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We consider d-dimensional systems which are localized in the absence of interactions, but whose single-particle
localization length diverges near a discrete set of (single-particle) energies, with critical exponent ν. This
class includes disordered systems with intrinsic or symmetry protected topological bands, such as disordered
integer quantum Hall insulators. We show that such marginally localized systems exhibit anomalous properties
intermediate between localized and extended, including vanishing dc conductivity but subdiffusive dynamics,
and fractal entanglement (an entanglement entropy with a scaling intermediate between area and volume law).
We investigate the stability of marginal localization in the presence of interactions, and argue that arbitrarily weak
short-range interactions trigger delocalization for partially filled bands at nonzero energy density if ν � 1/d .
We use the Harris-Chayes bound ν � 2/d to conclude that marginal localization is generically unstable in
the presence of interactions. Our results suggest the impossibility of stabilizing quantized Hall conductance at
nonzero energy density.
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I. INTRODUCTION

Edge states of topological systems give rise to a striking
set of coherent quantum phenomena. For example, chiral
edge states of two-dimensional quantum Hall systems lead
to precisely quantized Hall conductance at zero temperature.
However in thermal systems with nonzero temperature, these
edge-state properties are washed out due to thermal excitations
that communicate between opposite edges of the system. Such
deleterious thermal effects can sometimes be mitigated by
careful cooling and isolation. Nevertheless, it is interesting and
potentially useful to ask whether one can obtain systems with
topological edge state properties that are immune to thermal
washing out, circumventing the need for cooling.

An intriguing possibility arises from the study of many-
body localization (MBL), a phenomenon whereby well-
isolated quantum systems fail to thermalize due to the
localization of excitations by strong disorder [1–11]. In MBL
systems, disorder can protect quantum coherence against such
thermal degradation by localizing the offending excitations. In
this fashion certain coherent quantum phenomena including
symmetry breaking and topological order may survive in MBL
systems at nonzero energy density (the appropriate analog of
finite temperature in nonthermal systems) [12–17].

This naturally raises the question of whether topological
edge states can be protected by localization of the bulk states.
Here, we face a new complication not present in previous
examples of localization protected quantum order: topological
bands in fermionic systems cannot be completely localized by
disorder. Rather, the nontrivial band topology guarantees the
existence of an extended single-particle (SP) bulk orbital at
some critical SP energy Ec [18] (or more generally a discrete
set of such extended orbitals). SP orbitals with energy E near
Ec exhibit diverging SP localization length [19]:

ξ (E) ∼ 1

|E − Ec|ν , (1)

where ν is an exponent whose value depends on the particular
system under consideration (see Fig. 1). We dub such systems
“marginally localized.” Examples include disordered integer
quantum Hall systems [20,21] and chiral superconductors,
intrinsically topological superconductors [22], and symmetry
protected topological phases (e.g., topological insulators)
with symmetry-preserving disorder [23]. Here, the diverging
localization length accompanies each change in the topological
edge state structure (e.g., the Chern number changing quantum
Hall plateau to plateau transitions). The presence of at least one
extended state is guaranteed by the topological obstruction to
constructing localized Wannier orbitals in a topological band
[20,23]. In the vicinity of the critical energy, the SP localization
length diverges as in Eq. (1). A diverging SP localization
length can occur in nontopological contexts, such as 1D
XX spin chains with random bond disorder (or equivalently,
noninteracting fermion chains with random hopping). Such
marginally localized systems have properties intermediate
between localized and extended systems, as we shall discuss
in Sec. II.

A central issue is whether marginal localization persists
away from the noninteracting limit. In fully localized systems
[ξ (E) � ξ0 for all E] there is strong evidence that localization
survives the addition of weak interactions even at nonzero
energy density [5–7]. In contrast, interactions are expected
to delocalize a system whose single-particle (SP) spectrum
contains a mobility edge, as a generic excited state will contain
a finite density of occupied extended orbitals that thermalize
among themselves and then act as a bath for the localized
orbitals. In the presence of a nonzero coupling to a bath, the
many-body wave functions become thermal, and localization is
destroyed, even though signatures of proximity to localization
may survive in the spectral functions of local operators [24,25].
Even if extended states only arise in a narrow energy range of
width W , the results of [26] suggest that this narrow band
of extended states will be sufficient to destroy localization,
for any nonzero W . However, for marginally localized phases,
extended states arise only at a single energy Ec. In the language
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FIG. 1. (Color online) Schematic dependence of SP localization
length ξ on single-particle energy E for a fully localized system (a),
marginally localized system (b), and extended system with a mobility
edge (c).

of [26], these extended states constitute a bath with vanishing
bandwidth, and it is not a priori clear whether this will be
sufficient to destroy localization upon inclusion of interactions.

In order to discuss the stability of marginal localization in
the presence of interactions, we must first settle on a definition
of marginal localization. It has been pointed out that fully
many-body localized systems are locally integrable in the
sense that all eigenstates can be completely specified by a set
of exponentially well localized conserved, commuting quan-
tities or “integrals of motion” [10,27–29]. For noninteracting
systems the integrals of motion are simply the occupation
numbers of single-particle orbitals. In an MBL phase, these
integrals of motion are dressed by interactions but (apart
from a exponentially small fraction of rare resonances [10])
retain their localized character. All of the striking properties
of the fully many-body localized phase can be understood
as following from the existence of this extensive number of
exponentially localized integrals of motion, and the existence
of exponentially well localized integrals of motion can thus be
viewed as the diagnostic for full MBL.

The emergent integrability in marginally localized systems
is rather different from that in fully MBL systems. This is
easiest to see in the noninteracting limit, when the integrals
of motion are simply the occupation numbers of the SP
orbitals (as noted in [28]). It follows straightforwardly from
(1) that the fraction of integrals of motion that will not be
localized on a length scale R will go to zero as R → ∞
only as a power-law function of R (unlike [10,28], where
this fraction goes to zero as an exponential function of R).
Thus, if we use the [10,28] criterion for localization, then
even the noninteracting system is not localized. Clearly, we
need a more robust criterion. Inspired by [10,27–29], we
take the defining property of marginally localized systems
to be the existence of a (nearly) complete set of algebraically
well localized integrals of motion. Here, algebraically well
localized means that the fraction of integrals of motion with
appreciable support on scale larger than R decays as a power
law in R (unlike traditional MBL systems where it decays
exponentially in R, and also unlike a delocalized system,
where the integrals of motion are not localized), and the
caveat “nearly” allows for a possible set of nonpercolating
resonances. We can then ask whether marginal localization
(defined in terms of algebraically well localized integrals of
motion) can survive in the presence of interactions.

We emphasize that we have defined “algebraically well
localized” in terms of the fraction of integrals of motion that
are well localized on a length scale R, and not in terms of
how the support of individual integrals of motion falls off with
distance. Indeed, in the noninteracting limit it is clearly the
case that individual integrals of motion have only exponential
tails in real space, but the localization lengths controlling these
exponential tails are continuously varying and unbounded,
such that the fraction of integrals of motion that are not well
localized on a given length scale R decays only algebraically
with R. This constitutes marginal localization in the sense that
we have defined it above.

In this paper, we give analytic arguments showing that
marginal localization is impossible for arbitrarily weak in-
teraction strength if νd > 1, where d is the spatial dimension.
The breakdown of localization originates from a proliferation
of multiparticle resonances between well-separated single-
particle orbitals. Notably, such breakdown occurs in disordered
integer quantum Hall systems for which ν ≈ 2.3 [21,30].
Moreover, in the generic case of systems that are governed by
the Harris-Chayes bound, νd � 2, and which have a nonzero
density of states (e.g., integer quantum Hall systems), our
arguments preclude the existence of many-body localization
at finite energy density in partially filled bands where the
localization length diverges at a discrete set of energies. Our
results can be extended to all ten Altland-Zirnbauer symmetry
classes.

We note that the effect of short-range interactions in
quantum Hall systems has been previously discussed in
Refs. [31,32]. These works are complementary to our analysis,
in that they focus on systems where the Fermi level is
exactly at the critical energy, whereas we focus on noncritical
systems. Reference [32] shows that the finite-temperature dc
conductivity of the critical system is a discontinuous function
of the interaction strength, being zero for the noninteracting
system and nonzero for a system with infinitesimally weak
interactions. Our results establish that the finite-temperature dc
conductivity is a similar discontinuous function of interaction
strength even away from criticality, and tends to a nonzero
constant in the weak-interaction limit. However, this nonzero
constant is an exponential function of temperature, unlike crit-
ical systems, where it is a power-law function of temperature
[32].

Our arguments do not exclude many-body localization in
systems that evade the Harris bound due to symmetry reasons,
and have ν < 1/d. Additionally, the Harris-Chayes bound
applies to the critical exponent for the mean localization length,
while our argument involves the critical exponent of the typical
localization length, so there remains a possibility of marginal
localization in systems where the mean and typical localization
lengths diverge with very different exponents.

This paper is structured as follows. In Section II we review
the properties of marginally localized phases in the absence of
interactions. In Sec. III we introduce the model of interest
and the basic approach. In Sec. IV we derive a condition
for the perturbative instability of marginal localization. The
analysis in Sec. IV initially assumes that the wave functions
are uniform on length scales less than a localization length,
and decay exponentially on longer length scales. This is an
oversimplification, since the wave functions close to criticality
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have multifractal character on length scales short compared to
the localization length. In Sec. IV H we take this multifractality
into account and demonstrate that it does not alter our essential
results. In Sec. V we discuss the consequences of our results
and use the Harris-Chayes argument [33,34] to rule out
stability of marginal localization in a wide class of models,
including the integer quantum Hall effect. We also discuss
the possibility of perturbatively stable marginal localization in
systems that exploit certain loopholes in our argument, which
we discuss.

II. PROPERTIES OF MARGINALLY LOCALIZED PHASES

Before analyzing the effects of interactions, we begin by
reviewing the properties of marginally localized phases in the
absence of interactions. In this and all that follows, we consider
the case of only a single critical energy εc and shift our SP
energy scale such that εc = 0. Moreover, we suppose that the
SP density of states is regular and nonzero in the vicinity of
εc. We work at partial filling in the band at a nonzero energy
density (i.e., we are not discussing ground states or low-lying
excited states). In the quantum Hall context, this amounts to
working at a nonzero temperature, but a temperature that is
still much less than the cyclotron frequency (allowing us to
focus on a single Landau subband).

A. Subdiffusive relaxation

Marginally localized states show anomalous subdiffusive
dynamics, as is known from previous studies of dynamics
in disordered quantum Hall systems [35–37]. These results
are reproduced by the following simple argument. Consider
the relaxation of a wave packet � initially localized in the
vicinity of R(t = 0) = 0. The wave packet can be written in
the form |�(t = 0)〉 = ∑

α wα|ψα〉, where |ψα〉 are the single-
particle states with energy Eα and amplitude ϕα(r) at a position
r. Meanwhile, wα are appropriate complex amplitudes that
produce a localized wave packet. The wave functions ϕα are
all localized, with energy dependent localization lengths ξ (Eα)
as in Eq. (1). This wave packet has the time evolution |�(t)〉 =∑

α wα|ψα〉e−iEαt . We can now straightforwardly evaluate the
spatial spreading of the wave packet by examining

R2(t) =
∫

ddr
∑
α,β

ei(Eα−Eβ )tw∗
αwβϕ∗

α(r)r2ϕβ(r)

≈
∫

ddr
∑

α

|wα|2ϕ∗
α(r)r2ϕβ(r)

≈
∑

α

|wα|2
∑

β:|Eαβ |<1/t

min
(
Dαt,ξ 2

α

)
,

where the second line is valid at long times when the
phases between states with |Eαβ | ≡ |Eα − Eβ | 	 1/t have
effectively randomized, and in going to the third line we
have assumed that the spreading in each energy interval is
diffusive up to the localization length at that energy, and have
allowed for the possibility that the diffusion “constant” varies
with energy. The diffusion constant at an energy E may be
estimated by setting the Thouless energy D(E)/ξ (E)2 equal to
the level spacing ξ−d (E) at that energy, giving D(E) ∼ ξ 2−d .

The long-time dynamics will turn out to be controlled by states
near the critical energy Ec. In dimensions d 
= 2 the singular
behavior of ξ near the critical energy will translate into a
singular behavior of D(E). However, in two dimensions (the
case relevant for quantum Hall), the singularity in ξ will not
translate into a singularity in D, and thus we may replace D(E)
by a constant value D0, the diffusion constant for the states
near the critical energy. Moreover, the detailed initial structure
of the wave packet is irrelevant for the long-time asymptotics,
which are captured by simply taking |wα| to be roughly equal
amplitude for all energies Eα within a bandwidth 
 of Ec.
Under these assumptions, the spreading of the wave packet
follows:

R2(t) =
∫ E(t)

0

dE



D0t +

∫ 


E(t)

dE



ξ 2(E). (2)

In the fourth line we have defined the integration limit
E(t) through ξ 2[E(t)] ≈ ξ 2

0 (E(t)



)−2ν = D0t , i.e., E(t) =

(D0t

ξ 2
0

)−1/2ν . The behavior is qualitatively different for ν <

1/2 and for ν > 1/2. However, provided the Harris-Chayes
argument [33,34] applies (see discussion in Appendix A),
ν � 1, and only the latter case is relevant. Thus, the dominant
contribution comes from low-energy states with diverging
ξ (E), i.e., from the first term in Eq. (2) and from the lower end
with E � E(t) in the second term of Eq. (2), and we obtain

R2(t) ∼ tα, α = 1 − 1

2ν
. (3)

Thus the dynamics are characterized by the dynamical ex-
ponent α = 1 − 1

2ν
intermediate between diffusive (α = 1)

and localized (α = 0) scaling, and taking the numerical value
α ≈ 0.78 in the case of integer quantum Hall. We note too
that while the above derivation was for the noninteracting
system, a similar analysis could be performed also for the
interacting system, if and only if there were an extensive
number of algebraically well localized integrals of motion.
Indeed, one could take the ϕ to be the wave functions of such
algebraically well localized integrals of motion (instead of the
wave functions of the SP orbitals) and the analysis would
proceed unchanged. If the fraction of integrals of motion
not localized on the length scale R scales as ∼R−1/ν̃ , then
the relaxation will follow (3) with α = 1 − 1/2ν̃. Thus, the
existence of algebraically well localized integrals of motion
implies a subdiffusive relaxation, as well as a scale-dependent
conductivity (following subsection).

B. Scale-dependent conductivity

The sub diffusive spreading Eq. (3) can be interpreted
as a length-scale-dependent diffusion “constant”: D(L) ∼
L−2/(2ν−1). Using the usual Einstein relation between diffusion
and conductivity, these considerations predict scale-dependent
dc conductivity

σ (L) ∼ L−2/(2ν−1), (4)

which vanishes in the the thermodynamic limit. Again we see
scaling intermediate between the constant conductivity σex ∼
constant of an extended system and the exponential scaling
σloc(L) ∼ e−L/ξ of a localized system.
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C. Fractal entanglement scaling

Entanglement scaling provides insight into the character of
many-body eigenstates, and provides a conceptually powerful
means to distinguish extended and localized systems. The
entanglement entropy of a spatial subregion of linear size R for
an excited energy eigenstate in a localized system comes only
from states within a localization length ξ0 of the boundary
and exhibits boundary-law scaling S(R) ∼ ξ0R

d−1. Here d

is the number of spatial dimensions. In extended systems,
such boundary law scaling occurs only for the ground states,
whereas excited states typically display volume law scaling
S(R) ∼ Rd . In this section we analyze the spatial scaling
of entanglement entropy in excited states of a marginally
localized system, which has not been considered in previous
studies.

For a marginally localized system, a fraction f (R) ∼ R−1/ν

states are extended across the subregion of size R [i.e.,
have ξ (ε) > R], and make a volume-law type contribution
to entanglement f (R)Rd ∼ Rd−1/ν . For ν > 1, this dominates
the area-law contribution from well-localized states leading to
a scaling

S(R) ∼ Rd−1/ν (5)

intermediate between volume law and area law, which we dub
“fractal” entanglement scaling as it scales like the boundary
of a fractal subregion of a localized phase with fractional
dimension d − 1/ν.

Marginally localized systems exhibit fractal entanglement
scaling so long as ν > 1. For ν < 1, the entanglement entropy
becomes effectively area law. When applicable, a Harris-type
criterion (see Appendix A) ν � 2/d ensures that the fraction
of modes which are extended on the length scale R dominate
the entanglement entropy in all systems with d < 2. Integer
quantum Hall systems have ν ≈ 2.3, and will exhibit fractal
entanglement scaling. However Harris-Chayes arguments do
not rule out that some marginally localized systems exhibit
conventional boundary-law scaling in spatial dimensions d �
2. The arguments laid out above are once again not particular
to the noninteracting problem, but will generalize also to the
interacting problem, iff there exists an extensive number of
algebraically well-localized integrals of motion. If the fraction
of integrals of motion not localized on the length scale R

scales as R−1/ν̃ , then the entanglement entropy will scale as
S(R) ∼ Rd−1/ν̃ , for ν̃ > 1.

Thus, we see that in dynamics, response properties, and
the scaling of entanglement entropy, marginally localized
noninteracting systems display properties that are intermediate
between traditional localized systems and delocalized systems.
Next, we investigate whether this intermediate behavior
survives in the presence of interactions.

III. MODEL AND APPROACH

The Hamiltonian of interest takes the form Ĥ = Ĥ0 +
V̂ , where H0 is the Hamiltonian of the disordered non-
interacting fermion system (for example Landau levels
with disorder). This noninteracting Hamiltonian has single-
particle eigenmodes of energy Eα created by operators ψ†

α =∫
ddrϕ∗

α(r)c†(r), where c†(r) creates an electron at position r .

Meanwhile, the interaction term takes the form

V̂ = V
∑

α,β,γ,δ

λαβγ δψ
†
αψ

†
βψγ ψδ. (6)

This represents a short-range interaction of strength V , where
λαβγ δ = ∫

ddrϕ∗
α(r)ϕ∗

β(r)ϕγ (r)ϕδ(r) are the matrix elements
of the interaction in the eigenbasis of H0. We note that the
indices α,β,γ,δ label not only the spatial structure of the
wave function but also the spin state of the fermions. We
note too that while modeling the interaction as a delta function
is adequate for the physically relevant problem of multicom-
ponent fermions (e.g., fermions with a spin degeneracy), for
the theoretically interesting toy problem of a single species of
spinless fermion, a pure delta function interaction has no effect,
because of Pauli exclusion. In this case one should work with
an interaction with nonzero but finite range, and must work
with properly antisymmetrized wave functions [31,38]. This
introduces several subtleties, which do not materially affect
our argument. For a full discussion of these issues, we refer
the reader to Appendix B.

In the integer quantum Hall system, there are an infinite
number of critical energies. For simplicity, we consider a
simplified problem [illustrated in Fig. 1(b)], where the SP
localization length diverges only at one SP energy, Ec, and
choose our zero of energy to set Ec ≡ 0. The localization
lengths for energies close to zero then diverge as ξ (E) ∼
|E|−ν , such that at any length scale L, a nonzero fraction
∼L−1/ν of the states appear extended. We take the SP density
of states to be a nonzero constant in the vicinity of E = 0. For
generality we will keep the spatial dimensionality d and the
localization-length exponent ν arbitrary; for example d = 2
and ν ≈ 2.3 for the disordered integer quantum Hall plateau
[21].

We now ask whether inclusion of the interaction causes
a breakdown of localization. We begin by noting that if we
attempt to construct the many-body eigenstates perturbatively
in weak interactions, then perturbation theory for the eigen-
states will break down already at O(V ) for states involving SP
orbitals sufficiently close to the mobility edge, irrespective of
the value of ν. However, the fact that the eigenstates cannot
be perturbatively constructed does not imply that localization
itself is unstable; to address the stability of localization we
need a more sophisticated diagnostic.

Motivated by [27–29] and [10] we have conjectured that
that defining property of marginal localization is the existence
of an extensive number of algebraically well localized integrals
of motion. We have also argued (in Sec. II) that the existence of
such algebraically well localized integrals of motion implies
the characteristic properties of marginally localized systems,
such as subdiffusive relaxation, scale-dependent conductivity,
and an entanglement entropy which is intermediate between
area law and volume law. We wish to investigate whether this
picture of marginal localization can be stable in the presence of
interactions. To this end, we first introduce some notation. We
use |�E〉 to denote a (many-body) eigenstate of H0 at an energy
E, labeled by a particular set of marginally localized integrals
of motion, in the sense described above. We use |�E〉 to denote
a (many-body) eigenstate of Ĥ0 + V̂ at an energy E. We now
introduce the T̂ matrix of the problem by V̂ |�E〉 = T̂ |�E〉.
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The matrix elements of T̂ between SP states with energy E

and spatial separation R gives the effective matrix element for
long-range hopping. It is well known that the effective hopping
matrix element must fall off with distance faster than 1/Rd ,
else localization is impossible [1,39]. Similarly, the matrix
elements of T̂ between two-particle states with the particles
separated by a distance R gives the effective matrix element
for a long-range two-body interaction, the matrix elements
between three-particle states give the effective matrix element
for a long-range three-body interaction, etc. Again, there are
conditions on how fast these matrix elements must fall off
with R in order for localization to be stable [2,40,41]. Our
main strategy in the present work will be to determine how
the matrix elements of T̂ fall off with distance R between the
particles involved. Hence, we will obtain a condition on ν for
breakdown of localization.

The T̂ matrix is related to V̂ by the Dyson equation [42]

T̂ = V̂ + V̂
1

E − Ĥ0 + i0
T̂ . (7)

This expression fully specifies the T̂ matrix for states at a
particular energy E. We note that even though V̂ is short
range, T̂ can have long-range matrix elements because Ĥ0

has eigenstates with arbitrarily long range matrix elements.
Within perturbation theory in small V̂ , we can approximate
the T̂ matrix by the Born series

T̂ = V̂ + V̂ Ĝ0(E)V̂ + V̂ Ĝ0(E)V̂ Ĝ0(E)V̂ + · · · ,

Ĝ0(E) = 1

E − Ĥ0 + i0
. (8)

This perturbative expression can be represented in standard
diagrammatic perturbation theory, where G0 is represented by
a (directed) line, and V is represented by a vertex with two lines
going in and two coming out. The diagrammatic representation
of the T̂ matrix contains only connected diagrams.

IV. DELOCALIZATION IS INEVITABLE IF dν > 1

We use TA,B to denote the matrix element of T̂ between
incoming state A and outgoing state B. If TA,B exceeds the
level spacing between states A and B then these two states
are “in resonance,” and the occupation number of state A

cannot be an integral of motion. However, any time two states
are in resonance, we can define new states A′ and B ′ which
are orthogonal linear combinations of A and B, such that

FIG. 2. Diagrammatic representation of mediated hopping, to
lowest order.

TA′,B ′ = 0. The occupation number of A′ and B ′ can then be
an integral of motion (at least if the states are not resonant with
any third state C). However, the new integrals of motion will
have support wherever A and B had support. We see therefore
that the spatial structure of resonances is crucial. If resonances
only occur between states that have support at nearby points
in real space, then we may be able to define new integrals of
motion which are still localized, if the local resonances do not
percolate [39]. In contrast, if resonances occur on all length
scales, then the integrals of motion will not be localized (even
algebraically), and so the system will not be able to support
marginal MBL.

The question we are interested in asking is thus the follow-
ing: if A is an eigenstate of H0 with localization length ξA, then
what is the probability that A is “in resonance” with another
state B a distance R apart, where R 	 max(ξA,ξB) [the
situation when R < max(ξA,ξB) constitutes a local resonance,
which just redefines the localized integrals of motion]. If
the probability of having a resonance at a distance greater
than R goes to zero as R → ∞, then we will be able to
define algebraically localized integrals of motion with arbitrary
precision, in the sense that all but a fraction ε of the integrals
of motion will be localized on a length scale Rc(ε), where
Rc(ε) is set by the condition that the probability of having a
resonance at a length scale greater than Rc is equal to ε. In
contrast, if the probability of having a resonance at a length
scale greater than R does not go to zero as R → ∞, then we
will not be able to define algebraically localized integrals of
motion with arbitrary precision, and the system cannot support
marginal MBL.

We thus want to calculate how the matrix elements of T̂

scale with distance. We recall that the T̂ matrix is given by the
Born series (8). The first-order term V̂ is purely short range.
Long-range terms first appear at order (V 2). We now examine
how the matrix elements of T̂ fall off with distance at O(V 2).

A. Hopping resonances

We begin by evaluating the matrix elements of T̂ between
well-localized SP orbitals ψα and ψη at a separation R 	
max(ξα,ξη). This can be viewed as the effective matrix element
for hopping at a range R. The mediated hopping process at
order V 2 is illustrated in Fig. 2. Thus, we have

Tα,η(R) =
∑
βγ δ

V 2λαβγ δλγ δβη

(Eα + Eβ) − (Eγ + Eδ)
≈ V 2

ξ
d/2
α ξ

d/2
η

∑
βγ δ

exp
[ − R

(
1
ξβ

+ 1
ξγ

+ 1
ξδ

)]
(
ξd
β ξd

γ ξd
δ

)
(Eα + Eβ − Eγ − Eδ)

exp(−iφβγ δ)

= V 2
∣∣Eνd/2

α Eνd/2
η

∣∣∑
βγ δ

�βγ δ(R), (9)

195115-5



RAHUL NANDKISHORE AND ANDREW C. POTTER PHYSICAL REVIEW B 90, 195115 (2014)

where the sum ranges over intermediate states, (β,γ,δ). Since
orbitals α,η are well localized we have replaced λαβγ δ ≈
ϕ∗

α(0)ϕ∗
β(0)ϕγ (0)ϕδ(0), and λαβγ δ ≈ ϕ∗

λ(R)ϕ∗
δ (R)ϕβ(R)ϕη(R).

We approximate each of the wave functions by the simplis-
tic localized form |ϕα(r)| ≈ 1

ξ
d/2
α

e−|r−rα | (and similarly for

β,λ, . . . ). This assumption ignores the multifractal character
of the SP orbitals with ε close to εc, but is expected to reproduce
the typical behavior. The multifractal character of the wave
functions will be taken into account in Sec. V. For convenience
we have defined

�βγδ(R) = |EβEγ Eδ|dν exp[−R(|Eβ |ν + |Eγ |ν + |Eδ|ν)]

(Eα + Eβ − Eγ − Eδ)

× exp(−iφβγ δ). (10)

Each matrix element contains an overall phase, φβγ δ , and
the phases are essentially uncorrelated for different choices
of βγ δ. Hence the sum over intermediate states accumulates
random amplitude and phase characteristic of a random walk
in the complex plane of characteristic step size ≈ |�β,γ,δ(R)|.

The typical rms modulus of the effective hopping is then

|Tα,η(R)| = V 2|EαEη|νd/2
√ ∑

βγ δβ ′γ ′δ′
�∗

βγ δ(R)�β ′γ ′δ′ (R),

= V 2|EαEη|νd/2
√∑

βγ δ

|�βγδ(R)|2, (11)

where we have assumed that the “off diagonal” terms come
with random phases and cancel out.

We can trade the sum over discrete states for a continuous
integral by identifying the appropriate density of states for
intermediate energies Eα,β,δ . Recall that the localization
length scales as |E|−ν . Thus there are ≈ E−dνdE states
with appreciable overlap with states α and η in an energy
interval [E,E + dE]. This implies that we should take

∑
β →∫

dEβ |E−νd
β |. With the above rule for translating sums to

integrals, we get

〈|Tα,η(R)|〉 = V 2|EαEη|νd/2

√∫
dEβdEγ dEδ|EβEγ Eδ|dν

exp
[ − 2R

(
Eν

β + Eν
γ + Eν

δ

)]
(Eα + Eβ − Eγ − Eδ)2

. (12)

The exponential scaling of the wave-function amplitudes
provides a cutoff, restricting us to states with |E|β,γ,δ < R−1/ν .
Meanwhile, if Eβ,γ,δ are all close to zero (which must be the
case given the exponential cutoff) then the denominator is
≈E2

α , so we obtain

〈|Tα,η(R)|〉
V 2

= ∣∣Eνd−1
α

∣∣
√

2
∫ R−1/ν

0
dEβdEγ dEδ|EβEγ Eδ|dν

= |Eα|dν−1R− 3
2 (d+1/ν). (13)

This matrix element should be compared to the level
spacing between the states ψα and ψη. If the matrix element
is greater than the level spacing, then the two states are in
resonance; i.e., a particle originally in state ψα can readily hop
to ψη. If we are to have any hope of localization, then the
probability of having a resonance at a length scale R must go
to zero as R → ∞.

We recall that the effective matrix elements for long-range
hopping [at O(V 2)] fall off as R− 3

2 (d+1/ν). The probability that
we have resonances at a distance R > Rc is then

Pres(R > Rc) =
∫ ∞

Rc

Rd−1dR
|Tα,η(R)|

δ
, (14)

where δ ∼ Eνd
α is the typical level spacing at energy Eα . Thus,

we conclude that the probability of hopping resonances at a
distance R behaves as

Pres(R > Rc) ∼ V 2|Eα|−1R−(d/2+3/(2ν)
c . (15)

For any nonzero ε and any nonzero Eα there is an Rc

such that Pres(R > Rc) < ε. Thus, the effective long-range
hopping falls off sufficiently rapidly that the probability of
having long-range hopping resonances vanishes, and thus the

effective long-range hopping does not present an obstacle to
the construction of marginally localized integrals of motion.

B. Flip-flop resonances

Next, we consider the matrix elements of T̂ between
two-particle states, where the particles in question are sep-
arated by a distance R. Such processes may be represented
diagrammatically by processes of the form shown in Fig. 3,
and may be interpreted as “flip flop” processes which can
transport energy over long distances [43]. The effective matrix
element for this sort of “flip flop” process scales as

Tαμ,βη(R) =
∑
γ δ

λαβγ δλγ δμη

(Eα + Eβ) − (Eγ + Eδ)
(16)

= V 2

(ξαξβξμξη)d/2

∑
γ δ

exp
[ − R

(
1
ξγ

+ 1
ξδ

)]
(ξd

γ ξd
δ )[(Eα − Eβ) − (Eγ − Eδ)]

× exp(−iφγ δ), (17)

where again φγδ is a random phase. The arguments proceed
exactly as for the hopping resonances (except that there is one

FIG. 3. Diagram illustrating flip-flop process.
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fewer internal variable to sum over), and lead to the result

〈|Tαμ,βη(R)|〉 = V 2 |EαEβEμEη|dν/2

|Eα − Eβ | R−(d+1/ν). (18)

Since the strongest contributions will come from states
α,β,μ,η with similar energies, we take Eγ,δ,β ≈ Eα in the
numerator, and replace the energy denominator, |Eα − Eβ |,
by minimum level spacing for states of size ξ (Eα) ≈ Eνd

α ,
producing

〈|Tαμ,βη(R)|〉 = V 2Eνd
α R−(d+1/ν). (19)

We now ask what is the probability that a particular typical
transition has a resonant pair within a distance R. The typical
SP level spacing at an energy Eα is ∼ ξ−d

α ∼ Eνd
α . The number

of transitions which could be paired with the transition of
interest goes as Rd . Thus, the minimum energy change for flip
flops involving a particular typical transition goes as Eνd

α R−d .
Meanwhile, the matrix element falls off as V 2Eνd

α R−(d+1/ν).
The probability that a particular transition has a resonant
partner on the length scale R is thus ∼V 2R−1/ν , which goes
to zero as R → ∞ for any ν. Thus, the probability of having a
flip-flop resonance will drop below ε on length scales R > Rc,
where Rc = (V 2/ε)ν . It is instructive to contrast with the
usual MBL case, Fig. 1(a), where the SP localization length
is finite at all energies. This situation may be modeled by
taking ν → 0, so that all states (except the exact zero energy
state) are localized with localization length of order unity.
Taking this limit predicts that for the traditional MBL problem,
the length scale Rc beyond which the probability of flip-flop
resonances drops below ε should grow slower than any power
law of ε. Meanwhile, the situation with a mobility edge can
be modeled by taking ν → ∞, such that all states with E < 1
are delocalized. In this case there will be no finite length scale
Rc beyond which the probability of flip-flop resonances drops
below V 2, indicating instability of localization to interactions
at finite energy density in partially filled bands with a SP
mobility edge.

C. Flip-flop assisted hopping

Finally, we consider the matrix elements of T̂ between
three-particle states. This process is represented diagram-
matically by Fig. 4, and may be interpreted as a “flip-flop
assisted hopping,” whereby a particle hops from r1 to r2 by
triggering SP transitions at both r1 and r2. We are interested
as before in determining how this matrix element scales with

FIG. 4. The flip-flop assisted hopping process.

R = |r1 − r2|. This process has matrix element

Tαβμ,γ ηκ (R) =
∑

δ

λαβγ δλδμηκ

(Eα + Eβ) − (Eγ + Eδ)
(20)

= V 2

(ξαξβξγ ξμξηξκ )d/2

∑
δ

exp
[ − R

ξδ

]
ξd
δ [(Eα − Eβ) − (Eγ − Eδ)]

× exp (−iφδ) , (21)

where again φδ is a random phase. The arguments proceed
exactly as for the flip-flop resonances (except that there is one
fewer internal variable to sum over), and lead to the result

〈|Tαβμ,γ ηκ (R)|〉 = V 2 |EαEβEγ EμEηEκ |dν/2

|Eα − Eβ | R− 1
2 (d+1/ν).

(22)
Since the strongest contributions will come from states
α,β,μ,η with similar energies, we take Eγ,δ,β ≈ Eα in the
numerator, and replace the energy denominator, |Eα − Eβ |,
by minimum level spacing for states of size ξ (Eα) ≈ Eνd

α ,
producing

〈|Tαβμ,γ ηκ (R)|〉 = V 2E2νd
α R− 1

2 (d+1/ν). (23)

There are ∼Rd sites within a distance R of ψα to which a
particle could hop via this “flip-flop assisted” hopping process.
Thus, the minimum level spacing for such a process falls off
as R−d . Meanwhile, the matrix element for this process falls
off only as R− 1

2 (d+1/ν). Thus, the probability that there is no
“assisted hopping” resonance at a length scale R vanishes at
long distances as a power law of R for νd > 1 (for νd = 1 it
vanishes logarithmically with R). Thus, for νd � 1, a particle
can always find a (distant) resonant site to hop to, with some
assistance from flip flops. This establishes that localization is
impossible in the presence of interactions if

dν � 1. (24)

This is the main result of this section, and concludes our
discussion of the matrix elements of T̂ at O(V 2) [we note that
T̂ has no matrix elements between four-particle states at O(V 2)
because T̂ must be represented by a connected diagram]. Next,
we discuss whether we can get a more stringent condition for
breakdown of localization at higher orders in V .

D. Higher orders in V

We now discuss whether a more stringent condition on
breakdown of localization could be obtained by going to
higher order in V and considering diagrams, e.g., of the
sort illustrated in Fig. 5 (an explicit discussion of how to
calculate the matrix elements represented by these diagrams
is provided in Appendix C). We will conclude that the
answer is no, and that (24) is the criterion for perturbative
breakdown of marginal localization. We begin by noting that
the diagrammatic representation of the Born series (8) contains
vertices, internal lines (which begin and end on a vertex), and
external lines (which are connected to vertices only at one end).
At O(V n) in perturbation theory, we will have n vertices, m

internal lines, and p external lines, where 2m + p = 4n. Since
only connected diagrams contribute to the T̂ matrix, every
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(a) (b)

FIG. 5. Some high-order diagrams contributing to T̂ .

vertex must be connected to at least one internal line, and
all but two of the vertices must be connected to at least two
internal lines. This gives the constraint m � (n − 1).

Now, the R scaling depends only on the number of internal
lines m. After summing over internal variables in a rms sense,
we find that the R scaling has the form

T (R) ∼
√√√√[∫ R−1/ν

dEE−νd (Eνd )2

]m

, (25)

where the first factor E−νd comes about when we change the
sum over states to an integral, and the second factor (Eνd )2

comes from the normalization factors associated with the
internal lines. This gives

T (R) ∼ R− m
2 (d+1/ν). (26)

Now, if we evaluate the matrix element of T̂ that connects
a particle at a given position to particles at ñ other positions
within a ball of radius R (i.e., if we look at diagrams containing
n � ñ + 1 vertices that are connected to at least one external
line), then the minimum level spacing for such processes will
fall off as ∼R−ñd . If this level spacing falls off faster than the
corresponding matrix element, then the probability of having
resonances will approach one at large R, so that localization
will be unstable. The condition for delocalization thus takes
the form

ñd >
m

2

(
d + 1

ν

)
. (27)

Thus, to maximize our chances of delocalization, we should
maximize ñ and should minimize m, subject to the constraints
we have already identified ñ + 1 � n and m � n − 1. Substi-
tuting ñ = n − 1 and m = n − 1 into the above formula, we
find that the condition for delocalization becomes

(n − 1)d >
n − 1

2

(
d + 1

ν

)
⇒ dν > 1. (28)

Thus, the tightest constraint that we could possibly get within
perturbation theory is the constraint (24) coming from the flip-
flop mediated hopping process; i.e., delocalization occurs if
dν > 1. Meanwhile, for dν < 1, the probability of resonances
vanishes at large R at all orders in perturbation theory, so that
marginal localization appears to be perturbatively stable. For
dν = 1 the probability of having a resonance, calculated in the
manner of (13), grows logarithmically with R, suggesting that
the system should be delocalized (this is also consistent with
results on noninteracting models with critically long range
hopping [39]).

E. Systems with a vanishing critical density of states

The result (24) is slightly modified if the density of states
vanishes as Eϒ in the vicinity of the critical energy. In this
case, the integrals over energy come with a factor of Eϒ , and
the matrix elements with m internal lines are of order

T (R) ∼ R− m
2 [d+(1+ϒ)/ν]. (29)

In this case similar arguments establish that delocalization
occurs if

νd � 1 + ϒ. (30)

The situation where the density of states diverges at the critical
energy can also be treated within the above formalism, by
taking ϒ < 0.

We note that the possible values for ν and ϒ have been
recently studied in Ref. [44]. In none of the ten Altland-
Zirnbauer symmetry classes is the condition (30) violated;
thus, fermionic topological bands at nonzero temperature
always delocalize in the presence of arbitrarily weak interac-
tions. However, in symmetry classes C and C1, the condition
(30) is saturated, and νd = 1 + ϒ . In these symmetry classes,
the T matrix will diverge only as a logarithmic function of
length scale, and correspondingly the length scale and time
scale for delocalization will be exponential functions of the
bare interaction strength. This is to be contrasted with the
integer quantum Hall case, where these scales are power-law
functions of the bare interaction strength (see Sec. IV G).
A specific example of such a marginally localized system,
which is only marginally unstable to interactions, is the spin
quantum Hall effect in d = 2, which has ν = 4/7 and ϒ = 1/7
(Ref. [44]).

F. An intuitive explanation for these results

We now draw attention to a very simple and intuitive
explanation for the delocalization criterion (24). On any length
scale R, there are states with energies |E| < R−1/ν that look
effectively extended. Meanwhile, there are ξd (E) states at an
energy E that have support at a particular position r. Thus,
the number of states to which we can couple with a local
interaction which are extended on the scale R is

N (R) ∼
∫ R−1/ν

0
dEEϒξd (E) =

∫ R−1/ν

0
dEEϒ−νd . (31)

If νd < 1 + ϒ then the “bath” of extended states to which
we can locally couple contains a finite number of states (and
the number of states in the bath goes at zero as the length
scale R → ∞). In this case, localization can be perturbatively
stable. In contrast, if νd > 1 + ϒ , then the above integral
diverges near E = 0, such that the “bath” to which we can
locally couple contains an infinite number of extended states
at any length scale R. In this case, the algebraically delocalized
states near the critical energy form a good bath, and are able
to thermalize the system by mediating long-range interactions
that fall off sufficiently slowly with R, as we have discussed.

G. Characteristic length and time scales for delocalization

We now estimate the length scale and time scale for the
resonances that give rise to a breakdown of localization.
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Recall that the T matrix elements between states separated
by a distance R at order n + 1 in perturbation theory scale as
V n+1R−n(d+1/ν)/2, while the level spacing scales as R−nd . The
length scale Rc(n) on which resonances appear at order n + 1
in perturbation theory is the length scale at which the matrix
elements and the level spacings become comparable; i.e.,
V n+1R

−n(d+1/ν)/2
c = R−nd

c . This happens at a critical length
scale Rc, where

Rc(n) ∼ V − 2ν
dν−1

n+1
n . (32)

By inspection, the smallest Rc comes from n → ∞ for which

Rc ∼ V −2ν/(dν−1). (33)

The scaling of Rc in Eq. (33) controls, for example, the length
scale at which the longitudinal conductivity ceases to follow
(4) and saturates instead to a nonzero constant. Remarkably,
even though breakdown of perturbation theory occurs already
at second order in perturbation theory, the shortest length scale
on which resonances appear is controlled by high orders of
perturbation theory.

We can also estimate the time scale on which breakdown
of localization occurs. Processes at order n + 1 cause a
breakdown on length scales Rc(n), given by (32). The matrix
element for these processes is of order V n+1Rc(n)−n(d+1/ν)/2 =
Rc(n)−nd , and the level spacing is Rc(n)−nd , so that the density
of final states is Rc(n)d . A straightforward application of the
golden rule implies that the time scale on which breakdown
of localization happens due to processes at n + 1 order in
perturbation theory is

tc(n) ∼ Rc(n)nd = V − 2νd(n+1)
νd−1 . (34)

Thus we see that the shortest time scale on which breakdown
occurs is controlled by n = 1 (i.e., by processes at second
order in perturbation theory), and is of order

tc ∼ V − 4νd
νd−1 . (35)

For the case of integer quantum Hall, with ν = 2.3 and d = 2,
Rc ∼ V −1.3 and tc ∼ V −2.5. We note that the crossover time
scales Rc and tc both diverge as V → 0, recovering marginal
localization in the noninteracting limit (V = 0). We note also
that in Altland-Zirnbauer symmetry classes C and C1, where
the condition [Eq. (30)] is saturated and the system is only
marginally unstable to interactions, the critical length scale and
time scale will depend exponentially on the bare interaction,
instead of the power-law dependence discussed above (see
Sec. IV E for details).

So far we have suppressed temperature-dependent occu-
pation factors in estimating the T-matrix amplitudes. The
breakdown of marginal localization happens (for a closed
quantum system) because the “internal heat bath” presented
by the states with diverging localization length allows the
system to thermalize. At low temperature, the coupling to
this internal bath is suppressed by a factor of exp(−�/T ),
where � is the detuning of the chemical potential from the
critical energy; i.e., the crossover scales Rc and tc will be
enhanced by an “Arrhenius” factor ∼exp(c�/T ), where c is a
positive numerical prefactor that depends on ν and d. Thus, the
crossover scales will also diverge in the zero-temperature limit,
so that the zero-temperature system will indeed be localized,
as long as the Fermi level is not at the critical energy. We

contrast the exponential dependence on temperature with the
power-law dependence expected for a system at criticality [32].

The emergence of a new length scale and time scale in the
interacting problem suggests that the scaling behavior near the
zero-temperature quantum critical point [21] may be richer
for the interacting system than for the noninteracting system.
In particular, the presence of an additional interaction-related
length scale Rc may help explain why the experimentally
observed longitudinal conductance is not temperature indepen-
dent at the critical point [21]—the longitudinal conductance
could depend on the ratio of Rc to the thermal length
�/kT . Additionally, if one examines the scaling of, e.g.,
the longitudinal conductance with temperature at a nonzero
detuning � from the critical point, then the coupling to the
“internal” heat bath will provide a mechanism for a thermally
activated scaling of the conductance, with an activation gap
proportional to the detuning from the critical point. Of course,
any real experimental system will also be coupled to an
“external” heat bath (e.g., phonons), which will allow for
variable range hopping at any nonzero temperature, and
this variable range hopping contribution to the conductance
will dominate over the “activated” contribution at the lowest
temperatures. However, if one observed a regime where the
low-temperature longitudinal conductance was activated, with
an activation gap proportional to the detuning from criticality,
then this may be tentatively identified as evidence for the
“delocalization due to the internal bath” discussed in this
paper. An additional complication is that we have considered
short-range interactions, while in real quantum Hall systems
there are also Coulomb interactions (unless screened by a
nearby metallic gate). The inclusion of long-range Coulomb
interactions may introduce additional corrections to scaling
that are not captured by the present theory.

H. Multifractality

Thus far we have assumed that the wave functions were
uniform on length scales short compared to ξ . In fact,
this is not the case, because close to criticality the wave
functions exhibit multifractal behavior on length scales less
than ξ . It is known [45,46] that for wave functions close to
criticality, the disorder-averaged two-point correlations fall
off as 〈ψ∗

α (0)ψβ(0)ψ∗
β (r)ψα(r)〉 ∼ 1

ξ 2d (ξ/r)η for r < ξ , where
η > 0 is a multifractal exponent. This suggests that the wave
functions actually have higher amplitudes on scales r � ξ

than would be expected based on the “plain vanilla” model
we were working with thus far. This will tend to enhance the
matrix elements of the T̂ matrix over and above the estimates
above. Thus, the condition νd > 1 + ϒ may be viewed as
a lower bound condition for delocalization. If we take into
account the effects of multifractality in a simple-minded way
by attaching a factor of [ξint(E)/R]η/2 to each internal line,
then we will conclude that the contribution to the T̂ matrix
from a diagram with m internal lines (after rms summation
over internal variables) will be

T (R) ∼
√√√√[∫ R−1/ν

dEEϒ−νd (Eνd )2

(
E−ν

R

)η
]m

∼ R− m
2 (d+ 1+ϒ

ν ), (36)
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which is independent of η; i.e., if we take multifractality
into account in this simple-minded way then the threshold
for delocalization is unchanged, and is νd � 1 + ϒ . A more
sophisticated treatment of multifractality may reduce the
critical value of ν somewhat, but (as we have discussed),
multifractality can only make it easier to get delocalization.

V. DISCUSSION AND CONCLUSION

We have discussed marginally localized systems, which for
partially filled bands at nonzero energy density are character-
ized in the noninteracting limit by subdiffusive relaxation (3),
a scale-dependent dc conductivity that vanishes in the thermo-
dynamic limit (4), and an entanglement entropy of the excited
eigenstates that is intermediate between area law and volume
law (5). We have shown that such systems are generically
unstable to interactions, since interactions trigger a breakdown
of localization for any ν > 1/d. We further note that, for
most systems, general arguments ([33,34] and Appendix A)
place a lower bound, ν � 2/d, on the localization-length
exponent. Thus, we have shown that marginally localization is
generically unstable to interactions, for partially filled bands
at non-zero energy density.

We therefore predict that in a marginally localized system
such as integer quantum Hall, the inclusion of arbitrarily weak
short-range interactions will cause the entanglement entropy
in the excited many-body eigenstates to become volume
law, instead of the fractal scaling shown in (5). We also
predict that in two-dimensional weakly interacting marginally
localized systems, the scale-dependent conductivity at nonzero
energy density will follow (4) on small length scales, but will
saturate to a nonzero constant on large length scales. Similarly,
relaxation in such marginally localized systems should be sub-
diffusive according to (3) for short times, but should cross over
to diffusive relaxation on long time scales. We have estimated
the crossover length scales and time scales, and have also
discussed in Sec. IV G the interaction-induced corrections to
scaling in the vicinity of the zero-temperature quantum critical
point. These ideas may be directly tested in experiments in
cold-atomic systems and possibly also in solid-state materials
for which the electron-phonon interactions are negligible,
so that the electronic system well approximates an isolated
quantum system. We speculate in particular that disordered
graphene in the quantum Hall regime may provide a play-
ground to test these ideas, due to its weak electron-phonon cou-
pling and isolation from any substrate in suspended devices.

While our arguments were for short-range interactions,
the question of whether MBL can survive with long-range
interactions has also been recently studied [41]. It was claimed
there that full MBL is perturbatively stable against weak
interactions as long as the interactions fall off with distance
faster than 1/rp, where p is a critical power that depends
on the model in question. For interactions that fall off faster
than 1/rp, our arguments can be straightforwardly generalized
to demonstrate that marginal localization is perturbatively
unstable. The situation with truly long range interactions
(which fall off slower than 1/rp) is beyond the scope of the
present work.

We now discuss the prospects for numerical tests of these
ideas. Unfortunately, these are rather poor since there are

no existing numerical techniques suitable for simulating the
highly entangled 2D or 3D systems relevant for the predicted
many-body delocalization of a marginally Anderson localized
phase. The prospects for experimental tests may however
be brighter. Experimental quantum Hall type systems with
tunable interaction strength may shortly be available using
cold atoms in artificial gauge fields [47], and would provide a
natural testing ground for the ideas presented in this paper.

We note that there are three classes of short-range
interacting system that may evade our arguments. If the
divergence in the localization length is accompanied by
a density of states (DOS) which vanishes as Eϒ , our
argument only predicts delocalization for dν > 1 + ϒ . Given
a sufficiently rapid vanishing of the DOS at the critical
energy, marginal localization could be perturbatively stable.
However, the arguments presented in Ref. [44] suggest that
the density of states does not vanish sufficiently rapidly
to stabilize localization in any of the Altland-Zirnbauer
symmetry classes. Additionally, in systems where the critical
energy is pinned (e.g., by symmetry) to a particular value and
is locally insensitive to disorder, the Harris criterion does not
apply and we can have ν < 2/d (see [48] and Appendix A). A
particular example of this is models of particle-hole symmetric
localization in one dimension [22], where the divergence in the
localization length is only a logarithmic function of energy. In
this case our analysis would suggest that marginal localization
could be perturbatively stable. Finally, our arguments establish
that marginal localization is unstable for ν > 1/d, where ν

is the critical exponent for the localization length of typical
states. However, the Harris-Chayes criteria only constrain the
critical exponent for the mean localization length νmean � 2/d.
For infinite randomness critical points, νtypical and νmean can
be markedly different [49]. Thus, it is conceivable that there
may be systems with infinite randomness critical points where
νmean � 2/d (satisfying Harris-Chayes), but νtypical < 1/d,
so that marginal localization could be perturbatively stable.
Investigations of whether such marginally localized systems
can be stable to interactions would be a fruitful topic for
future work.

ACKNOWLEDGMENTS

We thank David A. Huse, Siddharth Parameswaran, S. L.
Sondhi, Romain Vasseur, Ashvin Vishwanath, Ravin Bhatt,
and Norman Y. Yao for helpful conversations. We also thank
David A. Huse and Sarang Gopalakrishnan for a critical
reading of the manuscript. R.N. is supported by a Princeton
Center for Theoretical Science (PCTS) fellowship.

APPENDIX A: HARRIS-CHAYES BOUNDS FOR
LOCALIZATION-LENGTH EXPONENT

The generating function for two-body Green’s functions
with fixed energy ε of a noninteracting quantum system in
d spatial dimensions can be written in terms of a partition
function with a d-dimensional action:

Z(ε) =
∫

D[ψ̄,ψ]eiψ̄(ε+i0+−H )ψ, (A1)

195115-10



MARGINAL ANDERSON LOCALIZATION AND MANY-BODY . . . PHYSICAL REVIEW B 90, 195115 (2014)

where H is the single-particle Hamiltonian including random
disorder. A diverging SP localization length corresponds to a
critical value of εc for which Z(ε) exhibits a phase transition.
Harris’s argument, which we briefly review below, can then
be applied to this d-dimensional theory to constrain the
correlation length exponent ν.

Within a region of size L, the disorder potential gives a
random shift to the average value of ε within the region of
order δ(L) ∼ L−d/2. Then, in order to determine the average
value of ε − εc to accuracy δ, one needs to look at length scale
L ∼ δ−2/d . On the other hand, if the transition occurs inside
the single-particle band, one should be able to determine on
which side of the transition the system lies by examining a
subsystem with size L much bigger than the correlation length
ξ (ε) ∼ |ε − εc|−ν . Together these considerations require that
the random shift in average ε in a subsystem of size ξ (ε) goes
to zero no slower than than the distance to the critical point
lim
ε→εc

δ(ξ (ε))/|ε − εc| = 0, or

dν � 2, (A2)

the celebrated Harris criterion.
This argument applies only if the critical energy can locally

be shifted by disorder [48]. In situations where the extended
states are pinned at a particular energy independent of disorder,
perhaps by a symmetry, then the Harris bound does not apply,
and the system can have νd < 2. An example of this situation is
the case of particle-hole symmetric localization [22], where the
delocalized states sit exactly at E = 0 because of particle-hole
symmetry independent of the strength of the (random hopping)
disorder. In this case, the divergence of the localization length
is only a logarithmic function of the energy (i.e., slower than
any power law), and our argument suggests that marginal
localization could be at least perturbatively stable.

APPENDIX B: SPINLESS FERMIONS AND SHORT-RANGE
INTERACTIONS

In this Appendix we discuss the proper definition of λαβγ δ

[Eq. (6)] for a system containing a single species of spinless
fermion. In such a system, delta function interactions have no
effect, because of Pauli exclusion, and one must work instead
with a density-density interaction of nonzero but finite range.
For example, one could include in the Hamiltonian a term of
the form ∫

r,R
V (r)ψ†

Rψ
†
R+rψR+rψR,

where ψ
†
R creates a fermion at position R. We can then

define λαβγ δ as the matrix element of this interaction
term between the properly antisymmetrized incoming state

1√
2

(〈α|〈β| − 〈β|〈α|) and the properly antisymmetrized out-

FIG. 6. A diagram of the class shown in Fig. 5(a), which appears
at third order in perturbation theory, and is used to illustrate the
calculation of high-order diagrams.

going state 1√
2
(|γ 〉|δ〉 − |δ〉|γ 〉). This yields

λαβγ δ = 1

2

∫
r,R

V (r)[ϕ∗
α(R)ϕ∗

β(R + r)ϕγ (R)ϕδ(R + r)

−ϕ∗
α(R)ϕ∗

β(R + r)ϕδ(R)ϕγ (R + r)

+ϕ∗
β(R)ϕ∗

α(R + r)ϕδ(R)ϕγ (R + r)

−ϕ∗
β(R)ϕ∗

α(R + r)ϕγ (R)ϕδ(R + r)]. (B1)

When r = 0 the integrand vanishes identically; this is one
way to see that delta function interactions cannot have any
effect in a system of spinless fermions. We therefore consider
instead an interaction with finite but nonzero range a. We
assume that a � ξα,β,γ,δ . With this interaction, the portion of
the integrand enclosed in square brackets [...] can be Taylor
expanded in small r . We can straightforwardly see that Pauli
exclusion suppresses λαβγ δ by powers of a

min(ξα,ξβ ,ξγ ,ξδ ) . When
all four states α,β,γ,δ are near criticality, the matrix element
λ is strongly suppressed. In Ref. [31] this physics shows up in
the irrelevance of the interaction. One might therefore worry
that our analysis must be modified for spinless fermions, to
allow for a λ that vanishes at the critical energy. However, the
processes that dominate delocalization (Fig. 4) have only one
of the four “legs” near criticality, while the other three “legs”
are well away from the critical energy. As a result, λ is just
suppressed by a constant, noncritical factor. In the language
of Ref. [31], the noncritical energies of the external legs in
Fig. 4 “cut off” the RG flow of the interaction. As a result,
λαβγ δ does not acquire a singular dependence on the energy for
the processes that dominate delocalization, and the subtleties
associated with antisymmetrization do not materially alter the
argument, even for a single species of spinless fermions.

APPENDIX C: CALCULATING HIGH-ORDER DIAGRAMS

In this Appendix we illustrate how to calculate high-order
diagrams. For specificity, we consider the particular diagram
shown in Fig. 6, which appears at third order in perturbation
theory, and is in the class of diagrams illustrated in Fig. 5(a).
Other high-order diagrams may be calculated analogously.
This diagram represents a matrix element between three-
particle states. Explicitly, we have

Tα1α2α3,β1β2β3 =
∑

γ1γ2γ3

λα1γ3β1γ1(
Eα1 + Eγ3

) − (
Eβ1 + Eγ1

) λα2γ1β2γ2(
Eα2 + Eγ1

) − (
Eβ2 + Eγ2

) λα3γ2β3γ3(
Eα3 + Eγ2

) − (
Eβ3 + Eγ3

) (C1)
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= V 3(
ξα1ξα2ξα3ξβ1ξβ2ξβ3

)d/2

∑
γ1γ2γ3

exp
( − iφγ3γ1

)
(
ξγ3ξγ1

)d/2[(
Eα1 + Eγ3

) − (
Eβ1 + Eγ1

)]
× exp

( − iφγ1γ2

)
(
ξγ1ξγ2

)d/2[(
Eα2 + Eγ1

) − (
Eβ2 + Eγ2

)] exp
( − iφγ2γ3

)
(
ξγ2ξγ3

)d/2[(
Eα3 + Eγ2

) − (
Eβ3 + Eγ3

)] . (C2)

We now repeat the sequence of manipulations performed in Sec. IV. Performing the sum in a rms sense, we obtain

〈|Tα1α2α3,β1β2β3 |(R)〉 ∼ V 3(
ξα1ξα2ξα3ξβ1ξβ2ξβ3

)d/2

√ ∑
γ1γ2γ3

1(
ξγ1ξγ2ξγ3

)d
×

[
1

Eα1 − Eβ1

1

Eα2 − Eβ2

1

Eα3 − Eβ3

]
, (C3)

where we have assumed that the Eγ are much smaller than
the Eα,Eβ , because they are the energies of internal states
that must be close to the critical energy Ec = 0 in order
to connect vertices at large separations R. Now the above
equation contains two types of localization length. There are
the localization lengths associated with the “external” legs
ξα,β ≈ ξext, which can be short, and which (crucially) are
independent of R, and there are the “internal” localization
lengths ξγ ≈ ξint, which are restricted to be greater than or
equal to R if the same state γ is to have support at two positions
differing by a distance of order R. The energy denominators
(Eαj

− Eβj
) are typically of order ξ−d

ext since that is the level
spacing for states with localization length ξext. Trading the sum
over states for an integral, we get

〈|T |〉 ∼ V n

ξ
pd/2
ext

(∫ R−1/ν

dEintξ
−d
int

)m/2

ξmd
ext , (C4)

where n = 3 is the number of vertices, m = 3 is the number
of internal lines, and p = 6 is the number of external lines
for the diagram currently under consideration (although the
expression is more general). Evaluating the integral, using
ξint ∼ E−ν

int , we get

〈|T |〉 ∼ V nR−m(d+1/ν)/2, (C5)

dropping the constant factors of ξext, which are independent of
V and R. For the diagram presently under consideration, with
n = 3 and m = 3, we have 〈|T |〉 ∼ V 3R−3(d+1/ν)/2. However,
the analysis also applies more generally to any diagram with n

vertices, m internal lines, and p external lines, and underpins
the discussion in Sec. IV D.
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