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The few-determinant (FED) methodology, introduced in our previous works [R. Rodrı́guez-Guzmán et al.,
Phys. Rev. B 87, 235129 (2013); 89, 195109 (2014)] for one-dimensional (1D) lattices, is here adapted for the
repulsive two-dimensional Hubbard model at half filling and with finite doping fractions. Within this configuration
mixing scheme, a given ground state with well-defined spin and space group quantum numbers is expanded in
terms of a nonorthogonal symmetry-projected basis determined through chains of variation-after-projection
calculations. The results obtained for the ground-state and correlation energies of half-filled and doped 4 × 4,
6 × 6, 8 × 8, and 10 × 10 lattices, as well as momentum distributions and spin-spin correlation functions in
small lattices, compare well with those obtained using other state-of-the-art approximations. The structure of
the intrinsic determinants resulting from the variational strategy is interpreted in terms of defects that encode
information on the basic units of quantum fluctuations in the considered 2D systems. The varying nature of the
underlying quantum fluctuations, reflected in a transition to a stripe regime for increasing on-site repulsions,
is discussed using the intrinsic determinants belonging to a 16 × 4 lattice with 56 electrons. Such a transition
is further illustrated by computing spin-spin and charge-charge correlation functions with the corresponding
multireference FED wave functions. In good agreement with previous studies, the analysis of the pairing
correlation functions reveals a weak enhancement of the extended s-wave and dx2−y2 pairing modes. Given
the quality of results here reported together with those previously obtained for 1D lattices and the parallelization
properties of the FED scheme, we believe that symmetry projection techniques are very well suited for building
ground-state wave functions of correlated electronic systems, regardless of their dimensionality.
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I. INTRODUCTION

Due to its challenging complexity, the description of low-
dimensional correlated electronic systems still represents an
open problem in condensed matter physics [1,2]. In particular,
their quantum correlation effects can exhibit unconventional
features. A typical example is the spin-charge separation [3–5]
in the strong interaction regime of the one-dimensional (1D)
Hubbard model [6,7]. Angle-resolved photoemission spec-
troscopy studies also reveal a complex pattern of spin-charge
coupling/decoupling in both the 1D and two-dimensional
(2D) cases in the weak and intermediate-to-strong interaction
regimes [8,9]. How to account for these, and many more, quan-
tum correlation effects in the simplest possible way has become
a driving force for developing theoretical approximations that
could complement already existing state-of-the-art methods
such as exact diagonalization [1,10] (ED), quantum (QMC)
and variational (VMC) Monte Carlo [11–14], coupled cluster
[15,16], variational reduced density matrix [17], density matrix
renormalization group [18,19], matrix product and tensor
network states [20–24], and quantum embedding approaches
[25–36]. All these methods have already been applied to
Hubbard-like 1D and/or 2D models with variable degrees of
success.

The exact Bethe-ansatz solution to the 1D Hubbard model
is well known [37,38]. Because of this, the model has been
frequently used as a testing ground for several theoretical
frameworks. However, an intuitive physical picture of the basic
units of quantum fluctuations in the considered 1D systems has
remained an open issue within several approximations. In re-
cent years, both single reference (SR) and multireference (MR)

symmetry-projected approximations [39–54], routinely used
in nuclear structure physics [55–61], have been applied to de-
scribe correlated electronic systems. It has been shown that MR
schemes such as the resonating Hartree-Fock [39–42,62–65]
(ResHF) and the few-determinant [46–49,56,57] (FED) ones,
provide a reasonable description of the ground-state energies
of half-filled and doped 1D Hubbard lattices but also ac-
count for the main physical trends in correlation functions,
momentum distributions, spectral functions, and density of
states [39,46,47]. In addition, within these approaches, one
is left with a simple physical picture in which the basic
units of quantum fluctuations in 1D lattices can be mainly
associated with structural defects in the (intrinsic) Slater
determinants resulting from the corresponding optimizations
[39,46,47].

The situation is more involved in the case of the 2D
Hubbard model for which no general (exact) solution is
known. Such a model has received considerable attention
since the discovery of high-TC superconductors [66] and
has also become the target for theorists applying many-body
methodologies. According to Anderson’s proposal [67], 2D
Hubbard is considered a potential model for describing the
essential physics in the cuprates. With intensive analytic and
numerical studies [68], some aspects of the phase diagram have
been understood [1]. However, many basic features remain
controversial. For example, while it is accepted that the on-site
interaction strength drives a Mott transition to an insulator at
half filling [69–72], it is much more difficult to accurately
describe what happens to the antiferromagnetic order when
the system is doped.
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From the experimental point of view, cold atoms in optical
lattices offer potential direct simulations of Hubbard-like
models [73]. Such models are valuable tools to study the
properties of graphene [74] and their (multiorbital) extensions
[75] have already provided insight into the interplay between
electronic correlations and doping in the parent states of
high-TC iron-based superconductors [76,77]. Furthermore,
both colossal magnetic resistance and large thermopower
have attracted considerable attention [78,79]. In addition, a
fascinating effort to understand exotic spin-liquid phases in
the ground and low-lying excited states of some 2D systems
is bringing new light into the complexity of the associated
many-electron problems and the theoretical tools used in their
description [80–82]. We believe that the previous examples
illustrate the need to explore new avenues for describing
quantum correlation effects in low-dimensional electronic
systems, especially those approximations that are potentially
not restricted by the dimensionality of the considered lattices.

The 2D Hubbard model has already been considered with
symmetry projection tools in a previous work [44] using
a variation-after-projection (VAP) approach [55]. For the
considered lattices, it has been shown that such an approach
accurately describes both ground and low-lying excited states,
with well-defined quantum numbers, on an equal footing.
The comparison with other state-of-the-art approximations
revealed that the method does account for the most relevant
correlations including a basic quantum mechanical fingerprint
as the low-lying spectrum of the 6 × 6 lattice, which is out
of reach of ED calculations. Symmetry-projected methods
also provide a well-controlled ansatz to compute both spectral
functions and density of states. However, despite being
more sophisticated than SR methods [43,51–54], our scheme
still essentially relied on the description of a given ground
and/or excited state in terms of a single symmetry-projected
configuration (or component). This certainly limits the amount
of correlations that can be described in the ground and excited
states of nuclear [56], condensed matter [44], and quantum
chemistry systems [48]. In this study, we present results that
go beyond such a single configuration and benchmark a MR
method, i.e., the FED approach [46], further including the
breaking and restoration of the full space group symmetry,
which was not included in our previous work.

The key idea of the FED approach [46,47,49,56] is to
consider a set of symmetry-broken Hartree-Fock (HF) states
|Di〉 which are used to build, via chains of Ritz-variational
calculations [83], a correlated nonorthogonal basis of n

symmetry-projected configurations P̂ �|Di〉, with P̂ � being a
projection operator (see Sec. II) characterized by the quantum
numbers � associated with the irreducible representations of
the symmetry groups under consideration. The FED wave
function is simply a variationally optimized expansion in
terms of these n symmetry-projected states. Let us stress
that FED is a VAP scheme, within which the intrinsic states
|Di〉 are always optimized in the presence of the projection
operator P̂ �. This is what brings a different structure (i.e.,
defects) in each of the determinants |Di〉 as compared with
the standard HF ones [84,85]. These intrinsic states |Di〉 are
optimized one at a time within the FED approach [46]. A
simultaneous optimization of all the transformations Di can
become quite demanding in situations where large expansions

in terms of nonorthogonal symmetry-projected configurations
are required [47]. In fact, it is the FED VAP strategy what
allows us to reach expansions larger than those possible within
the ResHF scheme, as well as to alleviate our numerical
effort in calculations based on the most general HF intrinsic
states that require full three-dimensional spin projection. The
reason for this is quite simple: in a ResHF optimization O(n2)
Hamiltonian and norm kernels have to be recomputed at every
iteration while only O(n) kernels are required in an efficient
implementation of FED. Note, however, that we keep the
acronym FED just to remain consistent with the literature;
there is no need for the FED expansion to be short, as its name
would imply, although it is certainly a desirable feature. Even
in the case of a SR expansion (i.e., n = 1), the wave function
is, via the projection operator P̂ �, already multideterminantal
in nature [44], making it a high-quality trial state for the
constrained-path QMC (CPQMC) approximation [86]. Last
but not least, small vibrations around symmetry-projected
mean fields (i.e., symmetry-projected Tamm-Dancoff and
random phase approximations) can be consistently formulated
both at the SR and MR levels [87,88]. Such an approximation
has been recently used to access a large number of excited
states required to compute optical conductivity in lattice
models [89–91]. Results will be presented in a forthcoming
publication [92].

In this paper we adapt the FED methodology, introduced
in our previous studies of 1D Hubbard lattices [46,47] to
the half-filled and doped 2D Hubbard model. Our main goal
here is not to be exhaustive but rather to test the method’s
performance via benchmark calculations on a selected set
of illustrative examples. It will be shown below that the
FED approach provides accurate correlated ground state wave
functions with well-defined quantum numbers for 2D systems.
For completeness, we briefly describe the key ingredients
of our MR approach and set our notation in Sec. II. For a
more detailed account, the reader is referred to our previous
work [46]. We also illustrate the computational performance
of our scheme. Our calculations are discussed in Sec. III. In
Sec. III A, we compare ground-state and correlation energies
with those obtained using other state-of-the-art approaches.
We demonstrate the feasibility of FED calculations on half-
filled and doped 2D lattices with 16, 36, 64, and 100 sites.
Most of the calculations have been carried out for on-site
interactions U = 2t , 4t , 8t , and 12t , taken as representatives
of the weak, intermediate-to-strong, and strong interaction
regimes, respectively. We also discuss the dependence of
the predicted correlation energies on the number of basis
states used in the corresponding FED expansions, as well
as the structure of the intrinsic determinants resulting from
the VAP procedure. Having discussed the energetic quality
of our states, we turn our attention in Sec. III B to momentum
distributions and correlation functions. There, we first calibrate
the quality of our results in a small 4 × 4 lattice with
Ne = 14 electrons. Subsequently, we consider the momentum
distribution, spin-spin (SSCF), charge-charge (CCCF), and
pairing (PCF) correlation functions in the case of a 16 × 4
lattice with Ne = 56 electrons. We show how for increasing
U values our MR ansatz captures the transition to the stripe
regime predicted with other theoretical tools. Finally, Sec. IV
is devoted to concluding remarks and work perspectives.
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II. THEORETICAL FRAMEWORK

We consider the following one-band version of the 2D
Hubbard Hamiltonian [6,7]

Ĥ= − t
∑

j,σ

{ĉ†j+xσ ĉjσ + ĉ
†
j+yσ ĉjσ + H.c.} + U

∑

j

n̂j↑n̂j↓,

(1)

where the first term represents nearest-neighbor hopping
(t > 0) with hopping vectors x = (1,0) and y = (0,1), and
the second term is the on-site interaction. In this work, we
concentrate on the repulsive sector of the Hubbard model, i.e.,
U > 0. The fermionic operators ĉ

†
jσ and ĉjσ create and destroy

an electron with spin-projection σ = ±1/2 (also denoted as
σ = ↑,↓) along an arbitrary chosen quantization axis on a
lattice site j = (jx,jy). The operators n̂jσ = ĉ

†
jσ ĉjσ are the

local number operators. Here, and in what follows, the lattice
indices run as jx = 1, . . . , Nx and jy = 1, . . . , Ny with Nx

and Ny being the number of sites along the x and y directions,
respectively. We assume periodic boundary conditions along
both directions as well as a lattice spacing � = 1.

Within the FED approach [46,47], we consider a set of
spin and space group symmetry-broken HF determinants |Di〉
(i = 1, . . . ,n). Each of these determinants |Di〉 is a conve-
nient mean-field (intrinsic) trial configuration. We restore the
symmetries of the 2D Hubbard Hamiltonian Eq. (1), resorting
to projection techniques [55–57]. Let us denote R(�) and
R̂(g) as the symmetry operations associated with the spin and
space groups, respectively, parametrized in terms of the Euler
angles � = (α,β,γ ) and the label g for the corresponding
point group operations. One then uses the degeneracy of the
Goldstone states |Di(�,g)〉 = R̂(�)R̂(g)|Di〉 to recover the
desired global gauge symmetries by means of a MR FED
wave function of the form

|φ�
K 〉 =

∑

K
′

n∑

i=1

f i�

K
′ P̂

�

KK
′ |Di〉, (2)

which expands a given ground state |φ�
K 〉, with well-defined

spin and space group quantum numbers �, in terms of n

nonorthogonal symmetry-projected basis states. The operator
P̂ �

KK
′ takes the form

P̂ �

KK
′ = h

L

L∑

m


�∗
KK

′ (m)R̂(m), (3)

where the sum runs over all the symmetry transformations
realized by R̂(�,g).

The quantity 
�

KK
′ (m) represents the character of the

irreducible representation [10,39,93] while h and L are the
dimension of the irreducible representation and the order
of the corresponding symmetry group, respectively. In the
case of the continuous SU(2) spin-rotational symmetry,
the sum should be understood as a group integration with
the appropriate measure [93].

The linear momenta kx = 2π
Nx

ξx and ky = 2π
Ny

ξy are given
in terms of the quantum numbers ξx and ξy which take the
values allowed inside the Brillouin zone [94]. Obviously, since
we consider the full space group, for certain high-symmetry
momenta, additional parities bx , by , and bxy under x, y, and

x-y reflections are needed. For example, in the case of a
square lattice a 1A1 k = (0,0) configuration corresponds to a
singlet state transforming as the totally symmetric irreducible
representation, while a 1B1 k = (0,0) configuration denotes a
singlet state which is symmetric (antisymmetric) under x and y

(x-y) reflections. For the sake of brevity, we refer to these states
in what follows as 1A1 and/or 1B1 configurations. However, the
reader should keep in mind that we always use the full set of
quantum numbers required to characterize a given FED state.

In this study, we have considered two types [84,85] of
intrinsic Slater determinants |Di〉 in the expansion Eq. (2), i.e.,
unrestricted (UHF) and generalized (GHF) Hartree-Fock:

(1) UHF states preserve Ŝz symmetry while possibly break-
ing all others. They preserve Ne,↑ and Ne,↓ electron number.

(2) GHF states break all Hubbard 2D Hamiltonian sym-
metries and can only be characterized by Ne, the total number
of electrons.

In those cases where calculations are performed in terms
of symmetry-projected UHF configurations, the integrals in
both Euler angles α and γ , associated with the spin-projection
operator, become trivial and can be carried out analytically.
Calculations in terms of symmetry-projected GHF states are
more elaborate as they necessitate numerical integrations
over a three-dimensional (α,β,γ ) grid. To indicate the type
of Slater determinants used, we refer to the corresponding
VAP calculations as UHF-FED and GHF-FED, respectively.
Obviously, for the same number n of transformations, a
GHF-FED ansatz is computationally more demanding but
also accounts for more correlations than the UHF-FED one,
because of its larger variational flexibility. However, given
the fact that UHF-FED calculations are roughly two orders of
magnitude less computationally demanding than GHF-FED, in
this study we have also resorted to the former. This alleviates
our numerical effort and enables us to reach larger lattices
and/or a larger number n of basis states in Eq. (2).

Regardless of the UHF or GHF symmetry-broken character
of the |Di〉 states used, the MR FED wave function |φ�

K 〉 is
determined applying the variational principle to the projected
energy

E� = f �†H�f �

f �†N�f �
(4)

written in terms of the Hamiltonian and norm overlaps

H�

iK,jK
′ = 〈Di |Ĥ P̂ �

KK
′ |Dj 〉, N�

iK,jK
′ = 〈Di |P̂ �

KK
′ |Dj 〉 (5)

between all the symmetry-projected configurations in
Eq. (2). All the matrix elements 〈Di |Ĥ R̂(�,g)|Dj 〉 and
〈Di |R̂(�,g)|Dj 〉 needed to compute the kernels Eq. (5) can
be found with the help of the extended Wick theorem [83].
For the mixing coefficients f � we obtain a resonon-like [95]
eigenvalue equation

(H� − E�N�)f � = 0 (6)

with the constraint f �†N�f � = 1 ensuring the normalization
of the wave function. The energy Eq. (4) is varied only with
respect to the last added determinant |Dn〉 keeping all the other
transformations Di (i = 1, . . . , n − 1), obtained in previous
VAP calculations, fixed [46,49,56]. We have parametrized the
variation with respect to each of the transformations Di in
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FIG. 1. Speed-up of a typical UHF-FED calculation for a half-
filled 12 × 12 lattice at U = 4t . The origin of the plot refers
to a calculation with 1024 cores. The largest calculation uses
65 536 processors. All calculations have been performed at the Titan
computational facility, Oak Ridge National Laboratory, Center for
Computational Sciences.

terms of the Thouless theorem [55]. Such a parametrization
has already been shown to be a useful tool in nuclear structure
[56,58,59,96] and condensed matter [43–47] physics but also
in quantum chemistry [48–50].

All the results discussed in this paper have been obtained
with an in-house code where the optimization is handled with
a limited-memory quasi-Newton method [97]. In a previous
study [46], we have discussed the computational performance
of the FED scheme in the case of 1D systems. It has been shown
that its speedup grows linearly with the number of processors
used in the calculations. On the other hand, for a fixed number
of processors, an efficient implementation scales linearly with
the number of symmetry-projected configurations P̂ �|Di〉
used. A typical outcome of our calculations is shown in
Fig. 1 where we have plotted the UHF-FED speedup for a
half-filled 12 × 12 lattice at U = 4t . Note that an efficiency of
almost 100% in the parallelization is observed even when the
calculations are run on tens of thousands of processing cores.

III. DISCUSSION OF RESULTS

In this section, we discuss the results of our benchmark
calculations. First, in Sec. III A, we compare the predicted
ground-state and correlation energies for half-filled and doped
4 × 4, 6 × 6, 8 × 8, and 10 × 10 lattices with those obtained
using other theoretical approaches. Most of the calculations
have been carried out at U = 2t , 4t , 8t , and 12t . We also
discuss the dependence of the predicted correlation energies
on the number of basis states used in the corresponding FED
expansions and the structure of the intrinsic determinants
resulting from our VAP procedure. Next, in Sec. III B, we con-
sider the momentum distributions, SSCFs, CCCFs, and PCFs.
Results are presented for a small 4 × 4 lattice with Ne = 14
electrons but also for a larger 16 × 4 one with Ne = 56
electrons.
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FIG. 2. (Color online) Relative energy errors obtained with the
GHF-FED approach based on n = 10 transformations (red diamonds)
are compared with the ones obtained within SR calculations (blue
diamonds) as well as with VMC results based on a CPS-Pfaffian
ansatz [14] (black diamonds). Results are shown for a half-filled 4 ×
4 lattice and on-site interactions of U = 2t , 4t , 8t , 12t , and 16t . For
more details, see the main text.

A. Ground-state energies, correlation energies, and structural
defects

In Fig. 2, we have plotted (red diamonds) the relative
energy errors provided by the GHF-FED approach based on
n = 10 transformations. They are compared with SR results
(blue diamonds) as well as with those obtained within a VMC
scheme based on a correlator product state (CPS)–Pfaffian
ansatz [14] (black diamonds). Results are shown at half filling
for U = 2t , 4t , 8t , 12t , and 16t . In all cases the ground
states are characterized by 1A1 symmetry. As can be seen, the
GHF-FED approach outperforms the CPS-Pfaffian-VMC one
and is exact [10,13,14,98] to all the considered figures. Note
that for this small system, a SR approach already provides
relative errors smaller than 0.04%.

The auxiliary-field QMC approximation is an important
tool for studying correlated electronic systems [99]. The
relevance of symmetries within this framework has already
been discussed in the literature [13]. In Table I, we compare
ground-state energies per site provided by our GHF-FED
scheme for the 4 × 4 lattice at different doping fractions x and
on-site interactions of U = 4t , 8t , and 12t with those obtained
within the constrained-path (CPQMC) and release-constraint
(RCQMC) QMC approximations. Both the CPQMC and
RCQMC calculations were based on multideterminantal trial
wave functions with symmetries obtained in the spirit of a
small complete active-space self-consistent field (CASSCF)
calculation [13]. For each configuration, the corresponding set
of symmetry quantum numbers � is also given in the table.
It is satisfying to observe that for the considered number n

of symmetry-projected configurations, the GHF-FED energies
are slightly more accurate than the CPQMC ones and reach
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TABLE I. Ground-state energies per site (in t units) obtained with the GHF-FED scheme based on n nonorthogonal symmetry-projected
configurations [Eq. (2)] for the 4 × 4 lattice at different doping fractions and U = 4t , 8t , and 12t are compared with those obtained within
the constrained-path (CPQMC) and release-constraint (RCQMC) QMC approaches, based on trial CASSCF wave functions with symmetries,
as well as with those obtained via exact diagonalization (ED) calculations [13]. For each configuration the corresponding set of symmetry
quantum numbers � [in all cases k = (0,0)] is also given in the table. For more details, see the main text.

U/t Ne � CPQMC RCQMC GHF-FED [n] ED

4 4 1B1 −0.72094(1) −0.72063(1) −0.72064 [n = 1] −0.72064
8 4 1B1 −0.7082(1) −0.7075(2) −0.7076 [n = 1] −0.7076
12 4 1B1 −0.7010(1) −0.7002(3) −0.7003 [n = 1] −0.7003
4 8 1B1 −1.09693(2) −1.09597(6) −1.09591 [n = 10] −1.09593
8 8 1B1 −1.0307(1) −1.0282(2) −1.0288 [n = 20] −1.0288
12 8 1B1 −0.9962(1) −0.9940(3) −0.9939 [n = 10] −0.9941
4 10 1A1 −1.22368(2) −1.22380(4) −1.22380 [n = 20] −1.22381
8 10 1A1 −1.0948(1) −1.0942(2) −1.0942 [n = 10] −1.0944
12 10 1A1 −1.0292(1) −1.0278(4) −1.0283 [n = 40] −1.0284
4 12 1B1 −1.1104(1) −1.1084(2) −1.1081 [n = 30] −1.1081
8 12 1A1 −0.9376(1) −0.9329(5) −0.9327 [n = 35] −0.9328
12 12 1A1 −0.8557(1) −0.8507(6) −0.8509 [n = 30] −0.8512
4 14 1B1 −0.9863(1) −0.9840(1) −0.9840 [n = 20] −0.9840
8 14 1B1 −0.7461(1) −0.7417(8) −0.7417 [n = 40] −0.7418
12 14 1B1 −0.6296(2) −0.627(4) −0.6281 [n = 30] −0.6282
4 16 1A1 −0.85140(6) −0.85133(6) −0.85134 [n = 10] −0.85137
8 16 1A1 −0.5293(2) −0.5291(2) −0.5293 [n = 10] −0.5293
12 16 1A1 −0.3741(2) −0.3739(4) −0.3745 [n = 10] −0.3745

the accuracy of the RCQMC results. The comparison with ED
calculations, in the last column of the table, indicates that for
this small lattice both the GHF-FED and RCQMC energies
can be considered exact [13,98] for practical purposes.

We have recently explored the role of SR symmetry-
projected trial states within the CPQMC framework [86]. It
has been shown, through a hierarchy of calculations based on
symmetry-projected trial states, that they increase the energy
accuracy and decrease the statistical variance as more sym-
metries are broken and restored. The energies obtained within
the CPQMC approach based on SR symmetry-projected UHF
and GHF states (here, we use the acronyms SR-UHF-CPQMC
and SR-GHF-CPQMC [100], respectively) are compared in
Table II with those obtained via MR UHF-FED and GHF-FED
calculations in the case of a 4 × 4 lattice with 12 and 14
electrons at U = 4t and 8t . One observes a good agreement
between all these approximations that compare well with the
ED results [13,86] listed in the last column of the table. Note
also that the energies in Tables I and II vastly improve those
obtained in our previous study [44] of the 4 × 4 Hubbard

model as a result of the (more correlated) MR character of
the ansatz of Eq. (2) which also incorporates restoration of the
space group symmetry.

The previous results illustrate that for half-filled and doped
lattices up to 16 sites, the FED scheme provides essentially
exact ground state energies. The question naturally arises as
to whether reasonably correlated wave functions can also be
obtained for larger 2D systems. The percentage of correlation
energies

κGHF−FED = ERHF − EGHF−FED

ERHF − EEXACT
× 100% (7)

obtained with the GHF-FED approximation is plotted in Fig. 3
as a function of the inverse of the number n of transformations
for the half-filled 6 × 6 (red curve) and 8 × 8 (blue curve)
lattices at U = 4t . The corresponding ground states are
characterized by the 1B1 and 1A1 symmetries, respectively.
In Eq. (7), ERHF is the energy of the standard restricted HF
(RHF) solution [84,85] that preserves all the symmetries of the
2D Hubbard Hamiltonian. For the exact ground state energies

TABLE II. Ground-state energies (in t units) obtained with the CPQMC approach based on SR symmetry-projected UHF (SR-UHF-
CPQMC) and GHF (SR-GHF-CPQMC) states [86] are compared with those obtained with MR UHF-FED and GHF-FED calculations, based
on n transformations, in the case of a 4 × 4 lattice with 12 and 14 electrons at U = 4t and 8t . For each configuration the corresponding set of
symmetry quantum numbers � [in all cases k = (0,0)] is included in the table. Exact diagonalization (ED) results [13,86] are listed in the last
column. For more details, see the main text.

U/t Ne � UHF-CPQMC UHF-FED [n] GHF-CPQMC GHF-FED [n] ED

4 12 1B1 −17.7327(8) −17.7293 [n = 130] −17.7301(1) −17.7296 [n = 30] −17.7296
8 12 1A1 −14.914(3) −14.9227 [n = 160] −14.920(1) −14.9232 [n = 35] −14.925
4 14 1B1 −15.7482(5) −15.7422 [n = 50] −15.7455(2) −15.7440 [n = 20] −15.7446
8 14 1B1 −11.872(3) −11.8665 [n = 130] −11.847(3) −11.8672 [n = 40] −11.8688
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FIG. 3. (Color online) The percentage of correlation energy κ

[Eq. (7)] obtained with the GHF-FED approximation is plotted as
a function of the inverse of the number n of transformations for the
half-filled 6 × 6 (red curve) and 8 × 8 (blue curve) lattices. Results
are shown for U = 4t .

of the 6 × 6 and 8 × 8 systems, we have used the estimates
−30.89(1)t and −55.09(3)t , respectively [101,102].

The first noticeable feature from Fig. 3 is that even a SR
calculation recovers a large portion of the correlation energy
(κGHF−FED = 98.57% and 96.05% for the 6 × 6 and 8 × 8
lattices, respectively). These values already represent a vast
improvement with respect to the standard UHF ones (79% and
77%). The correlation energies increase smoothly with the
number of symmetry-projected GHF basis states included in
the FED expansion. It is also apparent from the figure that with
increasing lattice size, we need to increase the number n of
transformations to keep and/or improve the quality of our MR
wave functions. For example, while n = 10 transformations
provide an essentially exact ground state for the half-filled
4 × 4 lattice (see Table I), the corresponding energies (i.e.,
−30.8316t and −54.7157t) lead us to κGHF−FED = 99.46%
and 97.90% for the 6 × 6 and 8 × 8 ones. On the other
hand, a further increase of the number of symmetry-projected
GHF configurations up to n = 120 and n = 108 provides the
ground-state energies −30.8695t and −54.9242t (κGHF−FED =
99.81% and 99.07%). Note that in the case of the 6 × 6
lattice, our results also improve significantly the energy (i.e.,
−30.5766t) reported in our previous study [44]. A similar
behavior is observed away from half filling. For example,
for a 6 × 6 lattice with Ne = 24 electrons (1B1 symmetry) at
U = 4t we have obtained the energies per site of −1.17884t

and −1.18445t with n = 10 and n = 180 symmetry-projected
GHF configurations. The energies provided by the CPQMC
and RCQMC approximations based on CASSCF multi-
determinantal trial wave functions with symmetries are
−1.18625(3)t and −1.18525(4)t , respectively [13].

The previous examples, and the results already obtained
for 1D lattices [46,47], reveal the inner workings of the
FED approach: it is a MR VAP strategy to build reasonably
correlated ground states, with well-defined symmetry quantum
numbers �, in low-dimensional electronic systems. In fact, it
represents a constructive approximation in which, regardless
of the dimensionality of the considered lattice, the quality
of the ansatz Eq. (2) can be systematically improved by
increasing the number of nonorthogonal symmetry-projected
basis states through chains of VAP calculations. Note that
the FED wave function is a discretized form of the exact
coherent state representation of a fermion state [103] and
therefore becomes exact in the limit n → ∞. In practical
applications, however, one is always limited to a finite set of
transformations whose precise number for obtaining a given
accuracy is difficult to assert beforehand because the nature of
the underlying quantum fluctuations varies for different doping
fractions x and on-site repulsions (see below). In the examples
discussed above, we have especially tailored the number of
symmetry-projected basis states so as to compare well with
state-of-the-art ground-state energies available in the literature.
However, the constructive nature of the FED ansatz also allows
us to specifically tailor the number of symmetry-projected
basis states to capture the main trends in the physical properties
of interest (see Sec. III B).

We have considered two order parameters, i.e., the spin
density (SD)

ξ r (i) = 〈Dr |S(i)|Dr〉〈Dr |S(1)|Dr〉 (8)

and the charge density (CD)

ξ r
ch(i) = 1 −

∑

σ

〈Dr |n̂iσ |Dr〉 (9)

associated with the symmetry-broken determinants |Dr〉 re-
sulting from UHF-FED calculations for a 16 × 4 lattice with
Ne = 56 electrons (x = 1/8) at U = 2t , 4t , 8t , and 12t . We
have restricted ourselves to n = 40 symmetry-projected basis
states which, as shown in Sec. III B, is enough to capture the
main features of the considered correlation functions. The 1A1

FED wave functions have the energies −82.1476t , −64.5369t ,
−44.4349t , and −35.8096t , respectively. Obviously, these
energies can be further improved by increasing the number
of UHF transformations. Thus, for example, with n = 200
we have obtained the value −65.1109t at U = 4t . Note that
with n = 40 ours are, from the energetical point of view,
significantly better wave functions than the ones obtained in a
routine SR symmetry-projected GHF calculation [54]. Among
all the UHF determinants |Dr〉 used in the expansion Eq. (2)
at U = 8t and 2t , we have selected a typical subset to plot in
Figs. 4 and 5 the corresponding SD [panels (a)–(c)] and CD
[panels (d)–(f)] as functions of the lattice site i.

It becomes apparent from Fig. 4 that the Slater determinants
resulting from the UHF-FED VAP procedure contain structural
defects in the SD at different lattice locations. In particular,
they display vertical stripes separated by �ix = 1/δ = 8
sites with deviations (fluctuations) from the pattern obtained
with the UHF approximation [104]. One also observes that
the charges delocalize within �ix = 4 sites. Similar results
are obtained for U = 12t . From a theoretical point of view,
stripes can be viewed as generic semiclassical instabilities
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FIG. 4. (Color online) The spin ξ r (i) [Eq. (8)] and charge ξ r
ch(i) [Eq. (9)] densities obtained with some typical intrinsic determinants

resulting from the UHF-FED variational scheme are depicted in panels (a) to (c) and (d) to (f), respectively. Results are shown for the 16 × 4
lattice with Ne = 56 electrons at U = 8t . The size of the circles is proportional to the value of the densities at a given lattice site i. Blue (red)
circles refer to spin up (down) in panels (a) to (c) and positive (negative) charge in panels (d) to (f). For details, see the main text.

in doped Mott-Hubbard insulators [105], first pointed out by
Tranquada et al. [106] and subsequently studied by several
authors [99,107,108]. The fluctuating stripes encode one
possible kind of basic unit of quantum fluctuations in the MR
UHF-FED wave functions. We stress that a doping x = 1/8
is commensurate with the appearance of two stripes in the
16 × 4 lattice [99]. The comparison with Fig. 5 reveals that
even though defects are also present, the nature of the quantum
fluctuations is completely different in the weak-interaction
regime with the charges spread all over the lattice. The same
is also true for U = 4t although in this case the charges start
to display a tendency to localize around particular lattice sites.
These results already suggest a transition to a stripe regime
for increasing U values, as predicted within the auxiliary-field
QMC framework [99]. Furthermore, since the space group
and spin projection operators can only translate and rotate
defects in the intrinsic states |Dr〉 but do not destroy them, one
may expect, as shown to be the case in Sec. III B, that our MR
symmetry-projected wave functions capture such a transition
and reflect it in the corresponding correlation functions.

A rich variety of defects is also found in other lattices at
different doping fractions x and/or U values. We have also
performed UHF-FED calculations for a 10 × 10 lattice with

Ne = 92, 96, and 100 electrons at U = 8t . We have restricted
ourselves to a sample of n = 70 symmetry-projected basis
states, which is more than enough to obtain information about
the basic units of quantum fluctuations in the intrinsic states
|Dr〉. The energies associated with the corresponding 1A1

and 1B1 states are −60.6629t , −55.2559t , and −50.8999t ,
respectively, which already improve the available ResHF
values [40]. For example, at half filling, we have found
(neutral) T -shaped defects similar to those predicted within
the UHF-ResHF approximation [40]. Due to the presence of
several close lying solutions, which are a consequence of
the nonlinear character of the UHF-FED and/or GHF-FED
ansätze, a more detailed analysis of the corresponding defects
is left for future work. However we stress that similar to the 1D
case [39,46,47], both the FED and the ResHF VAP strategies
provide intrinsic HF determinants whose defects encode
information about the basic units of quantum fluctuations in
the considered 2D systems.

B. Momentum distributions and correlation functions

In this section, we turn our attention to both momentum
distributions and correlation functions. It has been shown
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FIG. 5. (Color online) The same as Fig. 4 but for U = 2t .

within the auxiliary-field QMC framework [13,86] that trial
states with symmetries are important to account for SSCFs and
momentum distributions. Therefore, it is interesting to study
to which extent our MR wave functions, with well-defined
quantum numbers �, can account for the main trends in those
physical quantities. To this end, we first discuss our benchmark
calculations for a 4 × 4 lattice. The momentum distribution
reads

n�(q) =
∑

σ

〈φ�
K |n̂qσ |φ�

K 〉
〈φ�

K |φ�
K 〉 , (10)

where n̂qσ is the σ occupation at wave vector q.
In Fig. 6, we have plotted the ground-state momentum

distribution computed with the GHF-FED scheme (black
diamonds) based on n = 40 transformations (see Tables I and
II) for a 4 × 4 lattice with Ne = 14 electrons at U = 8t . It is
compared with the one obtained within the SR-GHF-CPQMC
approach (blue diamonds), as well as with ED results (red
diamonds) [86]. We observe an excellent agreement between
our, the SR-GHF-CPQMC momentum distribution, and the
one resulting from ED calculations.

For the same system, we have also computed the SSCFs
S�

m (i) in real space,

S�
m (i) = 4

3

〈φ�
K |Ŝ(i) · Ŝ(1)|φ�

K 〉
〈φ�

K |φ�
K 〉 , (11)

where the subindex m accounts for the irreducible represen-
tation of the space group used in the symmetry-projected
calculations [46,47]. The Fourier transforms of the GHF-
FED SSCFs (black diamonds) are compared in Fig. 7 with
CPQMC results based on CASSCF multideterminantal trial
wave functions with symmetries (orange diamonds) and ED
values (red diamonds) [13]. Results are shown for the on-site
interactions 4t (a), 8t (b), and 12t (c). Regardless of the
considered U values, we observe that the use of states with
well-defined symmetry quantum numbers, both within the
GHF-FED and CPQMC schemes, lead to SSCFs that agree
well with the ED ones.

Calculations have also been performed for the half-filled
6 × 6 and 8 × 8 lattices. With only one symmetry-projected
GHF configuration we have obtained the values S(π,π ) =
6.0283 and 9.6164, respectively, for the Fourier transform
of the SSCF at the wave vector q = (π,π ). On the other
hand, the MR GHF-FED wave functions already discussed in
Sec. III A (i.e., n = 120 and 108) lead us to S(π,π ) = 5.8245
and 8.3173, which should be compared with the auxiliary-field
QMC estimates of 5.82(3) and 8.2(2) [102]. Therefore, through
the VAP constructive increase of its basis states, Eq. (2), the
FED scheme improves not only the ground-state energies of
the considered lattices, as already discussed in Sec. III A, but
also captures the most relevant spin-spin correlations.

The momentum distributions and the Fourier transforms
of the ground-state SSCFs and CCCFs obtained with UHF-

195110-8



VARIATIONAL DESCRIPTION OF THE GROUND STATE . . . PHYSICAL REVIEW B 90, 195110 (2014)

 
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

n(
q x

,q
y)

qx,qy (in π/2 units)

(0,0) (0,1) (0,2) (1,2) (2,2) (1,1) (0,0)

SR-GHF-CPQMC

U =  8t

GHF-FED

ED

FIG. 6. (Color online) The momentum distribution [Eq. (10)]
provided by GHF-FED calculations (black diamonds), based on
n = 40 transformations (see Table I), is compared with that obtained
within the SR-GHF-CPQMC approach (blue diamonds) as well as
with ED results (red diamonds) [86]. Results are shown for a 4 × 4
lattice with Ne = 14 electrons at U = 8t . For details, see the main
text.

FED calculations (n = 40) for a 16 × 4 lattice with Ne = 56
electrons are shown in Fig. 8 for U = 2t , 4t , 8t , and 12t . We
have tested that the number of basis states is large enough to
already capture the main features of the considered quantities
and that the corresponding profiles, especially those for large
U values, are not significantly modified by further increasing
n. At U = 2t , the momentum distribution [Eq. (10)] (top
panel) resembles, to a large extent, the one corresponding to
a noninteracting Fermi gas where the states below the Fermi
surface are occupied. With increasing on-site repulsions the
momentum distributions are smeared out.

The Fourier transforms of the SSCFs [Eq. (11)] (middle
panel) exhibit a broad background for all the considered U

values. For both U = 2t and 4t , there exists a weak anti-
ferromagnetic peak at wave vector q = (π,π ) which already
disappears at U = 8t . On the other hand, at U = 4t , a peak
can already be seen at q = (7π/8,π ) which becomes more
prominent as the on-site interaction is increased, signaling
the emergence of incommensurate spin-spin correlations.
Furthermore, we have studied the CCCFs given by

D�
m (i) = 〈φ�

K |n̂in̂1|φ�
K 〉

〈φ�
K |φ�

K 〉 , (12)

where n̂i = ∑
σ n̂iσ . The corresponding Fourier transforms

are shown in the bottom panel of Fig. 8. In this case, the
quantity N2

e /N2
sites has been subtracted to take out the trivial

peak at the origin q = (0,0). For both U = 2t and 4t , they are
broad with little features. However, already at U = 8t a peak
appears at wave vector q = (π/4,0) signaling the development
of charge order. The previous results for SSCFs and CCCFs
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FIG. 7. (Color online) Fourier transforms of the GHF-FED
ground-state spin-spin correlation functions in real space [Eq. (11)]
for a 4 × 4 lattice with Ne = 14 electrons (black diamonds) are
compared with CPQMC results based on trial wave functions with
symmetries (orange diamonds). ED values are depicted with red
diamonds [13]. Results are shown for the on-site interactions 4t (a),
8t (b), and 12t (c). For more details, see the main text.

are consistent with the crossover to a stripe regime already
anticipated in Sec. III A in terms of the intrinsic determinants
resulting from the UHF-FED VAP procedure.

We note that the striped phase that we find is consistent
with previous CPQMC results [99] as well as with previous
symmetry-projected calculations [54]. In particular, Fig. 4
in Ref. [99] displays a peak (for U � 4t) in the SSCFs at
q = (π,15π/16) and a peak (for U � 8t) in the CCCFs at q =
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FIG. 8. (Color online) Momentum distribution [Eq. (10)] pro-
vided by UHF-FED calculations, based on n = 40 transformations,
for the 16 × 4 lattice with Ne = 56 electrons is shown in the top panel
while the middle and bottom panels depict the Fourier transforms of
the SSCFs [Eq. (11)] and CCCFs [Eq. (12)] in real space. Only
the upper right quarter of the Brillouin zone is shown. Results are
presented for U = 2t , 4t , 8t , and 12t . For more details, see the main
text.

(0,π/8) for a 4 × 32 supercell and Ne = 120 electrons using
twisted-averaged boundary conditions. Since the wavelength

of the modulation in the real-space spin (density) correlations
behaves as ∝2/x (∝1/x), where x is the doping fraction,
according to CPQMC [99] and even UHF [104], for x = 1/8
and a 16 × 4 lattice corresponding peaks in the SSCFs and
CCCFs should appear at q = (7π/8,π ) and q = (π/4,0),
respectively, as we observe.

It should be stressed, nevertheless, that DMRG calculations
[109] are not consistent (for large U ) with this picture. In
particular, DMRG predicts, for U = 4t , a similar character
in the correlation functions. For U = 8t , however, DMRG
predicts a peak at q = (3π/4,π ) in the SSCFs, consistent
with a striped phase with a 4-site modulation, as opposed
to the 8-site one we described above. The CCCFs preserve the
same structure observed at low U : the maximum is observed
at q = (π,π ) and no other significant feature appears. The
DMRG variational energy per site at U = 8t is significantly
lower, −0.761(2)t [109], than the one obtained within our own
UHF-FED scheme. At this moment, we cannot clearly point
out the source of the discrepancy with our own (and possibly
CPQMC) results. It is possible that our method becomes sig-
nificantly biased by the structure of the UHF determinants used
(which possess an 8-site modulation). An alternative scenario
would be that the quantum numbers of the lowest-energy
state obtained with DMRG (which breaks translational and Ŝ2

symmetry) are different than the ones considered in this work
[1A1, k = (0,0)]. Indeed, test calculations using short UHF-
FED expansions at U = 12t suggest that there are several
candidate ground states with different quantum numbers.

Finally, the PCFs are defined in real space as

M�
m (i) = 〈φ�

K |�̂1�̂
†
i |φ�

K 〉
〈φ�

K |φ�
K 〉 (13)

with

�̂i =
∑

R

f (R)
[
ĉi↑ĉi+R↓ − ĉi↓ĉi+R↑

]
, (14)

where f (R) is a form factor that depends on the pairing mode
under consideration [102]. We have paid attention to the 2s

(extended s wave) and 2d (dx2−y2 ) pairing modes defined by
the following form factors:

f2s(R) = δRy,0

∑

l=−1,1

δRx,l + δRx,0

∑

l=−1,1

δRy,l,

(15)
f2d (R) = δRy,0

∑

l=−1,1

δRx,l − δRx,0

∑

l=−1,1

δRy,l .

For each mode, we have considered PCFs with
(v.c.) and without (non v.c.) vertex corrections. In
the former case, we have replaced the two-electron
density matrix ρ(i1σ1,i2σ2,i3σ3,i4σ4) = 〈ĉ†i1σ1 ĉ

†
i2σ2 ĉi3σ3 ĉi4σ4〉

with ω(i1σ1,i2σ2,i3σ3,i4σ4) = ρ(i1σ1,i2σ2,i3σ3,i4σ4) −
ρ(i4σ4,i1σ1)ρ(i3σ3,i2σ2) + ρ(i3σ3,i1σ1)ρ(i4σ4,i2σ2). The
quantities ρ(i2σ2,i1σ1) = 〈ĉ†i1σ1 ĉi2σ2〉 are the one-electron
density matrices [55] and the mean values 〈· · · 〉 are always
taken with the FED state Eq. (2). With these definitions, a
positive vertex-corrected PCF would imply that the effective
electron-electron interaction enhances the considered pairing
correlations with respect to a dressed single-particle picture.
We have plotted the Fourier transforms of the 2s and 2d

195110-10



VARIATIONAL DESCRIPTION OF THE GROUND STATE . . . PHYSICAL REVIEW B 90, 195110 (2014)

0
2

4
6

8
0

2

0
2

0

5

10

2qy

π

8qx

π

M
2s

(q
x
,q

y
)

0

1

2

3

4

5

6

7

8

9

non v.c.

v.c.

U = 12t

0
2

4
6

8
0

2

0
2

0

5

10

2qy

π

8qx

π

M
2d

(q
x
,q

y
)

0

1

2

3

4

5

6

7

8

9

non v.c.

v.c.

U = 12t

FIG. 9. (Color online) Fourier transforms of the 2s (extended s

wave) and 2d (dx2−y2 wave) PCFs provided by UHF-FED calcula-
tions, based on n = 40 transformations, for the 16 × 4 lattice with
Ne = 56 electrons are depicted, with (v.c.) and without (non v.c.)
vertex corrections, in the top and bottom panels. Results are shown
for U = 12t . For more details, see the main text.

PCFs, with (v.c.) and without (non v.c.) vertex corrections, in
the top and bottom panels of Fig. 9, respectively. Results are
shown for U = 12t , i.e., in the stripe regime. As expected, the
vertex corrections do not change the profiles of the Fourier
transforms which reflect the pronounced locality of the 2s

and 2d pairing correlations in real space. In good agreement
with previous studies, we observe weakly enhanced 2s and
2d pairing correlations [110].

IV. CONCLUSIONS

In this work, we have applied the FED approach, previously
considered only for 1D systems, to the repulsive 2D Hubbard
model. Our main goal has been to test the method for
both half-filled and doped lattices. We have compared our
results for ground-state and correlation energies with those
obtained using other theoretical approximations. From the
results reported in this work and those obtained in our previous
studies [46,47], together with its parallelization properties, we
conclude that regardless of the dimensionality and/or doping
fraction of the considered lattices and through its constructive
VAP building of a symmetry-projected basis, the FED scheme

provides compact MR correlated wave functions, with well-
defined quantum numbers, whose quality can be systematically
improved by increasing the number of basis states used in the
expansion. In fact, the method could be seen as a symmetry-
projected and variationally truncated configuration-interaction
(CI) approach [56]. The key point is that the hierarchy of the
truncation is transferred to a correlated basis of symmetry-
projected multideterminantal (nonorthogonal) configurations.
In this model, it is the Hamiltonian that determines via the
Ritz variational principle [i.e., the Thouless theorem [55] plus
the resonon-like Eq. (6)] the relative weight of each of these
nonorthogonal basis states for capturing the most relevant
correlations in a given system via chains of calculations.

For different lattices sizes, doping fractions, and on-site
interactions, we have found that the intrinsic determinants
|Dr〉 resulting from FED calculations display a wide variety
of structural defects which encode information about the basic
units of quantum fluctuations. For example, in the case of a
16 × 4 lattice with a commensurate doping fraction x = 1/8,
the varying structure of those defects and the associated
charge densities revealed the transition to a (fluctuating) stripe
regime, which agrees well with previous results obtained with
an auxiliary-field QMC approximation [99]. Similar to the 1D
case [46,47], the optimization of the intrinsic determinants in
the presence of the projection operators induces such structural
defects. It is precisely the action of the projection operators
(rotations, translations, etc.) on these defects, as well as their
interaction through the resonon-like Eq. (6), that brings about
the substantial correlation energy obtained within the FED
scheme compared to the usual mean-field HF calculations.

We have compared the FED momentum distributions and
SSCFs with those obtained via the CPQMC approach based
on trial wave functions with well-defined symmetries [13,86]
for the case of a small 4 × 4 lattice with Ne = 14 electrons.
We conclude that the use of pure spin states leads to a good
agreement between our, the CPQMC, and ED values. We
have then turned our attention to the computation of SSCFs
and CCCFs for a 16 × 4 lattice with Ne = 56 electrons. The
corresponding results signal the emergence of incommensurate
spin-spin correlations and the development of charge order
for increasing on-site repulsions that is consistent with the
transition to a stripe regime anticipated in terms of the structure
of the intrinsic Slater states resulting from our variational
strategy. We note that there was a significant discrepancy
between our UHF-FED results for large U with respect to
DMRG. In good agreement with previous studies [110], the
(vertex-corrected) PCFs, computed with the MR FED wave
functions, display a weak enhancement of the extended s-wave
and dx2−y2 pairing modes.

The FED methodology has already been quite successful in
microscopic nuclear structure theory [56], but it is still in its
first steps in both quantum chemistry [49,50] and condensed
matter physics [46,47]. We believe that it is a good candidate
for further multidisciplinary bridges between these research
fields. In the realm of condensed matter physics, a long list
of tasks awaits completion. Among others, a more detailed
study of the structural defects resulting from our variational
strategy is required including geometries other than square
and rectangular ones, i.e., the honeycomb, triangular, and
kagome lattices. Such studies could be useful to deepen
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the understanding of the basic units of quantum fluctuations
in these lattices. Given the prominent role of defects, their
careful classification within the FED approach could also be
useful to further improve the quality of the starting intrinsic
configurations used in our (highly nonlinear) optimizations.

Let us also stress that in this study, we have concentrated
on the repulsive sector of the model. The FED approach can
also be generalized to include, in addition to spin and space
group, the restoration of the U (1) particle number symmetry
on top of symmetry-broken Hartree-Fock-Bogoliubov states
[56]. This would allow us to also tackle the attractive sector of
the Hubbard model.
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[20] U. Schollwöck, Ann. Phys. 326, 96 (2010).
[21] G. K.-L. Chan and S. Sharma, Annu. Rev. Phys. Chem. 62, 465

(2011).
[22] L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80,

235127 (2009).

[23] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, Phys.
Rev. A 81, 052338 (2010).

[24] S. Singh and G. Vidal, Phys. Rev. B 88, 115147 (2013).
[25] D. Zgid, E. Gull, and Garnet Kin-Lic Chan, Phys. Rev. B 86,

165128 (2012).
[26] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.

Phys. 77, 1027 (2005).
[27] T. D. Stanescu, M. Civelli, K. Haule, and G. Kotliar, Ann. Phys.

321, 1682 (2006).
[28] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[29] S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001).
[30] C. Huscroft, M. Jarrell, Th. Maier, S. Moukouri, and A. N.

Tahvildarzadeh, Phys. Rev. Lett. 86, 139 (2001).
[31] K. Aryanpour, M. H. Hettler, and M. Jarrell, Phys. Rev. B 67,

085101 (2003).
[32] M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
[33] G. Knizia and Garnet Kin-Lic Chan, Phys. Rev. Lett. 109,

186404 (2012).
[34] I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89,

035140 (2014).
[35] I. W. Bulik, W. Chen, and G. E. Scuseria, J. Chem. Phys. 141,

054113 (2014).
[36] Q. Chen, G. H. Booth, S. Sharma, G. Knizia, and Garnet

Kin-Lic Chan, Phys. Rev. B 89, 165134 (2014).
[37] H. Bethe, Z. Phys. 71, 205 (1931).
[38] E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[39] N. Tomita, Phys. Rev. B 69, 045110 (2004).
[40] N. Tomita and S. Watanabe, Phys. Rev. Lett. 103, 116401

(2009).
[41] N. Tomita, Phys. Rev. B 79, 075113 (2009).
[42] F. Satoh, M.-a. Ozaki, T. Maruyama, and N. Tomita, Phys. Rev.

B 84, 245101 (2011).
[43] K. W. Schmid, T. Dahm, J. Margueron, and H. Müther, Phys.
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