq|2D(q,t − τ )F †(k + Q̄ − q,t − τ ), (A6)

σFF (k,t − τ ) = 1

N2

∑
q,q′,Q

Vc(q)Vc(q′)Gv(k + Q̄ − Q,t − τ )G2(Q,k + q + Q̄,k + Q̄ − Q − q′,t − τ )

− i

N

∑
q

|gq|2D(q,t − τ )Gv(k + Q̄ − q,t − τ ). (A7)

APPENDIX B: EQUATIONS FOR THE ELECTRON-HOLE PAIR CORRELATION FUNCTIONS

If both Coulomb and phonon effects are of importance, the electron-hole pair correlation function (31) has to be calculated
according to

G2(Q,k,k′,t1,t2,t3,t4) = G
(0)
2 (Q,k,t1,t2,t3,t4)δk,k′ − i

N

∫ −iβ

0
d(τ − t4)

∑
q

Vc(q)G(0)
2 (Q,k,t1,t2,τ,τ )G2(Q,k + q,k′,τ,τ,t3,t4)

− i

N

∫ −iβ

0
d(τ − t4)

∑
q

Vc(q)F (0)
2 (Q,k,t1,t2,τ,τ )F2(Q,k + q + Q + Q̄,k′,τ,τ,t3,t4)

+ i

N

∫ −iβ

0
d(τ − t4)

∫ −iβ

0
d(τ ′ − t4)

∑
q

{|gQ|2D(Q,τ − τ ′)
[
G

(0)
2 (Q,k,t1,t2,τ,τ )

+F
(0)
2 (Q,k,t1,t2,τ,τ )

]
[G2(Q,q,k′,τ ′,τ ′,t3,t4) + F2(Q,q,k′,τ ′,τ ′,t3,t4)]

− |gQ+k−q|2D(Q + k − q,τ ′ − τ )G(0)
2 (Q,k,t1,t2,τ,τ

′)F2(Q,q,k′,τ,τ ′,t3,t4)

− |gk−q|2D(k − q,τ ′ − τ )F (0)
2 (Q,k,t1,t2,τ,τ

′)G2(Q,q,k′,τ,τ ′,t3,t4)
}
, (B1)

where the phonon Green function is defined by Eq. (30), and

G
(0)
2 (Q,k,t1,t2,t3,t4) = −Gv(k,t3 − t1)Gc(k + Q,t2 − t4), (B2)

F
(0)
2 (Q,k,t1,t2,t3,t4) = −F (k,t3 − t1)F (k + Q,t2 − t4). (B3)

Typical diagrams occurring in Eq. (B1) are shown in Fig. 1.
If xkQ̄ �= 0, G2(Q,k,k′,t1,t2,t3,t4) is coupled to F2(Q,k,k′,t1,t2,t3,t4). F2 can be determined from

F2(Q,k,k′,t1,t2,t3,t4)

= F̄
(0)
2 (Q,k,t1,t2,t3,t4)δk+Q̄,k′+Q − i

N

∫ −iβ

0
d(τ − t4)

∑
q

Vc(q)F̄ (0)
2 (Q,k,t1,t2,τ,τ )G2(Q,k + q + Q̄ − Q,k′,τ,τ,t3,t4)

− i

N

∫ −iβ

0
d(τ − t4)

∑
q

Vc(q)Ḡ(0)
2 (Q,k,t1,t2,τ,τ )F2(Q,k + q,k′,τ,τ,t3,t4)

+ i

N

∫ −iβ

0
d(τ − t4)

∫ −iβ

0
d(τ ′ − t4)

∑
q

{|gQ|2D(Q,τ − τ ′)
[
Ḡ

(0)
2 (Q,k,t1,t2,τ,τ )

+ F̄
(0)
2 (Q,k,t1,t2,τ,τ )

]
[G2(Q,q,k′,τ ′,τ ′,t3,t4) + F2(Q,q,k′,τ ′,τ ′,t3,t4)]

− |gQ+q−k|2D(Q + q − k,τ − τ ′)Ḡ(0)
2 (Q,k,t1,t2,τ,τ

′)G2(Q,q,k′,τ,τ ′,t3,t4)

− |gq−k|2D(q − k,τ − τ ′)F̄ (0)
2 (Q,k,t1,t2,τ,τ

′)F2(Q,q,k′,τ,τ ′,t3,t4)}, (B4)
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where

Ḡ
(0)
2 (Q,k,t1,t2,t3,t4) = −Gc(k − Q,t3 − t1)Gv(k,t2 − t4), (B5)

F̄
(0)
2 (Q,k,t1,t2,t3,t4) = −F †(k − Q,t3 − t1)F †(k,t2 − t4). (B6)

For an explicit calculation of the electron-hole pair correlation functions the Matsubara technique is advantageous. Performing
the transformation

G2(Q,k,k′,z1,z2,z3) =
∫ −iβ

0
d(t1 − t4)e−iz1(t1−t4)

∫ −iβ

0
d(t2 − t4)e−iz2(t2−t4)

∫ −iβ

0
d(t3 − t4)e−iz3(t3−t4)G2(Q,k,k′,t1,t2,t3,t4),

(B7)

we obtain

G2(Q,k,k′,z1,z2,z3)

= G
(0)
2 (Q,k,z1,z2,z3)δk,k′ − i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

Vc(q)G(0)
2 (Q,k,z1,z2,z4)G2(Q,k + q,k′,z5,z1 + z2 − z5,z3)

− i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

Vc(q)F (0)
2 (Q,k,z1,z2,z4)F2(Q,k + q + Q + Q̄,k′,z5,z1 + z2 − z5,z3)

+ i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

|gQ|2D(Q,z1 + z2)
[
G

(0)
2 (Q,k,z1,z2,z4) + F

(0)
2 (Q,k,z1,z2,z4)

]

× [G2(Q,q,k′,z5,z1 + z2 − z5,z3) + F2(Q,q,k′,z5,z1 + z2 − z5,z3)]

− i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

[|gQ+k−q|2D(Q + k − q,z4 + z5)G(0)
2 (Q,k,z1,z2,z4)F2(Q,q,k′,z5,z1 + z2 − z5,z3)

+ |gk−q|2D(k − q,z4 + z5)F (0)
2 (Q,k,z1,z2,z4)G2(Q,k − q,k′,z5,z1 + z2 − z5,z3)

]
(B8)

and

F2(Q,k,k′,z1,z2,z3)

= F̄
(0)
2 (Q,k,z1,z2,z3)δk+Q̄,k′+Q − i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

Vc(q)Ḡ(0)
2 (Q,k,z1,z2,z4)F2(Q,k + q,k′,z5,z1 + z2 − z5,z3)

− i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

Vc(q)F̄ (0)
2 (Q,k,z1,z2,z4)G2(Q,k + q + Q̄ − Q,k′,z5,z1 + z2 − z5,z3)

+ i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

|gQ|2D(Q,z1 + z2)
[
Ḡ

(0)
2 (Q,k,z1,z2,z4) + F̄

(0)
2 (Q,k,z1,z2,z4)

]

× [G2(Q,q,k′,z5,z1 + z2 − z5,z3) + F2(Q,q,k′,z5,z1 + z2 − z5,z3)]

− i

N

(
1

−iβ

)2 ∑
z4,z5

∑
q

[|gQ+q−k|2D(Q + q − k,z4 + z5)Ḡ(0)
2 (Q,k,z1,z2,z4)G2(Q,q,k′,z5,z1 + z2 − z5,z3)

+ |gq−k|2D(q − k,z4 + z5)F̄ (0)
2 (Q,k,z1,z2,z4)F2(Q,k − q,k′,z5,z1 + z2 − z5,z3)

]
, (B9)

where the zi , i = 1, . . . ,5, are fermionic Matsubara frequencies.

APPENDIX C: FUNCTIONS APPEARING IN THE PHASE CORRELATION FUNCTION FOR SLOW PHONONS

X̃(0)(Q,zν) = [1 − rx(Q,zν)]X(Q,zν) − ry(Q,zν)Y (Q,zν), (C1)

Ỹ (0)(Q,zν) = [1 − sy(Q,zν)]Y (Q,zν) − sx(Q,zν)X(Q,zν), (C2)

where

rx(Q,zν) = 1

−iβ

∑
z2

Ax(Q,zν,z2)[1 + a(−Q, − zν,z2)] − b(Q,zν,z2)Ay(−Q, − zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C3)
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ry(Q,zν) = 1

−iβ

∑
z2

Ay(Q,zν,z2)[1 + a(−Q, − zν,z2)] − b(Q,zν,z2)Ax(−Q, − zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C4)

X̃(0)(Q,zν) = 1

−iβ

∑
z2

X̄(0)(Q,zν,z2)[1 + a(−Q, − zν,z2)] − b(Q,zν,z2)Ȳ (0)
2 (−Q, − zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C5)

sx(Q,zν) = 1

−iβ

∑
z2

Ay(−Q, − zν,z2)[1 + a(Q,zν,z2)] − b(−Q, − zν,z2)Ax(Q,zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C6)

sy(Q,zν) = 1

−iβ

∑
z2

Ax(−Q, − zν,z2)[1 + a(Q,zν,z2)] − b(−Q, − zν,z2)Ay(Q,zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C7)

Ỹ (0)(Q,zν) = 1

−iβ

∑
z2

Ȳ (0)(−Q, − zν,z2)[1 + a(Q,zν,z2)] − b(−Q, − zν,z2)X̄(0)
2 (Q,zν,z2)

[1 + a(Q,zν,z2)][1 + a(−Q, − zν,z2)] − b(Q,zν,z2)b(−Q, − zν,z2)
, (C8)

Ax(Q,zν,z2) = −UX̄
(0)
2 (Q,zν,z2) + |g0|2D(0,zν)

[
X̄

(0)
2 (Q,zν,z2) + Ȳ

(0)
2 (Q,zν,z2)

]
, (C9)

Ay(Q,zν,z2) = −UȲ
(0)
2 (Q,zν,z2) + |g0|2D(0,zν)

[
X̄

(0)
2 (Q,zν,z2) + Ȳ

(0)
2 (Q,zν,z2)

]
, (C10)

a(Q,zν,z2) = |g0|2D̄(0)Ȳ (0)
2 (Q,zν,z2), (C11)

b(Q,zν,z2) = |g0|2D̄(0)X̄(0)
2 (Q,zν,z2), (C12)

X̄
(0)
2 (Q,zν,z2) = 1

−iβ

i

N

∑
k,k′

∑
z3

G
(0)
2 (Q,k,k′,zν − z2,z2,z3), (C13)

Ȳ
(0)
2 (Q,zν,z2) = 1

−iβ

i

N

∑
k,k′

∑
z3

F
(0)
2 (Q,k,k′,zν − z2,z2,z3). (C14)
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