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A fundamental property of most single-electron devices with a quasicontinuous quasiparticle spectrum on an
island is the periodicity of their transport characteristics in a gate voltage. This property is robust even with
respect to placing ferroelectric insulators in the source and drain tunnel junctions. We show that placing a
ferroelectric insulator inside the gate capacitance breaks this periodicity. The current-voltage characteristics of
this single-electron transistor strongly depends on the ferroelectric polarization and shows a giant memory effect
even for negligible ferroelectric hysteresis making this device promising for memory applications.
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I. INTRODUCTION

Ferroelectricity like magnetism has been under investi-
gation for decades. Recent progress in ferroelectricity is
stimulated by (i) the miniaturization of ferroelectric samples
to the nanoscale where they show new physical properties
compared to the bulk ferroelectric materials [1–14], and (ii)
modern computer processors and memory demand storing,
where moving electric charges and controlling the associated
electric fields is important. There is a tendency for further
increase of computer efficiency that results in facing the
nanolevel with individual electrons and atoms. In ferroelectric
materials, polarization is produced by atom displacements.
Nanoferroelectrics combined with single-electron nanocircuits
are thus promising devices for memory storage and informa-
tion processing.

Recently, it was shown that the presence of ferroelectricity
in the source and drain tunnel junctions of a single-electron
transistor (SET), see Fig. 1, induces a memory effect in the
current-voltage characteristics even in the limit of negligible
hysteresis of the ferroelectric insulators [15]. The bottleneck
of ferroelectric SET is the experimental difficulty to produce
ultrathin and ultrasmall ferroelectric tunnel junctions with
special parameters. Technologically it is much easier to
produce a nanothin ferroelectric layer but not thin enough
for perfect electron tunneling. Such a layer can be placed into
the gate capacitance of the SET. At first glance, the physics
of a such ferroelectric should be similar to the physics of SET
considered in Ref. [15] with a ferroelectric source and drain
capacitors, however, this is not so.

A fundamental property of most single-electron devices
with a quasicontinuous quasiparticle spectrum on an island
is the periodicity of their transport characteristics in a gate
voltage. This property is robust even with respect to placing
ferroelectric insulators in the source and drain tunnel junctions
[15]. We show that placing the ferroelectric inside the gate
capacitance breaks this periodicity even for negligible fer-
roelectric hysteresis. Applying a relatively small “switching”
gate voltage one can change the polarization of the ferroelectric
material. We show that further increase of the gate voltage does

not affect the direction of the ferroelectric polarization. The
current-voltage characteristics of this SET strongly depends
on the ferroelectric polarization and shows a memory effect
making this device promising for memory applications.

II. SINGLE-ELECTRON TRANSISTOR WITH
FERROELECTRIC GATE

A. The model

The ferroelectricity localized in the gate capacitance
changes the distribution of the excess charge in the nanograin.
In the absence of quantum fluctuations the grain charge is ne =∑

i{Ci[φ(n) − Vi]} + ∫
g
dSg · Pg . Here, n is the excess charge

number, e is the elementary charge, φ(n) is the potential of the
nanograin, Ci with i = 1,2,g are the capacitances, and Sg is
the grain surface. The surface integration is performed over
the nanograin part, which is in contact with the ferroelectric.
The polarization Pg itself depends on the grain charge. Thus
calculations of the charge statistics and polarization should be
done self-consistently [15].

Generally, the electric field dependence of polarization in
SET has hysteresis. The following model takes this effect into
account:

P (u/d)(E) = P 0 tanh

(E ± Eh

Es

)
+ αE, (1)

where “u” and “d” stands for the upper and lower branches
of hysteresis loop, Es is the saturation field, P 0 is the
saturation polarization amplitude, and Eh describes the width
of the hysteresis loop. Similarly, we can write the voltage
dependence of the polarization introducing Vs = Esd and
Vh = Ehd, where d is the width of the gate capacitor:
P (u/d)(V ) = P 0 tanh(V ±Vh

Vs
) + αV . The typical graph of P (V )

is shown in Fig. 2.
In typical single-electron devices the electron tunneling is

a much faster process than the relaxation of the ferroelectric
[15]. This is related to the fact that ferroelectricity is related
to the shift of ions that are heavy and inert. Therefore the
ferroelectric in SET is sensitive to the average electric field

1098-0121/2014/90(19)/195111(12) 195111-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.195111


S. A. FEDOROV et al. PHYSICAL REVIEW B 90, 195111 (2014)

R1

V1 V2

Vg

C1

Cg

C2

R2

gate

(a)

(b)

FIG. 1. (Color online) (a) Sketch of a single-electron transistor
(SET) with a ferroelectric placed at the gate capacitor. (b) The
equivalent scheme.

over the “fast” electron-tunneling events [15]. Thus, for a
fixed ferroelectric polarization P, we can calculate the average
grain potential 〈φ〉. Since 〈φ〉 itself depends on the polarization
P through the probability distribution p(n), to find n excess
charges on the grain, we obtain the self-consistency equation.
The probabilities can be calculated using the modified SET
orthodox theory, see Refs. [15–18], where self-consistency was
developed for an SET with a slowly oscillating gate electrode.

B. Dimensionless units and basic notations

An SET has a number of important parameters. It is
convenient to use the following units for analytical and
numerical calculations: 2Ec = e2/C� is the energy and
temperature unit (kB = 1), the elementary charge e is the
charge-unit (electron charge is equal −1). The capacitance
becomes dimensionless using e2/2Ec, so C� = 1. We use the
(bare) tunneling resistance of the first tunnel junction, R1,
between the left electrode and the nanograin as the unit for the
resistance. Also we use the effective gate charge as a control
parameter, Q0 = −VgCg .

III. FERROELECTRIC SET AT LOW TEMPERATURES
ORTHODOX THEORY

Here, we consider the limit of low temperatures, T � Ec

where the transport properties of an SET (not far from the
degeneracy points) are well described by the “orthodox model”
[19–22]. Generalization of the orthodox model for an SET with
ferroelectricity was recently formulated in Ref. [15]. Using the
equations of Ref. [15], one can find the distribution functions
p(n) describing the excess charge statistics on the grain, the
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FIG. 2. (Color online) Model polarization.

mutual dependence of ferroelectric polarization, the charge
statistics, and the electron current.

A. Ferroelectric with ultrathin hysteresis loop

First, we consider the limiting case of an ultrathin ferroelec-
tric hysteresis loop, with Eh = 0 in Eq. (1). Also, we assume
that the parameter α = 0 in Eq. (1). Using these assumptions,
we explain the strong influence of ferroelectricity in the gate
capacitor on a fundamental property of SET, the periodicity of
its transport properties in a gate voltage Vg .

1. Ferroelectric with small switching field: Vs � 1

The basic features of an SET with ferroelectricity in the
gate capacitor can be qualitatively understood for a small
switching field, Vs � 1. First, we investigate the SET for
zero driving voltage, V = 0, and zero switching voltage,
Vs = 0. We also assume that electrons do not hop between
the leads and the grain. This assumption is reasonable for gate
voltages away from the points of intersection of different free
energy branches. In this case, the charge number on the grain
does not fluctuate and the average potential is equal to the
instant potential φ = 〈φ〉 and

∫
g

P · dSg = q0 sign(φ − Vg).
The equation describing the potential φ has the form

ne = Cφ + Cg(φ − Vg) + q0 sign(φ − Vg). (2)

Here, C = C1 + C2. Equation (2) has the following solution
in the limit Vs → 0:

φ =

⎧⎪⎪⎨
⎪⎪⎩

CgVg+ne+q0

C+Cg
, Vg >

ne+q0

C
,

CgVg+ne−q0

C+Cg
, Vg <

ne−q0

C
,

Vg,
ne−q0

C
< Vg <

ne+q0

C
.

(3)

Each branch of potential φ has three regions. Two regions have
the same slope but they are shifted by a voltage 2q0/C� . The
transition between these regions is located in the vicinity of
the point Q0 = −Cgne/C with the width of Cg2q0/C. For a
parameter q0 < 0.5e, the different branches do not intersect
each other, while for q0 > 0.5e the branches intersect each
other on the line φ = −Q0/Cg . The intersection of φ with 0
is happening at the point (ne ± q0).

Following the orthodox theory, we introduce the effective
free energy of the SET:

F = min
n

fn, fn = Ec(C�φ)2 = Ec(en − Q0 − P )2. (4)

For zero polarization, P = 0, the function fn is a parabola
in the parameter Q0 = −VgCg . At finite P , the ferroelectric
polarization depends on the parameter Q0 making the function
fn(Q0) a more complicated function consisting of parabola
fragments separated by a transition region, see Fig. 3. At
the degeneracy points, where the functions fn(Q0) intersect,
the Coulomb blockade is suppressed allowing electrons to
go through the SET from one lead to another. The positions of
these degeneracy points, corresponding to the conductivity
maxima, are [(n + 1/2)e ± q0]. Thus all the conductivity
peaks move to the zero gate voltage point. If a peak reaches
the point Q0 = 0, it stays at this point with further increase
of parameter q0. All peaks have the same shift magnitude, but
the direction is different for peaks below and above the point
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FIG. 3. (Color online) Ferroelectricity breaks down a fundamental property of an SET: the periodicity of its transport properties in a gate
voltage Vg . Only for an effective gate voltage |Q0| > 1/2 the conductance peaks are equidistant. Upper row: the effective free energy fn of an
SET, see Eq. (4). Middle raw: the zero bias conductance. Lower raw: the conductance density plot. Parameters: C1 = 0.3, C2 = 0.5, Cg = 0.2,
R1 = 1, R2 = 2, Vs = 0.01, and Vh = 0.

Q0 = 0. This leads to the breaking of periodicity in the
conductivity peaks of FE SET. The numerically calculated
conductance peaks approximately correspond to the degener-
acy points as shown in Fig. 3.

In orthodox theory, the conductance of SET (without
ferroelectricity) at low temperatures, T � Ec, is

G(δQ0) = 1

2

1

R1 + R2

e δQ0/C�T

sinh(e δQ0/C�T )
. (5)

Here, δQ0 = mink[Q0 − (2k + 1) e
2 ] � e is the deviation of

the induced charge by the gate terminal from the nearest
degeneracy point. With ferroelectricity in the gate, we should
replace the deviation δQ0 by

δQs → min
k

[
q0 tanh

( 〈φ〉 + Q0/Cg

Vs

)

+Q0 − (2k + 1)
e

2

]
. (6)

This equation is valid for a small parameter q0 � 1. For small
switching voltage, Vs � 1, we can replace tanh in Eq. (6) by
unity and using Eq. (5) find that the conductance peaks are
shifted by q0 for Q0 > 0 and by −q0 for Q0 < 0. This is
consistent with numerical calculations, see Fig. 3.

The most important effect that follows from Eq. (6) in
the presence of a ferroelectric material is the break up of
conductance periodicity in the parameter Q0. This periodicity
is the basic property of SETs; it is robust in the presence of
ferroelectrics in the capacitors between the left and the right
leads [15]. However, numerical calculations show that this
periodicity is absent when a ferroelectric is placed inside the
gate capacitor, see Fig. 3.

This break of periodicity is a very general result. It follows
from the nonperiodic and nonlinear dependence of the FE
polarization on the effective charge Q0. The FE polarization
is defined by the difference of two quantities, the average
grain potential 〈φ〉 and the gate voltage Vg . The potential 〈φ〉
oscillates around zero while the voltage Vg grows unlimited.

As a result, the FE polarization is saturated for voltages |Vg| �
|e|/C� + Vs , however, its direction depends on the sign of the
gate voltage Vg producing the opposite shifts of conductance
peaks at voltages Vg = ±∞.

Another interesting phenomenon appearing due to the
presence of the FE layer is the hysteresis conductivity behavior.
We remind that in this section we consider an FE without
hysteresis. However, even in this case, the conductivity peak
in the vicinity of Q0 = 0 is split into two branches, see the
right panel in Fig. 3. The pronounced [23] hysteresis appears
for q0 > 0.5 where the system polarization has two stable
ground states corresponding to two different directions of the
FE polarization (toward the grain and toward the gate) and
two different grain charges, positive and negative. These two
states have different conductivity. For steplike polarization, the
hysteresis appears for peaks located in the vicinity of Q0 = 0.

With increasing temperature the hysteresis disappears. The
criterion for hysteresis existence has the form, e�0,1/(�0,1 +
�1,0) = Qmax < q0, where �i,j is the transition rate between
the states with grain charges i and j and 0.5 < q0 < 1.5. Qmax

decreases with increasing temperature. We demonstrate the
existence of two ground states in the Appendix A 5.

Now we consider small but finite values of switching voltage
Vs and investigate the correlation of the conductance peaks and
polarization evolution with parameter Q0. For a parameter
q0 � 0.5, the conductance peaks do not merge, however, they
deform approaching the point Q0 = 0. This is related to the
switching of polarization with Q0, see Fig. 4.

For 0.5 < q0 < 1, the conductance shows a pronounced
memory effect (hysteresis), Fig. 3. The positions of the jumps
in the conductance correspond to the divergences of dG

dQ0
[15].

The amplitude of the conductance peaks in this regime is
suppressed for q0 > T . The evolution of memory effect in
the conductance with parameter q0 is shown in Fig. 3. The
conductance has similar behavior for 1 < q0 < 1.5 and for
1.5 < q0 < 2 its behavior coincides with the conductance
behavior for 0.5 < q0 < 1. Thus the transport properties of
SET are periodic in q0 with the period 1. However, this
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FIG. 4. (Color online) (a) Conductance vs effective gate voltage
Q0. (b) Ferroelectric polarization vs Q0. (c) Voltage bias in the gate
capacitor, 〈φ〉 − Vg . The jumps in the conductance and polarization
in Fig. 3 for q0 < 0.5 are related to a memory effect instability but
with a thin hardly detectable hysteresis loop. (Insert) Voltage bias vs
Q0 for small values of Q0. All parameters are the same as in Fig. 3,
except T = 0.03.

statement is approximate: it is valid for small values of
switching voltage Vs and a negligible parameter α only.

The insert in Fig. 4 shows the deviation of 〈φ〉 from Vg in the
region, (ne − q0)/C � Vg � (ne + q0)/C. It nearly linearly
depends on Q0. After the substitution of tanh( 〈φ〉−Vg

Vs
) instead

of sign(φ − Vg) in Eq. (2), an estimate follows that in the
leading order over Vs , 〈φ〉 − Vg ≈ VsQ0/q0.

2. Ferroelectric with large switching field: Vs � 1. Breaking
and condensation of conductance peaks

For a large switching field, Vs � 1, the picture is more com-
plicated. The conductance G(Q0,q0) is not a periodic function
of parameter q0 any more. Instead, some interesting effects
related to the breaking and condensation of conductance peaks
appear.

The closest peaks to Q0 = 0 are not only shifted but also
reshaped and finally break at the critical values of parameter
q0, Fig. 5. We classify the conductance peaks by their original
positions at q0 = 0 when they are located at half-integer Q0.
We call the peaks located at Q0 = ±1/2 the first pair of peaks,
while the peaks sitting at Q0 = ±3/2 the second pair of peaks.
The first pair of conductance peaks breaks at q0 = qc1

0 , while
the second pair breaks at qc2

0 � qc1
0 , Fig. 5. By increasing

the parameter q0, the memory-dependent conductance peaks
slowly regroup around Q0 = 0, some of them even “collide”
with each other, Fig. 5(d). We call this system behavior the
conductance peak condensation.

We introduce the quantity αl(V ) = ∂P/∂V . In the vicinity
of zero voltage, αl ≈ q0/Vs . For voltages V > Vs , we find
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FIG. 5. (Color online) Conductance G and polarization P vs q0

for Vs = 1. All parameters are the same as in Fig. 3, except T = 0.03.
With increasing q0 the conductance peaks are shifting towards
Q0 = 0. At critical q0, bifurcation appears and the conductance
peaks close to Q0 = 0 become memory dependent. (a) For q0 < 0.35,
the conductance G(Q0) is an ambiguous function. At q0 ≈ 0.35, a
bifurcation point for the first pair of G peaks appears. (b) At q0 ≈ 1.2,

the second bifurcation point for the next pair of conductance peaks
appears. (c) Evolution of the memory effect with q0. (d) For further
increase of q0, the memory-dependent conductance peaks are shifting
towards Q0 = 0 and finally “collide” with each other. Arrows in
(a)–(d) show the memory effect branches for increasing (decreasing)
Q0. (e)–(h) Conductance and polarization of the ferroelectric. The
branches of G(Q0) for increasing (decreasing) Q0 are shown by solid
and discontinuous curves, respectively.

αl ≈ 0. The relation between the grain charge and the grain
potential has the form ne = Q0 + C�φ + ∫ φ−Vg

0 αl(u)du. The
position of conductance peaks can be approximately evaluated
using the following relation:

Qn
0 +

∫ Q0/Cg

0
αldu = (n + 1/2)e. (7)

In the vicinity of Q0 = 0, the distance between peaks reduces
from 1e to 1e/(1 + α/Cg). For Q0 > VsCg , the interpeak
distance becomes 1e.

Now we focus on the polarization dependence of parameters
Q0 and q0 and their correlation with features in the conduc-
tance peaks. As follows in Figs. 5(e)–5(h), the polarization
also shows a memory effect similar to the conductance. In
Fig. 5(g), one can see a number of hysteresis loops; their edges
exactly correspond to specific features in the conductance; the
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number of the hysteresis loops corresponds to the number
of conductance peaks broken and “condensed” near Q0 = 0.
At first glance, the sharp changes in the polarization in
Fig. 5 contradict the chosen parameter Vs = 1 that makes the
polarization a smooth function, Eq. (1). However, the features
are related to the quantization of the excess charge on the grain
of SET and not to the parameter Vs .

In the vicinity of Qn
0, the ground state of the SET is

described by Eqs. (A21)–(A23). These equations provide the
criterion for the hysteresis appearance:

T < T n
cr = E0

c αl

4
[
C� − αl

(
Qn

0/Cg

)] . (8)

The hysteresis appears first for peaks in the vicinity of Q0 = 0
where αl is large. At large Q0 the hysteresis disappears since
αl → 0. Similar to steplike polarization behavior the hysteresis
disappears with increasing temperature.

In Fig. 6, we investigate an SET with a large switching
voltage, Vs = 5. Qualitatively, the conductance behavior is
similar to the case of Vs = 1 except the fact that more con-
ductance peaks are involved in the memory effect for similar
values of q0. Figure 6 shows the evolution of conductance
with parameter q0 = 1,3,10. The density plots for conductance
show a complicated structure, strongly nonperiodic in Q0

unlike the SET without ferroelectricity.
Analyzing the numerical data, we conclude that the conduc-

tance peaks condensation appears for the following gate volt-
ages: |Vg| − 〈φ〉max < Vs or |Q0| < Cg(Vs + 〈φ〉max), where
〈φ〉max is the maximum grain potential. At zero temperature,
T = 0, the maximum grain potential is 〈φ〉max = |e|

2C�
. The

number of condensed peaks is approximately equal to the
maximum polarization charge that the ferroelectric can induce
on the grain, Ncond ≈ 2q0.

3. Temperature dependence of the memory effect

The important question is the temperature dependence
of the memory effect. According to Eq. (5), the width of
the conductance peaks in an SET without ferroelectricity is
approximately proportional to the temperature. A similar effect

can be seen with a ferroelectric located in the gate capacitor,
see Fig. 7(a). Moreover, it follows that there is a pronounced
temperature dependence of the critical q0 where the first,
second, etc., peaks undergo the bifurcation and acquire the
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the same as in Fig. 3, except Vs = 1. Branches of G(Q0) for increasing
(decreasing) Q0 are shown by solid and discontinuous curves. (c) and
(d) Critical q0 where the first and the second pairs of conductance
peaks undergo the bifurcation and acquire a memory dependence. (c)
Suppression of q0

c for finite α. (d) Bifurcation point αc where all q0
c

merge and go to zero. The conductance G(Q0) behavior for α > αc

is different from its behavior for α < αc.
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is different from its behavior for α < αc. Since all qc are zero above
αc, the conductance peaks have hysteresis for all Q0. Here, Vs = 1,
T = 0.1, q0 = 1, α = 0.5 < αc in (a) and (b), while α = 2 > αc in
(c) and (d). Branches of G(Q0) for increasing (decreasing) Q0 are
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memory dependence. The graphs of q
c1,2
0 are shown in the

inset of Fig. 7(c).

4. Influence of finite linear term in Eq. (1)

The presence of the linear term α in Eq. (1) for a polarization
P strongly influences the conductance of an SET, Fig. 7(b).
Generally, a finite α leads to the renormalization of αl: αl →
αl + α. Finite α causes the hysteresis behavior of all peaks at
small enough temperature. The presence of a small α shifts
the conductance peaks and reduces their amplitudes, while
the larger α changes the critical values of parameter q0 where
the corresponding conductance peaks undergo a bifurcation
and acquire a memory dependence. Figure 7(d) shows that the
presence of a finite α suppresses q0

c . There is a bifurcation
point αc where all q0

c merge and reach zero. The behavior
of conductance G(Q0) for α > αc is very different from its
behavior for α < αc. This is related to the fact that all qc are
zero above αc therefore all the conductance peaks for any value
of parameter Q0 have the hysteresis, Fig. 8.

The critical α can be found analytically. We find α

corresponding to an ambiguous solution for the ferro-
electric polarization qe in the limit Q0 → ∞ using the
self-consistency equation qg = qg(V ) = qg(〈φ〉(Q0 + qg) +
Q0/Cg), Appendix. Differentiating in voltage Q0 we find

dqg

dQ0
= α

[
d〈φ〉(Q′

0)

dQ′
0

(
1 + dqg

dQ0

)
+ 1

Cg

]
, (9)

where Q′
0 = Q0 + qg and 〈φ〉(Q0) denotes the average poten-

tial of an SET without a ferroelectric in the gate capacitor. The

ambiguity in the solution of qg(Q0) results in the appearance of
singularity in its derivative. According to Eq. (9), the derivative
dqg/dQ0 becomes singular at some points if

max
Q0

(
α

d〈φ〉(Q0)

dQ0

)
> 1. (10)

According to the orthodox theory, the derivative of the average
potential approaches its maximum at the degeneracy points
leading to

αc = C�

(
Ec

2T
− 1

)−1

. (11)

Another effect due to the presence of finite α is the renor-
malization of the distances between the conductance peaks
for Q0 away from zero. For zero temperature, the distances
between peaks are reduced by a factor of (1 + α

Cg
)/(1 + α

C�
).

5. Giant hysteresis memory loop in the absence
of P(V ) hysteresis (Vh = 0)

Above, we showed that ferroelectricity drives the memory
effect. Here, we show that it can be “giant.” This is so if the
effective charge “induced” by the ferroelectric at the grain
is large enough, for example, q0 = 10, Fig. 9. We mention
that we still use Vh = 0 such that the hysteresis in P (E)
is absent, Eq. (1). However, P (Q0) has a large hysteresis.
Each small step in P (Q0) curve in Fig. 9(b) corresponds to
the change of the grain charge by the charge quantum. This
large Coulomb blockage hysteresis is further increased for
Vh > 0. This giant hysteresis memory loop has potential for
applications in memory devices.

This effect can be thought of as an extreme case of “peak
condensation.” When enough peaks are “condensed,” the
conductance behavior acquire the quasioscillatory character
in the vicinity of Q0 = 0. Physically, this corresponds to the
situation when a small change in Q0 causes the number of
electrons on the grain to be changed by one at the expense of
the FE polarization. As a result of being a periodic function of
the number of excess electrons on the grain the conductance
changes little in this process. The same is true for the average
potential.

Below we discuss the SET parameters and conditions to
observe the effect of gigantic hysteresis loop. First, the width
of the hysteresis loop is restricted by the gate capacitance Cg

meaning that it is beneficial to have a large Cg , Cg > C1,C2.
Second, the switching voltage Vs should be of the order of 1
for the polarization not to flip to fast with the change of Q0.
Third, the conductance peaks should start merging meaning
that there should be enough number of them (large q0) and
their width should be sufficient (not too low temperatures, T ).

B. Ferroelectric with finite hysteresis loop

Now, we consider a ferroelectric with finite hysteresis in the
polarization—the electric field dependence is given by Eq. (1).
In general, the state of FE depends on the whole history of its
evolution, however, here we consider only processes with a
monotonous change of FE polarization where the hysteresis-
loop approximation is valid.
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FIG. 9. (Color online) Coulomb blockade induced memory effect [in the absence of P (V ) hysteresis]. Here, Vh=0, C1 = 0.1, C2 = 0.05,
Cg = 0.85, q0 = 10, T = 0.06, Vs = 0.3, and α = q0/(30Vs). There is no hysteresis in P (E), see Eq. (1). (a) Conductance, (b) average grain
potential (each small step in polarization P (Q0) in (b) corresponds to the change of the grain charge by the charge quantum), (c) polarization,
and (d) Coulomb-diamond plot (color gradients show the conductance). In (a)–(c), the red curves correspond to the memory branch with
increasing Q0, while the green curve to the decreasing Q0. (d) corresponds to increasing Q0. Plot (e)–(g) shows the conductance, average
potential of the grain and polarization for q0 = 50 and T = 0.1 (α here is larger αc). Insets in (g) show G and 〈φ〉 for q0 = 150.

Figure 10 shows the conductance and polarization of
a ferroelectric with a finite width hysteresis loop. Graphs
(a), (b), and (d) compare SETs with voltages Vh = 0 and
Vh > 0, where for Vh = 0 there is no memory effect in the
conductance G(Q0). As follows, the intrinsic hysteresis in the
FE polarization-voltage dependence increases the hysteresis
in the conductance.

This behavior is predictable in comparison to the negligible
hysteresis case. The hysteresis in Eq. (1) is equivalent to the
introduction of an additional polarization-induced charge on
the grain, where charge is being dependent on the evolution of
Q0:

δq�
g = q0

[
tanh

(
V ± Vh

Vs

)
− tanh

(
V

Vs

)]
. (12)

This additional charge vanishes in the limit Q0 → ±∞, but
even in this limit it causes further retardation of the FE polar-
ization change with Q0 in the region around zero. Moreover,
the intrinsic FE polarization causes broadening of the interval
of Q0 where the state of the FE SET is not unique. This interval
region is estimated as |Q0| < Cg(Vs + 〈φ〉max + Vh).

IV. DISCUSSION

Typical experimental parameters of SETs and ferroelectric
materials were discussed in details in our previous paper [15].

A. Influence of cotunneling

Above, we discussed an SET with a ferroelectric gate using
the orthodox theory. Now, we go beyond this theory and show
how the finite junction conductances influence our results.
In particular, we show that the next order corrections to the
SET conductance and the island occupation number do not
qualitatively change the system behavior, but rather introduce
some quantitative corrections.

The orthodox theory assumes that the junction conduc-
tances are small compare to 4π2e2/h and takes into account
only the lowest order processes in the tunneling matrix
elements. In this section, we use the results of [24] to calculate
the second-order corrections to the conductance and the
first-order correction to the electron mean occupation number
on the island. The latter results in a corrected average island
potential 〈φ〉 that is used in the self-consistency equation.
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FIG. 10. (Color online) Conductance and polarization of a ferroelectric with finite hysteresis. Graphs (a), (b), and (d) compare SETs with
Vh = 0 and Vh > 0; for Vh = 0, the memory effect is absent in G(Q0). In graphs (a)–(c), parameters T = 0.03, Vs = 0.01, and q0 = 0.35 are
the same as in Fig. 3. As follows from (a)–(c), the hysteresis in the polarization-voltage dependence drives the hysteresis in the conductance.
Insets in graph (c): conductance diamonds evolution with voltage Vh. Graphs (d)–(f) show a memory effect in G(Q0) for Vh = 0.

In this section, we measure the resistance in quantum units
Rq = h/(4π2e2).

In the theory of SET the second-order corrections in the
tunneling conductance manifest themselves in reshaping the
conductance peaks and in fluctuations of the electron number
on the island. For an SET with a ferroelectric gate, the first
effect remains, except the fact that the reshaping becomes more
complicated in the vicinity of Q0 = 0. However, the quantum
charge fluctuations introduce a new effect—they reduce the
polarization hysteresis loop. This phenomenon stems from the
fact that additional fluctuations of the island charge allow the
FE polarization to be switched more easily. However, this
effect cannot eliminate the hysteresis completely because the
charge fluctuations are suppressed outside the conductance
peaks. Typical shifts in the polarization hysteresis due to
quantum fluctuations are shown in Fig. 11.

B. Memory-effect devices

The presence of hysteresis in the transport characteristics
of ferroelectric SETs has potential applications for memory
devices. The memory bit is associated with the particular
direction of the ferroelectric polarization in the gate capacitor.
The memory storage corresponds to the zero gate voltage
(Q0 = 0). For example, if we measure the conductance at
a fixed parameter Q0 = 0.5 in Fig. 10(d), it gives the direction
of the polarization. This is the reading operation. The writing
information (fixation of a particular polarization direction) can
be performed by applying a large enough gate voltage (Q0).

The stored information may be strongly influenced by the
fabrication-dependent SET parameters such as q0 and Vs . For
instance, a change in q0 by half of the elementary charge would
shift the conductance peaks by half a period, dramatically
changing the relationships between conductances and island
potentials for opposite FE polarization.

For memory application, a VDF-TrFE ferroelectric can be
used [25]. It has a Curie point above the room temperature. The

polarization of this relaxor in the vicinity of room temperature
is about P = 3 mkmC/m2 producing a charge q0 ≈ 0.5e
for 5-nm grain size. Moreover, the magnitude of VDF-TrFE
polarization can be tuned varying the VDF concentration. The
dielectric permittivity of this relaxor is rather small in the
vicinity of room temperature, εVDF−TrFE ≈ 5. Therefore this
ferroelectric can not suppress the Coulomb blockade effect and
the charging energy can be as high as 2000 K. This allows the
memory device to operate at room temperature. For a memory
device, the FE thickness can be of order 10 nm. Assuming that
the distance between the grain and the leads is about 1 nm,
we obtain a good relation between the gate capacitance and
the leads capacitors. The switching field of this FE is about
600 kV/cm giving Vh ≈ 2.5. Using the above estimates one
can see that the SET with a VDF-TrFE ferroelectric has a
behavior similar to the one shown in Fig. 10. Therefore this
system can be used for memory applications.

However, utilizing the giant hysteresis memory loop
described in Sec. IIIA5 can provide another configuration,
which is less sensible to the SET parameters. As numerical
calculations show (see Fig. 11), for a large enough parameter
q0, the island potential tends to “stick” to its maximum or
minimum value at Q0 = 0 depending on the way it was
set there. Thus the island potential may serve as a reliable
indicator of the ferroelectric polarization, which can be directly
measured using an auxiliary quantum dot [26].

C. Conclusions

We investigate the electron transport properties of an SET
with an FE insulator placed between the metallic grain and
the gate electrode. The mutual influence of charged grain
and the FE polarization leads to drastic changes in the SET
transport. In particular, (i) there is an ambiguity in the I (V )
characteristics of an SET with a ferroelectric gate capacitor
originating from the nonlinear mutual influence of electrons
at the metallic grain and the FE polarization. It appears even
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effective charge, Q0 effective charge, Q0

FIG. 11. (Color online) (Left) Coulomb-blockade induced hysteresis loop of the gate ferroelectric polarization for different resistances of
the tunnel junctions (the polarization is expressed in charge units). (Right) Conductance peaks line shape distortion for different resistances of
tunnel junctions (G is normalized to the conductance of orthodox model). Parameters: C1 = 0.05, C2 = 0.1, Cg = 0.85, q0 = 10.1, Vs = 0.3,
and T = 0.03.

in the absence of hysteresis in the FE polarization. (ii) The
state of an SET is no longer periodic in the gate voltage
(Q0). In particular, a “condensation” of the conductance
peaks appears in the vicinity of Q0 = 0. The range of Q0

where the conductance peaks condensate depends weakly on
the ferroelectric properties and other transistor parameters.
For Vh = 0, the peak condensation appears for gate voltages
|Vg| − 〈φ〉max < Vs or |Q0| < Cg(Vs + 〈φ〉max), where 〈φ〉max

is the maximum grain potential. At zero temperature, T = 0,
the maximum potential is 〈φ〉max = |e|

2C�
. The number of the

condensed peaks is approximately equal to the maximum
polarization charge that the ferroelectric can induce on the
grain: Ncond ≈ 2q0. (iii) The linear part of the ferroelectric
polarization αV substantially influences the conductance
behavior as a function of the parameter Q0. In particular,
a finite α leads to the reduction of conductance peaks and
the distances between the peaks in the whole range of Q0

(not only for small Q0). (iv) A finite hysteresis loop of the
FE polarization makes the distinction between forward and
backward change of voltage Vg more pronounced. A finite
voltage Vh is not needed for ambiguity in the SET state to
appear.
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APPENDIX: THEORY OF FERROELECTRIC
SINGLE-ELECTRON TRANSISTOR

1. Self-consistent solution

In this section, we show how the influence of ferroelectric
polarization can be included into the theory of SET. We limit
our consideration to the case of sufficiently slow ferroelectric
response times τP compare to the electron tunneling time

τe = R�C� . The opposite limit is discussed in Ref. [15]. We
consider the steady-state solutions.

We use the following Hamiltonian to describe the SET:

H = H1 + H2 + HI + Hc + HT . (A1)

Here, Hk = ∑
l εkla

†
klakl , k = 1,2,I denotes Hamiltonians for

isolated right and left leads and the island, respectively, HT is
the tunneling Hamiltonian, and Hc is the Coulomb energy of
the form

Hc = 1

2C�

[
en̂ − Q0 − (C1 − C2)

V

2

]2

. (A2)

Q0 = −CgVg is the effective charge. The notations for
voltages and capacitances are similar to Fig. 1.

The Coulomb Hamiltonian in Eq. (A2) treats the dielectric
polarizations in the junctions as classical variables. Thus it
can be easily generalized to the case of an additional FE
polarization P by adding the term ∝ n̂P :

H ′
c = 1

2C�

[
en̂ − Q0 − qg − (C1 − C2)

V

2

]2

. (A3)

Equation (A3) is valid for “frozen” FE polarization, meaning
that it is constant on the time-scales of tunneling. This limit
is justified assuming that the slow polarization is defined
by the mean field and is weakly influenced by the fast
field fluctuations of the charge tunneling. To find a steady
state of a SET, the equilibrium FE polarization Peq must be
taken constant for calculating the electron tunneling rate. This
constant polarization yields an additional constant charge on
the island qg:

qg =
∫

g

dSg · Peq. (A4)

The Coulomb Hamiltonian in Eq. (A3) coincides with the
usual SET Hamiltonian if we introduce a new effective gate
charge Q′

0 = Q0 + qg . Thus, for a given FE polarization, the
steady state of the FE SET can be calculated using the theory
of usual SET. On the other hand, the polarization of the FE by
itself is determined by the mean electric field resulting from
the microscopical tunneling dynamics. Therefore the complete
steady-state solution for the FE SET is obtained when the
equilibrium FE polarization and the tunneling dynamics are
calculated self-consistently [15].
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2. First-order theory

Here, we discussed the first-order perturbation theory in
tunneling. For the FE induced charge, we use the following
expression:

qg = q0 tanh

(
V ± Vh

Vs

)
+ αV. (A5)

Here, V = 〈φ〉 − Vg is the voltage across the gate junction. The
average island potential 〈φ〉 that plays a key role in determining
the FE polarization is a linear function of the average island
occupation number 〈n〉:

〈φ〉 = 1

C�

[
e〈n〉 − Q0 − qg − (C1 − C2)

V

2

]
. (A6)

In the leading order, the probability per unit time to change
the island occupation number from n to n ± 1 through the first
junction is given by the Fermi golden rule:

�
(1)
n→n±1 = 1

e2R1
· �Fn→n±1

1 NB

(
�Fn→n±1

1

)
, (A7)

where NB(ω) = 1/[exp(ω/T ) − 1] is the Bose function [27],
R1 is the tunneling bare resistance, and �Fn→n±1

1 denotes the
free energy change with Q′

0 being the effective charge:

�Fn→n±1
1 = e2

C�

[
1

2
±

(
n − Q′

0

e

)
± (C2 + Cg/2)V

e

]
.

(A8)

The flow rates defined the probabilities pn to find n excess
electrons on the island through the detailed-balance equations:

pn

(
�

(1)
n→n+1 + �

(2)
n→n+1

) = pn+1
(
�

(1)
n+1→n + �

(2)
n+1→n

)
,

(A9)

with boundary conditions p±∞ = 0. In their turn, the proba-
bilities pn are used to calculate the average occupation number
and the average potential through Eq. (A6). The last step is to
solve Eqs. (A5) and (A6) together to obtain a self-consistent
solution.

Knowing the FE induced charge q
eq
g , the current through

the SET can be found:

I = |e|
∑

n

pn

(
�

(1)
n→n+1 − �

(1)
n→n−1

)
, (A10)

where all the rates are calculated with Q′
0 = Q0 + q

eq
0 being

the effective charge.

3. Higher-order corrections

Here, we consider next order corrections to the average
occupation number and to the tunneling current. If the
corrections for SET without FE are known as a function of
the effective charge Q0, these corrections can be generalized
for FE SET. Indeed, to solve the self-consistency Eqs. (A5)
and (A6), we need to know the dependence of 〈n〉 on Q0 for
an SET without ferroelectricity. If this dependence is known,
〈n〉(Q0) = 〈n〉(0)(Q0) + 〈n〉(1)(Q0) + . . . , it can be placed in
Eq. (A6) with the proper substitution for Q0 → Q0 + qg .

In the Sec. IV A, we used the results of Ref. [24] for low
temperatures, where it was shown that in the first-order theory,

the occupation probabilities of only two neighboring states (n
and n + 1 excess electrons) significantly deviate from zero.
The correction to the average occupation number is given by

〈n〉(1) = C�

e

∂

∂Q0

[
p(0)

n (φn − φn−1) + p
(0)
n+1(φn+1 − φn)

]
,

(A11)

where

φn =
∑
k=1,2

Rq

Rk

�Fn→n+1
k Re 

[
i
�Fn→n+1

k

2πT

]
, (A12)

p
(0)
n,n+1 are the lowest-order state occupation probabilities,

Rq = h/(4π2e2), k denotes junctions, and  is the digamma
function.

Following Ref. [24], we introduce the generalized flaw rates
to calculate the corrections to the tunneling current:

g±
k (ω) = ±Rq

Rk

ω − μk

exp(±(ω − μk)/T ) − 1
, (A13)

g±(ω) =
∑
k=1,2

g±
k (ω), g(ω) =

∑
σ=±

gσ (ω), (A14)

where μk = ±eV/2 are the chemical potentials of the elec-
trodes. Additionally,

�n = 〈n + 1|H ′
c|n + 1〉 − 〈n|H ′

c|n〉. (A15)

We consider the case with 0 or 1 excess electrons occupying
the island. To calculate the corrections for arbitrary voltages
and FE polarization, we shift the parameter Q′

0 by nshe, where

nsh =
[
Q0 + qg + (C1 − C2)V/2

e

]
. (A16)

Therefore, in the following, we assume that 0 < (Q′
0 + (C1 −

C2)V/2)/e < 1. The first-order tunneling current can be
written as follows:

I (1)(�0) = 4π2e

h

g+
2 (�0)g−

1 (�0) − g+
1 (�0)g−

2 (�0)

g(�0)
.

(A17)

The second-order contribution to the tunneling current is
divided into three parts: I (2)(�0) = ∑3

i=1 I
(2)
i (�0), where

I
(2)
1 (�0) =

∫
dω I (1)(ω)g(ω)

× Re
[
p

(0)
0 R−(ω)2 + p

(0)
1 R+(ω)2], (A18)

I
(2)
2 (�0) = −I (1)(�0)

∫
dω Re

∑
σ=±

gσRσ (ω)2, (A19)

I
(2)
3 (�0) = −∂I (1)(�0)

∂�0

∫
dω Re

∑
σ=±

gσRσ (ω), (A20)

where R±(ω) = 1/(ω − �0 + i0+) − 1/(ω − �±1 + i0+)
and the poles at ω = � are regularized as Cauchy’s
principal values Re[1/(x + i0+)] = P 1

x
and their derivatives

Re[1/(x + i0+)2] = − d
dx

P 1
x

.
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4. Choosing branches

The self-consistent solution of Eqs. (A5) and (A6) may not
be unique leading to the hysteresis behavior discussed in this
paper. Thus we encounter the problem of choosing branches.
Here, we explain the rules for selecting the solutions.

The self-consistent state is unique for the effective charge
being away from the resonance and the linear part of the
FE polarizability α being sufficiently small. There are two
situations: (i) Q0 evolved from −∞ to the right and (ii) from
∞ to the left. Over the course of Q0 evolution at some values of
parameter Q0 the solution can become discontinuous. In this
case, we assume that the polarization “jumps” to the nearest
available position. There is no ambiguity in choosing the new
state, because the polarization always evolves monotonically
and takes its maximum or minimum value depending on the
direction of evolution.

5. Ground state of FE SET with steplike polarization

For calculating the ground state of the system, all states
are important. However, the hopping probability decreases
exponentially with increasing the free energy of a state.
Therefore we consider only few states that are the closest
to the considered point. The number of these states depends
on the parameter q0 and the considered point. For q0 < 0.5e,
only two states n and n + 1 are important for calculating 〈φ〉
for any n. Increasing the parameter q0 leads to a shift of
the energy intersection points to Q0 = 0. For q0 > 0.5, the
situation is more complicated. In the vicinity of Q0 = 0, a lot
of intersections of different energy branches occur and one has
to take into account many different states. However, for large
values of Q0, only two states of energy intersection points are
important.

We consider the case when two states are enough to
describe the system state and concentrate on the vicinity of
the point Q0 = e(n + 1/2) − q0 with Q0 > 0 and q0 < 0.5e.
The average charge is given by the expression

〈ne〉 = 〈Q〉 = e[nWn + (n + 1)Wn+1], (A21)

where Wn,n+1 are the probabilities for the system to be in the
state with n and n + 1 electrons on the grain. If only two states
are present, we find

Wn = �n,n+1

�n,n+1 + �n+1,n

,

Wn+1 = �n+1,n

�n,n+1 + �n+1,n

,

(A22)

�n,n+1 = E0
c (n + 1/2 − Q0/e − S P (〈φ〉 − Vg)/e)

eβE0
c (n+1/2−Q0/e−S P (〈φ〉−Vg )/e) − 1

,

�n+1,n = −E0
c (n + 1/2 − Q0/e − S P (〈φ〉 − Vg)/e)

e−βE0
c (n+1/2−Q0/e−S P (〈φ〉−Vg )/e) − 1

,

where β = T −1 and the parameter S is approximately the area
of the grain in contact with the ferroelectric. Averaging Eq. (3),
we find the following relation:

〈Q〉 = C�〈φ〉 + Q0 + SP (〈φ〉 − Vg). (A23)

Equations (A21) and (A23) have always a single solution.
Therefore there is no hysteresis in the system for q0 < 0.5e

and arbitrary Q0. The conductivity of an SET has a maximum
at Wn = Wn+1. These maxima are located at point Q0 = e(n +
1/2) − q0. The average potential at these points is 〈φ〉 = 0.

For q0 > 0.5e and Q0 > 0.5e, there is no hysteresis. In the
vicinity of Q0 = 0, the system shows a hysteresis and can not
be described by two states. For q0 ∼ 0.5e, three states n =
0, ± 1 need to be taken into account in the vicinity of Q0 = 0,
see Fig. 3. For q0 ∼ 1.5e, five states n = 0, ± 1, ± 2, etc.

For q0 ∼ 0.5e, the system probabilities with n = 0, ± 1
have the form

W−1 = �0,−1

�−1,0
W0,

W1 = �0,1

�1,0
W0, (A24)

W0 =
(

1 + �0,−1

�−1,0
+ �0,1

�1,0

)−1

.

The average charge 〈Q〉 is given by the following expression:

〈Q〉 = e(W1 − W−1). (A25)

Solving Eqs. (A25) and (A23), we find the average potential
〈φ〉. Figure 12 shows the dependence Eq. (A25) (solid line)
and Eq. (A23) (dashed line) on 〈φ〉 for Q0 = 0. In this figure,
the curves have three intersections at points φ−1,0,1 meaning
that the system has hysteresis. The asymptotic behavior of
Eq. (A25) for Q0 = 0 is the following:

Qmax(T ) = ± e�0,1

�0,1 + �1,0
. (A26)

The value Qmax depends on temperature and decreases
with increasing T . At temperature T = Th, it becomes smaller
than q0. For temperature T > Th, the hysteresis disappears.
However, at high enough temperatures, all states need to be
taken into account and the description with three states only
(n = 0, ± 1) can be incorrect.

FIG. 12. (Color online) Dependencies of Eq. (A25) (solid line)
and Eq. (A23) (dashed line) on 〈φ〉. The curves are plotted for the
following parameters: q0 = 0.55, Cg = 0.2, T = 0.03, and Q0 = 0.
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