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We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for
density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson
models in any spatial dimensions. This new scheme, named BL-DMRG method, allows us to calculate not
only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson
impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG
method can be easily extended to treat a multiorbital Anderson impurity model where not only inter- and
intraorbital Coulomb interactions but also Hund’s coupling and pair hopping interactions are included. We also
show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational
cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene with a
structural defect and with a single hydrogen or fluorine absorbed, where a single Anderson impurity is coupled to
conduction electrons in the honeycomb lattice. These models include (i) a single adatom on the honeycomb lattice,
(ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy
in graphene. Our analysis of the local dynamical magnetic susceptibility and the local density of states at the
impurity site reveals that, for the particle-hole symmetric case at half-filling of electron density, the ground state
of model (i) behaves as an isolated magnetic impurity with no Kondo screening, while the ground state of the
other two models forms a spin-singlet state where the impurity moment is screened by the conduction electrons.
We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and
the conduction sites for these three models. Our results clearly show that, reflecting the presence or absence of
unscreened magnetic moment at the impurity site, the spin-spin correlation functions decay as ∝ r−3, differently
from the noninteracting limit (∝ r−2), for model (i) and as ∝ r−4, exactly the same as the noninteracting limit,
for models (ii) and (iii) in the asymptotic r , where r is the distance between the impurity site and the conduction
site. Finally, based on our results, we shed light on recent experiments on graphene where the formation of local
magnetic moments as well as the Kondo-like behavior have been observed.
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I. INTRODUCTION

Recently, magnetic properties of graphene monolayers have
attracted much attention [1–4]. Because of the characteristic
electronic band structure with Dirac-like linear dispersions
near the Fermi level (EF) and the resulting “V-shape” elec-
tronic density of states, ρ(ω) ∼ |ω|, at EF [2,4,5], a unique
electronic and magnetic behavior is expected in graphene.
Among many, very recent experiments have revealed that
hydrogen or fluorine adatoms as well as vacancies in graphene
can induce magnetic moments with spin 1/2 per adatom
or vacancy [6,7], although pristine graphene is diamagnetic.
Moreover, some experiments have observed the Kondo-like
signature in the temperature dependence of the resistivity when
the vacancies are introduced in graphene [8], even though the
other experiments have found otherwise [6].

The early theoretical studies have considered a single mag-
netic impurity coupled to the graphene conduction electrons
and found that the magnetic impurity is completely isolated,
i.e., unscreened by the conduction electrons, when the model
preserves the particle-hole symmetry, while the magnetic
moment can be screened when the model is strongly particle-
hole asymmetric [9–15]. These theoretical results appear to
contradict the experimental observation reported in Ref. [8],

where the Kondo temperature is found to be symmetric
with respect to the applied gate voltage, which changes the
chemical potential of the conduction electrons. Therefore
the experiments indicate that the graphene with vacancies is
close to the particle-hole symmetric point. However, the early
theoretical studies predict no Kondo screening in this limit
[9–15].

Motivated by these experiments [6–8], several models have
been recently proposed to explain the origin of magnetic
moment and the possible Kondo-like effect in graphene with
structural defects or adatoms [15–21]. One of the possible
explanations of the emergent magnetic moment in graphene
with a structural defect is due to the partially filled dangling
bonds of sp2 orbital on carbon atoms surrounding the vacancy
[19–25]. It has been also pointed out that the scattering of
defects drastically changes the electronic structures of π band
and produces the logarithmic divergence at EF in the local
density of states at the vicinity of defects [21,26,27]. Therefore
a nonperturbative real-space theoretical approach that can
incorporate the elaborate lattice geometry is highly desirable to
understand the magnetic properties of graphene with structural
defects or adatoms.

The interests in the real-space aspects of magnetic im-
purities is not only to study geometrically different lattice
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structures of various systems but also to directly capture
the real-space nature of the ground state, e.g., the spatial
distribution of “Kondo cloud” in the Kondo singlet state
[28,29]. Indeed, as compared to the thermodynamics and the
transport properties, the real-space nature of Kondo problem
has been much less studied both experimentally and theoreti-
cally. However, very recently, scanning tunneling spectroscopy
experiments have successfully observed the long-range Kondo
signature for single magnetic atoms of Fe and Co in a Cu(110)
surface and found that the Kondo cloud seems rather spatially
extended away from the magnetic atoms [30]. The recent
experimental progress further encourages us to study the
magnetic impurity problems and the Kondo physics in real
space.

Theoretically, on the other hand, it is still difficult to
study the real-space properties simply because the analytical
approaches available are rather limited and also because even
the most powerful and well accepted numerical method for
magnetic impurity problems, i.e., numerical renormalization
group (NRG) method [31–33], can not treat the real-space
dependence directly, where the high-energy scales are in-
tegrated out by using logarithmic discretization of energy.
Quantum Monte Carlo (QMC) methods can calculate spatially
dependent quantities [34–36]. However, the QMC calculations
often suffer the negative sign problem at low tempera-
tures and can not be applied to general Anderson impurity
models.

In the last decade, the density-matrix renormalization group
(DMRG) method [37–40] has been successfully used to
investigate limited properties of single- and multiple-impurity
Anderson models. For example, the DMRG method has been
applied to the single- and two-impurity Anderson/Kondo
models in one dimension to study correlation effects in
the conduction sites [41–43] and to evaluate the Kondo
screening length [44–46]. Moreover, the DMRG method
has been employed to address single- and multiple-impurity
Anderson models in more than one dimension [47–49] and
also applied as an impurity solver for the dynamical mean-field
theory (DMFT) [50,51]. However, these approaches encounter
difficulties in calculating the spatially dependent quantities
such as spin-spin correlation functions. Therefore it is highly
desired to develop new numerical methods, which can compute
directly various physical quantities in real space in any spatial
dimensions.

To overcome the difficulties, here we introduce a block
Lanczos (BL) recursive technique, which constructs, without
losing any geometrical information of the lattice, quasi-one-
dimensional (Q1D) models, suitable for DMRG calculations,
from single- as well as multiple-impurity Anderson models in
any spatial dimensions. This new approach, named BL-DMRG
method, enables us to calculate various physical quantities
directly in real space, including both static and dynamical
quantities, with high accuracy. Thus the BL-DMRG method
is in sharp contrast to the NRG method since the NRG
method has a severe limitation in calculating the spatially
dependent quantities because the logarithmic discretization
in energy space has to be introduced to construct the Wilson
chain [33]. The BL-DMRG method is also superior to the
QMC methods because the BL-DMRG method can be easily
extended to a more involved impurity model such as a

multiorbital single-impurity Anderson model where inter-
and intraorbital Coulomb interactions as well as Hund’s
coupling and pair hopping interactions are included. There-
fore the BL-DMRG method has potential as a promising
impurity solver of DMFT for multiorbital Hubbard models
[52].

To demonstrate the BL-DMRG method, we apply this
method to three different models for graphene with a structural
defect and with a single absorbed atom, where a single
Anderson impurity is coupled to the conduction electrons in
the honeycomb lattice. These models include (i) an Anderson
impurity absorbed on the honeycomb lattice (model I),
(ii) a substitutional Anderson impurity in the honeycomb
lattice (model II), and (iii) an effective model for a single
carbon vacancy in graphene (model III). Our results of the local
magnetic susceptibility and the local density of states at the
impurity site reveal that, for the particle-hole symmetric case
at half-filling of electron density, the ground state of model
I behaves as an isolated magnetic impurity with no Kondo
screening, while the ground state of models II and III forms
a spin singlet state where the impurity moment is screened
by the conduction electrons. To understand the real-space spin
distribution of the conduction electrons around the impurity,
we subsequently calculate the spin-spin correlation functions
between the impurity site and the conduction sites and find
a qualitatively different asymptotic behavior when compared
with the noninteracting limit, which results from the different
screening characteristics: the spin-spin correlations decay as
∝ r−3, different from the noninteracting limit (∝ r−2), for
model I and as ∝ r−4, exactly the same as the noninteracting
limit, for models II and III. We also discuss the relevance
of our results to the recent experiments on graphene with
structural defects and with hydrogen or fluorine adatoms where
the formation of local magnetic moments and the Kondo-like
behavior have been observed [6–8].

The rest of this paper is organized as follows. First,
we introduce the BL-DMRG method for general Anderson
impurity models and describe the details in Sec. II. The BL
recursive technique is employed to construct Q1D models from
general Anderson impurity models in any spatial dimensions
and for any lattice geometry without losing the structural
information in Sec. II A. To optimize the DMRG calculations
for Q1D models constructed by the BL recursive technique,
symmetrization schemes of the BL bases are described in
Sec. II B. The numerical technique to calculate spatially
dependent quantities in real space away from the impurity
site is explained in Sec. II C. The extension of the BL-DMRG
method and the symmetry adapted BL bases for a multiorbital
single-impurity Anderson model are provided in Sec. II D.

The BL-DMRG method is then demonstrated in
Sec. III for single-impurity Anderson models. The three
different single-impurity Anderson models for graphene with
a structural defect and with a single adatom are introduced
in Sec. III A. After briefly explaining the numerical details of
the calculations for these models in Sec. III B, the nature of
the ground state is examined by calculating the local magnetic
susceptibility at the impurity site in Sec. III C 1 and the local
electronic density of states at the impurity site in Sec. III C 2.
The spin-spin correlation functions between the impurity
site and the conduction sites are evaluated in Sec. III C 3.
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The relevance of our results to the recent experiments on
adatoms or vacancies in graphene is discussed in Sec. IV. The
possible further extension of the BL-DMRG method is also
briefly discussed. The detailed derivation of the hybridization
function for general Anderson impurity models is described in
Appendix.

II. BL-DMRG METHOD

In this section, we introduce the BL-DMRG method for
general Anderson impurity models in any spatial dimensions
and for any lattice geometry. To this end, first we describe
in Sec. II A the BL recursive technique which enables us to
transform exactly a general Anderson impurity model to a
Q1D model without losing any geometrical information of
the lattice. Once a Q1D model is constructed, we can use
the DMRG method to calculate both static and dynamical
quantities with extremely high accuracy.

We then describe in Sec. II B two schemes to reduction the
computational cost for DMRG calculations. One is to utilize
the lattice symmetry of the models to construct the symmetry
adapted BL bases, which is similar to the one introduced in
NRG calculations for multiimpurity problems [53–55]. The
other is to use spin degrees of freedom to reduce the dimensions
of the local Hilbert space, which can be applied to more
general cases even if the models do not possess appropriately
high lattice symmetry. The BL-DMRG procedure to calculate
spatially dependent quantities such as spin-spin correlation
functions is also explained in Sec. II C. Finally, the extension
to a multiorbital single-impurity Anderson model is briefly
discussed in Sec. II D.

It should be emphasized that, although the BL-DMRG
method shares some similarity with the NRG method [55],
the BL-DMRG method can be readily extend to more general
models, one example discussed in Sec. II D, and has significant
advantages in calculating spatially dependent quantities and
also in the computational cost by using the symmetry adapted
BL bases. We should also note that, very recently, the direct
application of a standard Lanczos technique to single-impurity
Anderson and Kondo models [56] as well as its extension
to a two-impurity Kondo model [57] have been proposed
for DMRG calculations, which is somewhat similar to the
BL-DMRG method introduced in this paper. However, we
emphasize that the use of BL recursive technique in the
BL-DMRG method significantly enlarges the applicability of
DMRG calculations not only to more general multiorbital
single- or multiple-impurity Anderson models but also to the
calculations of spatially dependent quantities. Moreover, as
described in Appendix, the BL bases representation of the
hybridization function for general Anderson impurity models
further enlarges the usefulness of the BL recursive technique
for other numerical methods such as the QMC methods and
the NRG method.

A. Q1D map of a general Anderson impurity model:
a BL recursive technique

We consider a general Anderson impurity model described
by the following Hamiltonian:

HAIM = Hc + Hd + HV + HU , (1)

where

Hc =
∑
n,n′

∑
σ

εc
n,n′c

†
n,σ cn′,σ , (2)

Hd =
∑
m,m′

∑
σ

εd
m,m′d

†
m,σ dm′,σ , (3)

HV =
∑
m,n

∑
σ

(Vm,nd
†
m,σ cn,σ + H.c.), (4)

and

HU =
∑

m1,...,m4

∑
σ1,...,σ4

Uσ1σ2;σ3σ4
m1m2;m3m4

d†
m1,σ1

d†
m2,σ2

×dm3,σ3dm4,σ4 . (5)

Here, c
†
n,σ (cn,σ ) is the creation (annihilation) operator of

an electron at site (or orbital) n (=1,2, . . . ,N ) with spin σ

(=↑,↓) in the conduction sites (or bands) and d
†
m,σ (dm,σ ) is the

creation (annihilation) operator of an electron at impurity site
i (= 1,2, . . . ,Ni) and orbital α (= 1,2, . . . ,Nd ), denoted by
m = (i,α) (= 1,2, . . . ,M , where M = NiNd ) for simplicity,
with spin σ . The individual terms, Hc, Hd , HV , and HU ,
describe the one-body part of the conduction sites (or bands),
the one-body part of the impurity sites, the hybridization
between the impurity sites and the conduction sites (or bands),
and the two-body Coulomb interaction part of the impurity
sites, respectively. Notice that this Hamiltonian includes a wide
range of Anderson impurity models, ranging from the simplest
single-orbital single-impurity Anderson model (Ni = Nd = 1)
to a more complex multiorbital multiple-impurity Anderson
model (Ni,Nd > 1). Notice also that neither the spatial
dimensions nor the lattice geometry is assumed for HAIM.

We shall now show that the general Anderson impurity
model HAIM given in Eq. (1) can be mapped onto a Q1D
ladderlike model, for which the DMRG method is applied with
high accuracy. This Q1D mapping can be achieved exactly
without losing any geometrical information of the lattice by
using the BL recursive technique, which is a straightforward
extension of the basic Lanczos recursive procedure [58]. To
simplify the formulation, let us first introduce the vector
representation of fermion operators:

c†σ = (d†
1,σ ,d

†
2,σ , . . . ,d

†
M,σ ,c

†
1,σ ,c

†
2,σ , . . . ,c

†
N,σ ). (6)

Then, the one-body part of the Hamiltonian,H0 = Hc + Hd +
HV , in Eq. (1) can be represented as

H0 =
∑

σ

c†σ Ĥ0cσ (7)

with

Ĥ0 =
(

Ĥd V̂

V̂ † Ĥc

)
, (8)

where Ĥd , Ĥc, and V̂ are M × M , N × N , and M × N

matrices with matrix elements (Ĥd )m,m′ = εd
m,m′ , (Ĥc)n,n′ =

εc
n,n′ , and (V̂ )m,n = Vm,n, respectively.

Next, let us construct the following matrix P̂1 composed of
M different vectors em:

P̂1 = (e1,e2, . . . ,eM ) , (9)
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where em is a (N + M)-dimensional column unit vector with
its element (em)n = δm,n and thus P̂1 is a (N + M) × M

matrix. Using P̂1 as the initial BL bases, the Krylov subspace of
Ĥ0 is spanned with the BL bases P̂l+1 (l = 1,2, . . . ) generated
through the three-term recurrences,

P̂l+1T̂
†
l = Ĥ0P̂l − P̂lÊl − P̂l−1T̂l−1, (10)

where Êl = P̂
†
l Ĥ0P̂l , P̂0 = 0, and T̂0 = 0. The left-hand side

of Eq. (10) is obtained with a QR factorization of the (N +
M) × M matrix in the right-hand side of Eq. (10). Thus P̂l+1

is a column orthogonal (N + M) × M matrix and T̂l is a lower
triangular M × M matrix with (T̂l)m,m′ = 0 for m < m′, i.e.,

T̂l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T
(l)

11 0 0 · · · 0

T
(l)

21 T
(l)

22 0 · · · 0

T
(l)

31 T
(l)

32 T
(l)

33 · · · 0

...
...

...
. . .

...

T
(l)
M1 T

(l)
M2 T

(l)
M3 · · · T

(l)
MM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

After repeating this procedure, the BL bases are constructed
and they are gathered in the (N + M) × (N + M) matrix P̂ :

P̂ = (P̂1,P̂2,P̂3, . . .), (12)

which satisfies P̂ †P̂ = P̂ P̂ † = Î where Î is the unit matrix.
It should be noted here that, in practical calculations where
N is large, we usually terminate the BL iteration after the
Lth iteration, for which P̂ is a rectangular (N + M) × (LM)
matrix satisfying only P̂ †P̂ = Î but not P̂ P̂ † = Î , in general.

With this unitary matrix P̂ , the one-body part H0 of the
Hamiltonian can now be block-tridiagonalized,

H0 =
∑

σ

c†σ P̂ P̂ †Ĥ0P̂ P̂ †cσ =
∑

σ

a†
σ Ĥ BL

0 aσ (13)

with

Ĥ BL
0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ê1 T̂1 0 0 · · ·
T̂

†
1 Ê2 T̂2 0 · · ·
0 T̂

†
2 Ê3 T̂3 · · ·

0 0 T̂
†

3 Ê4
. . .

...
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(14)

and aσ = P̂ †cσ [59]. Note that T̂l is a lower triangular M × M

matrix and thus Ĥ BL
0 has the bandwidth of 2M + 1. Hereafter,

we will use the following convention for the indices of a†
σ :

a†
σ = (a†

1,1,σ ,a
†
1,2,σ , . . . ,a

†
1,M,σ ,a

†
2,1,σ , . . . ,a

†
l,m,σ , · · · ), (15)

and thus

(aσ )lm =
N+M∑
n=1

(P̂ †
l )m,n(cσ )n, (16)

(cσ )n =
N/M+1∑

l=1

M∑
m=1

(P̂l)n,m(aσ )lm, (17)

where (aσ )lm = al,m,σ and cσ is given in Eq. (6) [59]. It is
important to notice that, because of the specific choice of the

initial BL bases P̂1 in Eq. (9), the new fermionic operators
representing the impurity sites remain unchanged, i.e.,

(d†
1,σ ,d

†
2,σ , . . . ,d

†
M,σ ) = (a†

1,1,σ ,a
†
1,2,σ , . . . ,a

†
1,M,σ ). (18)

Therefore the two-body part HU of the Hamiltonian is exactly
in the same form for the new fermionic operator aσ . This is the
crucial point for the exact mapping of any Anderson impurity
model onto a Q1D model.

It is now apparent that, using the BL recursive technique
introduced above, a general Anderson impurity model HAIM

in any spatial dimensions and for any lattice geometry can be
mapped exactly onto a Q1D model, i.e., a semi-infinite M-leg
ladder model, described by the following Hamiltonian:

HQ1D
AIM =

∑
σ

HQ1D
0,σ + HU , (19)

where

HQ1D
0,σ =

L∑
l=1

M∑
m,m′=1

(Êl)m,m′a
†
l,m,σ al,m′,σ

+
L−1∑
l=1

M∑
m,m′=1

((T̂l)m,m′a
†
l,m,σ al+1,m′,σ + H.c.) (20)

and HU is the same two-body Coulomb interaction term given
in Eq. (5). Notice that the index l in Eq. (20) corresponds to
the one in the BL iteration in Eq. (10), which is terminated
at the Lth iteration [60]. The schematic representation of the
Q1D mapping for an Anderson impurity model with Ni = 3
and Nd = 1 (thus M = 3) is shown in Fig. 1.

It should be noticed that the resulting Q1D ladder model
HQ1D

AIM in the BL bases with L sites along the leg direction there-
fore represents the original system HAIM with approximately
at least πL2 and 4πL3/3 conduction sites (or orbitals) in two
and three spatial dimensions, respectively (see, e.g., Figs. 4,
5, and 9). This implies that, as long as the impurity properties
are concerned, the BL-DMRG method can treat quite large
systems with reasonable computational cost for a wide variety
of Anderson impurity models.

B. Symmetrization of BL bases

In this section, we shall describe how the symmetry
of Hamiltonian can be used to further simplify the Q1D
model constructed by the BL recursive technique. This is
best explained by taking a specific model. Therefore, as an
example, we now consider a two-impurity Wolff model on
the honeycomb lattice [61], where two conduction sites on
the honeycomb lattice are replaced by two impurity sites, as
schematically shown in Fig. 2(a). The Hamiltonian of the Wolff
model is

HWM = HWM
c + HWM

V + HWM
U , (21)
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l=6,

E6
^

...

...

...m=2
m=1

l=1, l=2, l=3, ...

(a)

(b)
m=3

E1
^

T1
^ T2

^ T3
^

E2
^ E3

^

l=4,

T4
^

E4
^

l=5,

T5
^

E5
^

FIG. 1. (Color online) Schematic representation of the Q1D
mapping for a single-orbital three-impurity Anderson model (Ni = 3,
Nd = 1, and M = 3) in three dimensions. Using the BL recursive
technique, the Anderson impurity model HAIM is transformed exactly
to a semi-infinite three-leg ladder model HQ1D

AIM without loosing any
geometrical information of the lattice. The conduction sites (or
orbitals) are indicated by a blue cube in (a). The Coulomb interaction
term HU is active only at the impurity sites (denoted by red circles
with arrows) both in (a) and (b). Blue circles without arrows in (b)
represent the “ripple” sites (i.e., BL bases) generated by the BL
recursive procedure. The indices l and m in (b), representing the site
position of the resulting three-leg ladder model along the leg and rung
directions, respectively, correspond to the ones in the new fermionic
operator (aσ )lm = al,m,σ in Eq. (15) and used to describe HQ1D

AIM in
Eq. (19). The “on-site potential” and “nearest-neighbor hopping”
matrices, Êl and T̂l , respectively, in Eq. (20) are also indicated in (b).

where

HWM
c = −t

∑
〈r,r′〉

∑
σ

(c†r,σ cr′,σ + H.c.), (22)

HWM
V = V

∑
〈r,r′〉′

∑
σ

(c†r,σ cr′,σ + H.c.), (23)

and

HWM
U =

∑
r∈Imp.

Ur(nr,↑ − 1/2)(nr,↓ − 1/2). (24)

Here, c†r,σ (cr,σ ) is the electron creation (annihilation) operator
at site r on the honeycomb lattice with spin σ (=↑,↓) and
nr,σ = c

†
r,σ cr,σ . The sum 〈r,r′〉 in HWM

c runs over all pairs
of nearest-neighbor sites except for the ones connecting to
the impurity sites, whereas the sum 〈r,r′〉′ in HWM

V runs over
all pairs of nearest-neighbor sites only involving the impurity
sites. HWM

U represents the on-site Coulomb interaction at the
impurity sites with site dependent interaction Ur, and the sum
in HWM

U includes only the impurity sites. The two-impurity
Wolff model described by HWM is a special case of the general
Anderson impurity model HAIM in Eq. (1) with Ni = 2,
Nd = 1, and M = 2.

Applying the BL recursive technique described in Sec. II A,
we can readily show that the two-impurity Wolff model HWM

m =2
m =1

l =1, 2, 3, 4, 5, ...

(a)

(b)

...

FIG. 2. (Color online) (a) Schematic representation of a two-
impurity Wolff model on the honeycomb lattice described by HWM in
Eq. (21) and (b) the semi-infinite Q1D ladder model obtained by the
BL recursive technique. Solid red spheres with green arrows indicate
the impurity sites. White spheres next to the impurity sites in (a)
represent the first ripple states generated by the second (l = 2) BL
iteration in Eq. (10). The hybridization (with its strength V ) between
the impurity sites and the conduction sites are indicated by bold blue
lines in (a). The indices l and m in (b), representing the site position
of the resulting Q1D ladder model along the leg and rung directions,
respectively, correspond to the ones in the new fermionic operator
(aσ )lm = al,m,σ used in Eq. (25).

is mapped exactly to the Q1D ladder model described by the
following Hamiltonian:

HQ1D
WM =

2∑
m=1

Urm
(n1,m,↑ − 1/2)(n1,m,↓ − 1/2)

+
L∑

l=1

2∑
m,m′=1

∑
σ

εl
mm′a

†
l,m,σ al,m′,σ

+
L−1∑
l=1

2∑
m,m′=1

∑
σ

t lmm′(a
†
l,m,σ al+1,m′,σ + H.c.), (25)

where rm represents the position of mth impurity site,
εl
mm′ = (Êl)m,m′ , t lmm′ = (T̂l)m,m′ , and n1,m,σ = a

†
1,m,σ a1,m,σ =

c
†
rm,σ crm,σ . A schematic representation of this Q1D ladder

model is shown in Fig. 2(b).
In the presence of the reflection or C2 rotation point group

symmetry at the center of two impurity sites, the Q1D model
HQ1D

WM in Eq. (25) can be further simplified by introducing
symmetric and antisymmetric bases,

γ1,1,σ = (a1,1,σ + a1,2,σ )/
√

2 = (cr1,σ + cr2,σ )/
√

2,
(26)

γ1,2,σ = (a1,1,σ − a1,2,σ )/
√

2 = (cr1,σ − cr2,σ )/
√

2,

as the initial BL bases for the BL iteration. It is then readily
shown that the two-impurity Wolff model HWM in Eq. (21)
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...

...

... ...

m=2
m=1

l=1,l=2,l=3,l=4, ...

m=2m=1

l=1, l=2, l=3, l=4, ...l=4, l=3, l=2, l=1,...,

(a)

(b)

FIG. 3. (Color online) Schematic representation of a pure one-
dimensional model mapped from the two-impurity Wolff model
on the honeycomb lattice shown in Fig. 2(a). Using the symmetry
adapted BL bases, (a) the hopping terms between the legs are
completely eliminated except for the impurity sites and thus (b) the
ladder model is further simplified to a pure one-dimensional model.
Red solid circles with arrow indicate the impurity sites and blue circles
without arrows represent the symmetry adapted BL bases generated
by the BL iteration. The indices l and m represent the site position of
the resulting one-dimensional model and correspond to the ones in
the symmetry adapted fermionic operator γl,m,σ used in Eq. (27).

can be mapped onto the following Q1D model:

H̃Q1D
WM =

2∑
m=1

Urm

4
[(γ †

1,1,↑ + (−1)m+1γ
†
1,2,↑)

×(γ1,1,↑ + (−1)m+1γ1,2,↑) − 1]

×[(γ †
1,1,↓ + (−1)m+1γ

†
1,2,↓)

×(γ1,1,↓ + (−1)m+1γ1,2,↓) − 1]

+
L∑

l=1

2∑
m=1

∑
σ

ε̃l
mγ

†
l,m,σ γl,m,σ

+
L−1∑
l=1

2∑
m=1

∑
σ

t̃ lm(γ †
l,m,σ γl+1,m,σ + H.c.). (27)

Here, γl,m,σ is the lth BL bases generated by the BL recursive
technique with the initial BL bases γ1,m,σ given in Eq. (26). It
should be noticed that, in contrast to the previous Q1D ladder
modelHQ1D

WM in Eq. (25), the resulting Q1D model H̃Q1D
WM is now

completely decoupled [see Fig. 3(a)], owing to the symmetry
adapted BL bases, except for the “initial” sites (l = 1), i.e., the
interacting impurity sites. This form is particularly useful for
the DMRG calculations because this Q1D model is regarded as
a pure one-dimensional chain model, as schematically shown
in Fig. 3(b). We should also note that, because of this choice of
the initial BL bases in Eq. (26), the two-body Coulomb inter-
action terms in H̃Q1D

WM contain intersite interactions between the
impurity sites, although in the original representation of the
Wolff model HWM the two-body interaction terms are local.
However, this slight complexity does not cause any difficulty
in applying the DMRG method to H̃Q1D

WM .
Three remarks are in order. First, exactly the same pure one-

dimensional Hamiltonian H̃Q1D
WM given in Eq. (27), including

the two-body interaction part, can be constructed by using

the standard Lanczos tridiagonalization procedure applied
separately to each symmetric and antisymmetric basis given
in Eq. (26) as the initial Lanczos basis. Indeed, a similar idea
using the standard Lanczos tridiagonalization procedure has
been proposed for two-impurity models in the context of NRG
[53,54]. Second, for the two-impurity Wolff model on the
honeycomb lattice defined in Eqs. (21)–(24), the symmetric
and antisymmetric BL bases in Eq. (26) can always decouple
the Q1D ladder model HQ1D

WM to a pure one-dimensional model
H̃Q1D

WM , regardless of the location of two impurity sites. Third,
this simplification is made possible solely because of the
symmetry of the one-body part of the original Hamiltonian
HWM. The similar simplification of the Q1D model using the
symmetry adapted BL bases can be applied to more involved
models, an example being discussed below in Sec. II D.

Let us now discuss the physical meaning of the BL bases
generated by the BL recursive technique for the two-impurity
Wolff model HWM on the honeycomb lattice. Since a

†
l,m,σ =∑

r c
†
r,σ (P̂l)r,m [see Eq. (16)], the mth BL bases generated

after the lth BL iteration is represented by (P̂l)r,m, where r is
a two-dimensional vector on the honeycomb lattice. Figure 4
shows r dependence of (P̂l)r,m for m = 1 and 2 obtained with
the initial BL bases P̂1 given in Eq. (9). In the standard Lanczos
tridiagonalization procedure with the initial Lanczos basis sim-
ilar to P̂1, e.g., e1 in Eq. (9), the Lanczos basis generated after
the lth Lanczos iteration forms a s-wave “ripple” around the
impurity site for any l and the size of the ripple increases with
l [32,55,56]. Similarly, as shown in Figs. 4(a)–4(j), every BL
iteration generates two orthogonal bases for m = 1 and 2, and
each basis is like a propagating ripple centered at each impurity
site. However, these BL bases generated are no longer s-wave-
like once they overlap. This is simply because these two bases
must be orthogonal and thus they can not be s-wave-like once
these two ripples overlap each other [see Figs. 4(k)–4(p)].

It is also interesting to see the ripples for γ
†
l,m,σ generated af-

ter the lth BL iterations using the symmetric and antisymmetric
initial BL bases given in Eq. (26). In general, the off-diagonal
terms in Êl as well as T̂l are due to the interference between
the two ripples for m = 1 and 2 once the two ripples overlap
[see Figs. 4(k)–4(p)]. However, because the BL iteration
respects the symmetry of Hamiltonian HWM

0 = HWM
c + HWM

V ,
the BL bases generated still preserve the symmetric and
antisymmetric characteristics even for l > 1 if the symmetric
and antisymmetric initial BL bases are used. This can be
clearly seen in Fig. 5. Both before [Figs. 5(a)–5(j)] and after
[Figs. 5(k)–5(p)] the two ripples overlap, they are clearly
symmetric and antisymmetric with respect to C2 rotation (or
reflection) at the center of two impurity sites. Therefore the
off-diagonal elements in Êl and T̂l are zero when the symmetry
adapted BL bases are appropriately used.

Indeed, al,m,σ and γl,m,σ relate to each other and the relation
depends on the relative position of two impurity sites on the
honeycomb lattice. When the two impurity sites are located on
different sublattices of the honeycomb lattice, the parameters
εl
mm′ and t lmm′ in Eq. (25) satisfy

εl
11 = εl

22, εl
12 = εl

21,
(28)

t l11 = t l22, t l12 = t l21 = 0.
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(a) (l,m)=(1,1) (c) (l,m)=(2,1) (e) (l,m)=(3,1) (g) (l,m)=(4,1) (i)  (l,m)=(5,1) (k) (l,m)=(6,1) (m) (l,m)=(7,1) (o) (l,m)=(8,1)

(b) (l,m)=(1,2) (d) (l,m)=(2,2) (f) (l,m)=(3,2) (h) (l,m)=(4,2) (j) (l,m)=(5,2) (l) (l,m)=(6,2) (n) (l,m)=(7,2) (p) (l,m)=(8,2)

FIG. 4. (Color online) Intensity plots of (P̂l)r,m at r = (rx,ry), i.e., the real-space distribution of the mth BL bases generated after the lth
BL iteration, for the two-impurity Wolff model on the honeycomb lattice HWM in Eq. (21). The BL bases for different l and m (indicated in
the figures) are generated starting with the initial BL bases P̂1 given in Eq. (9), thus corresponding to a

†
l,m,σ used in HQ1D

WM [Eq. (25)]. The two

impurity sites are located at r1 = (12
√

3,12) and r2 = (15.5
√

3,15.5), indicated by open black circles.

Therefore, in this case, γl,m,σ for any l (>1) is related to al,m,σ

via the following simple relations:

γl,1,σ = (al,1,σ + al,2,σ )/
√

2,
(29)

γl,2,σ = (al,1,σ − al,2,σ )/
√

2.

On the other hands, when the two impurity sites are located on
the same sublattices, the parameters in Eq. (25) satisfy

εl
11 = εl

12 = εl
21 = εl

22 = 0. (30)

Therefore γl,m,σ are determined so as to diagonalize 2 × 2
matrix t lmm′ with respect to m and m′ in Eq. (25).

Finally, we note briefly another scheme which can be used
to reduce the computational cost in DMRG calculations. This
can be applied when the one-body part of the Hamiltonian is
separated for up and down electrons, as in HAIM [Eq. (1)] [62].
In this case, the one-body part of the Q1D model obtained by
the BL recursive technique is also separated for up and down

electrons [see HQ1D
AIM in Eq. (19)]. Therefore the Q1D model is

described by two decoupled semi-infinite Q1D Hamiltonians,
one for up electron sites and the other for down electron
sites, which connect to each other via two-body part of the
Hamiltonian at the impurity sites, as schematically shown
in Fig. 6(a). By stretching the up electron part of the Q1D
Hamiltonian to the left, we can finally obtain the infinite Q1D
model, as shown in Fig. 6(b).

The total Hilbert space in DMRG calculations is propor-
tional to s2

Dm2
D , where mD is the number of density-matrix

eigenstates kept in DMRG calculations and sD is the number
of local states for added sites, i.e., the number of local states
at each rung in the Q1D model. Therefore, in the case of
two-impurity Wolff model HWM, sD is reduced form 16 to 4
by using this reduction scheme for spin degrees of freedom.
Although we can no longer use the fact that the total Sz is a
good quantum number to reduce the dimension of the Hilbert
space, we find that this reduction scheme is still useful when

15 20 25 305
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−max |(P )     |r,mlr ˆ 0 max |(P )     |r,mlr ˆ 
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rx
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(a) (l,m)=(1,1) (c) (l,m)=(2,1) (e) (l,m)=(3,1) (g) (l,m)=(4,1) (i)  (l,m)=(5,1) (k) (l,m)=(6,1) (m) (l,m)=(7,1) (o) (l,m)=(8,1)

(b) (l,m)=(1,2) (d) (l,m)=(2,2) (f) (l,m)=(3,2) (h) (l,m)=(4,2) (j) (l,m)=(5,2) (l) (l,m)=(6,2) (n) (l,m)=(7,2) (p) (l,m)=(8,2)

FIG. 5. (Color online) Intensity plots of (P̂l)r,m at r = (rx,ry), i.e., the real-space distribution of the mth BL bases generated after the lth
BL iteration, for the two-impurity Wolff model on the honeycomb lattice HWM in Eq. (21). The BL bases for different l and m (indicated in the
figures) are generated starting with the symmetric and antisymmetric initial BL bases, γ

†
l,1,σ and γ

†
l,2,σ , given in Eq. (26), thus corresponding to

γ
†
l,m,σ used in H̃Q1D

WM [Eq. (27)]. The two impurity sites are located at r1 = (12
√

3,12) and r2 = (15.5
√

3,15.5), indicated by open black circles.
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...

...

s   =16D

...

...

down sites (σ=  )

...

...

up sites (σ=  )

s   =4D

(a)

(b)

(m,σ)=(1,  )

m=1

m=2

l=1 l=2 l=3 l=4 ...

l=1 l=2l=2 l=1 ......

(m,σ)=(1,  )
(m,σ)=(2,  )

(m,σ)=(2,  )

...

...

FIG. 6. (Color online) Schematic representation of a reduction
scheme to save the computational cost in DMRG calculations by
using spin degrees of freedom for a single-orbital two-impurity
Anderson model HAIM with Ni = 2, Nd = 1, and M = 2. (a) The
semi-infinite ladder model obtained by the BL recursive technique.
Here the up and down electron sites (indicated by cyan and orange
circles, respectively) are explicitly represented. The impurity sites
are denoted by red spheres at the left edge. The red shaded plaquette
at the left edge indicates where the two-body interaction part HU is
active at the impurity sites. The local degrees of freedom at each rung
in this representation is sD = 16. (b) Using the fact that the one-body
part of the Q1D model is decoupled for up and down electron sites
(except for the impurity sites), the up electron part in (a) can be simply
stretched to the left to form an infinite ladder model, which contains
less local degrees of freedom at each rung, i.e, sD = 4. The indices
l and m, representing the site position of the ladder model along the
leg and rung directions, respectively, correspond to the ones in the
new fermionic operator (aσ )lm = al,m,σ used in Eq. (20).

there is no point group symmetry available to construct the
symmetry adapted BL bases. We will use this reduction scheme
in Sec. III C 3 for systems where the symmetry adapted BL
bases are not easily constructed.

C. Calculations for spatially dependent quantities

The BL-DMRG method allows us to calculate spatially de-
pendent quantities in real space, such as correlation functions
between any sites and local density of states at any conduction
sites. For example, to calculate correlation functions between
the impurity site rimp and the conduction site r, we can simply
take the impurity site(s) and the conduction site of interest as
the initial BL bases. The resulting Q1D model constructed by
the BL recursive technique contains explicitly the impurity site
rimp as well as the conduction site r, for which the correlation
functions are readily evaluated using the DMRG method. This
scheme is explained schematically for a single-impurity Wolff
model in Fig. 7.

Although a similar idea has been applied in the NRG
method [55], the BL-DMRG method has several advantages
over the NRG method in calculating spatially dependent
quantities: (i) the BL-DMRG method can treat any conduction
Hamiltonians in real space, (ii) the reduction scheme to save
the computational cost is available for the BL-DMRG method
by using the symmetry adapted BL bases if the one-body part
of the Hamiltonian has an appropriate symmetry, and (iii) the

m =2
m =1

l =1, 2, 3, 4, 5, ...

(a)

(b)

rimp r

...

FIG. 7. (Color online) Schematic representation of the Q1D
mapping for a single-impurity Wolff model on the honeycomb lattice
to calculate correlation functions between the impurity site (denoted
by red sphere with green arrow) at rimp and a conduction site (denoted
by blue sphere) at r. White spheres in (b) indicate the ripple states
(i.e., BL bases) generated by the BL recursive technique with taking
the impurity site rimp and the conduction site r as the initial BL
bases. The indices l and m in (b) correspond to the site position of the
resulting semi-infinite ladder model along the leg and rung directions,
respectively. The same Q1D mapping is used to calculate, e.g., local
density of states at the conduction site r.

reduction scheme using spin degrees of freedom can also be
applied in the BL-DMRG method if the one-body part of the
Hamiltonian is separated for up and down electrons.

Instead of constructing a different Q1D model for each
conduction site of interest, as shown in Fig. 7(b), it is in
principle possible to calculate physical quantities involving
the conduction sites by using Eq. (17) directly for a single
Q1D model constructed with the initial BL bases containing
only the impurity sites. However, this approach suffers several
problems. First of all, it is not necessarily true that the
well-defined nonsingular (N + M) × (N + M) unitary matrix
P̂ in Eq. (12) is always obtained by the BL iterations in
Eq. (10). This is simply because the BL bases generated by
the BL recursive technique belong to a certain irreducible
representation determined by the initial BL bases. The bases
belonging to other representations are not generated because
these bases are decoupled to the impurity sites. Second, the
BL iterations are very often terminated with a finite number
L of iterations, specially when we consider the conduction
sites in the thermodynamics limit N → ∞. In this case, P̂ is
a rectangular (N + M) × (LM) matrix and thus the inverse
of P̂ can not be defined to describe the operator c†σ for the
conduction sites using the BL bases operator a†σ [59]. In spite
of all these difficulties, if we obtained the well-defined unitary
matrix P̂ , we would then represent the physical quantities
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using the BL bases, e.g.,

c†n,σ cn′,σ ′ =
∑
l,l′

∑
m,m′

(P̂ †
l )m,n(P̂l′ )n′,m′a

†
l,m,σ al′,m′,σ ′ . (31)

However, we would still have to carry out these matrix
multiplications for all a

†
l,m,σ al′,m′,σ , separately, which is com-

putationally very demanding. On the other hand, any operator
involving the conduction sites can be incorporated exactly in
the Q1D model generated by the BL recursive technique if the
conduction sites are included explicitly in the initial BL bases
(see Fig. 7).

D. Multiorbital systems

It is rather straightforward to extend the BL-DMRG method
for a multiple-impurity Anderson model to a multiorbital
single-impurity Anderson model. For completeness and for
possible future applications, we shall here briefly describe
the formulation of the BL-DMRG method for a multiorbital
single-impurity Anderson model and discuss the symmetry of
the BL bases.

As an example, we shall consider a five d-orbital single-
impurity Anderson model. The Hamiltonian is given by Eq. (1)
with Ni = 1 and Nd = 5. Assuming that the impurity site is
in a tetragonal environment with D4h point group symmetry,
the five-fold degenerate d orbitals are reducible and contain
the following irreducible representations: a1g (d3z2−r2 orbital),
b1g (dx2−y2 orbital), b2g (dxy orbital), and (eg:1, eg:2) [(dyz, dzx)
orbitals]. For the two-body part of the Hamiltonian, we can
consider, e.g., the most complete interactions,

Hd
U = U

∑
m

nm,↑nm,↓ + U ′ ∑
m<m′

∑
σ

nm,σ nm′,σ̄

+ (U ′ − J )
∑
m<m′

nm,σ nm′,σ

− J
∑
m=m′

c
†
m,↑cm,↓c

†
m′,↓cm′,↑

+ J ′ ∑
m=m′

c
†
m,↑c

†
m,↓cm′,↓cm′,↑, (32)

where U , U ′, J , and J ′ are intraorbital Coulomb interac-
tion, interorbital Coulomb interaction, Hund’s coupling, and
pair-hopping, respectively. Here, m = (a1g,b1g,b2g,eg:1,eg:2),
nm,σ = d

†
m,σ dm,σ and σ̄ indicates the opposite spin of σ .

Applying the BL recursive technique, the five d-orbital single-
impurity Anderson model is mapped onto a semi-infinite
five-leg ladder model, as shown in Fig. 8.

Let us now discuss the symmetries of the BL bases,
i.e., ripple states, generated by the BL recursive technique.
For simplicity, we further assume that the conduction bands
coupled to the impurity site are formed by s orbitals on the
square lattice and the impurity site is embedded in one of
the sites forming the square lattice. Then, the five d-orbital
single-impurity Anderson model is describe by the following
Hamiltonian:

Hd = Hs
c + Hsd

V + Hd
U , (33)

...

...

...

...

...

l=1,l=2,l=3,l=4, ...

1gm=a 

m=b1g

2gm=b

g:2m=e
g:1m=e

(a)

(b)

...

...

......
...

l=1,l=2,l=3, ...

1gm=a 

m=b1g

2gm=b

g:2m=e
g:1m=e(c)

l=1,l=2,l=3,...,

FIG. 8. (Color online) Schematic representation of the Q1D
mapping for a five d-orbital single-impurity Anderson model. The
BL recursive technique transforms the five d-orbital single-impurity
Anderson model onto a semi-infinite five-leg ladder model. A blue
cube represents the conduction sites in (a) and blue circles indicate
the BL bases in (b) and (c). Red circles with arrows denote the
impurity site with orbital m (=a1g , b1g , b2g , eg:1, and eg:2). The yellow
shaded regions in (b) and (c) indicate where the two-body Coulomb
interaction Hd

U is active at the impurity sites. The indices l and m in
(b) and (c), representing the site position of the resulting Q1D model
along the leg and rung directions, respectively, correspond to the ones
in the new fermionic operator (aσ )lm = al,m,σ in Eq. (15) and used to
describe the Q1D model in Eq. (19).

where

Hs
c = −t

∑
〈r,r′〉

′ ∑
σ

(c†r,σ cr′,σ + H.c.) (34)

and

Hsd
V = V1

∑
e=±ex ,±ey

∑
σ

(
c
†
rimp+e,σ da1g,σ + H.c.

)

+V2

∑
e=±ex

∑
σ

(
c
†
rimp+e,σ db1g,σ + H.c.

)

−V2

∑
e=±ey

∑
σ

(
c
†
rimp+e,σ db1g,σ + H.c.

)
. (35)

Here, the sum in Hs
c runs over all nearest-neighbor sites, r

and r′, excluding the impurity site rimp. Hsd
V represents the

hybridization between the impurity site and the surrounding
nearest-neighbor conduction sites. ex and ey are the lattice
unit vectors along x- and y-directions on the square lattice,
respectively. The symmetry of the d orbitals is reflected with
the sign of the hybridization parameters inHsd

V and also causes
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FIG. 9. (Color online) Intensity plots of (P̂l)r,m at r = (rx,ry),
i.e., the real-space distribution of the mth BL bases generated after
the lth BL iteration, for the d-orbital single-impurity Anderson
model on the square lattice Hd in Eq. (33). The BL bases for (a)
m = a1g and (b) m = b1g are generated with taking the d orbitals
as the initial BL bases. Here, the results for l = 15 are shown.
The impurity site is located at r = (0,0), indicated by open black
circle.

zero hybridization between dxy , dyz, and dzx orbitals and s

orbital. Moreover, here we simply ignore the one-body term at
the impurity site.

Applying the BL recursive technique with taking the d

orbitals as the initial BL bases, we can generate the BL bases
which belong to the same irreducible representation with the
initial BL bases. This can be best seen in r dependence of
(P̂l)r,m [Eq. (16)], i.e., the mth BL bases generated after the lth
BL iteration. A typical example is shown in Fig. 9. Although
in this case only d3z2−r2 and dx2−y2 orbitals hybridize with the
conduction s orbitals, Fig. 9 clearly demonstrates that the each
symmetry of the initial BL bases is preserved even after the
BL iterations are executed. Because of the different irreducible
representations, there is no matrix element in the resulting Q1D
model between the BL bases al,m,σ with different m’s for l > 1
[see Fig. 8(b)].

Even when the conduction bands formed by p orbitals are
considered, the same conclusion is reached as long as the
symmetry is respected correctly in the Hamiltonian. In this
case, one can show that the five d orbitals are all coupled to
the conduction sites with finite hybridization, and the BL bases
generated by the BL iterations preserve the same irreducible
representation of the five d orbitals when they are used for the
initial BL bases. The resulting Q1D model is a semi-infinite
five-leg ladder model, where different legs belong to different
irreducible representations and thus the legs are decoupled to
each other except for the impurity site, as shown in Fig. 8(b).
More generally, in many cases, a multiorbital single-impurity
Anderson model possesses a specific point group symmetry,
and therefore the corresponding Q1D model is decoupled
according to the irreducible representation of the bases [63].

Let us finally discuss the reduction scheme for the mul-
tiorbital systems to save the computational cost. First, it is
trivial to apply the reduction scheme using the spin degrees of
freedom (see Fig. 6). Second, as shown above, a Q1D model
mapped from a multiorbital single-impurity Anderson model is

a semi-infinite ladder model with decoupled chains, except for
the impurity site, because there is no matrix element between
the bases with different irreducible representations. This can
be used to reduce the computational cost by, e.g., putting two
of the five semi-infinite legs on the left and the other three on
the right, ending up with an infinite ladder model with less
number of legs, as shown in Fig. 8(c). Although this scheme
introduces an imbalance of the Hilbert space between the left
and right sides of the system when the impurity contains an
odd number of orbitals, we still find this scheme to be very
effective to save the computational cost.

The BL-DMRG method introduced here can be readily
extended to any multiorbital multiple-impurity Anderson
models. Therefore we expect that the BL-DMRG method
is efficiently applied as an impurity solver of DMFT for
multiorbital Hubbard models [52] and for realistic electronic
structure calculations of correlated materials [64]. With
straightforward extension, the BL-DMRG method is applied
also to Kondo impurity models where localized spins are
coupled to conduction sites.

III. APPLICATION: MAGNETIC IMPURITY
PROBLEMS IN GRAPHENE

In this section, using the BL-DMRG method introduced in
Sec. II, we shall study three different single-impurity Anderson
models for graphene with a single structural defect and with a
single adatom. We first introduce the models in Sec. III A and
explain briefly the numerical details in Sec. III B, followed by
the numerical results for the local magnetic susceptibility in
Sec. III C 1, the local electronic density of states in Sec. III C 2,
and the spin-spin correlation functions between the impurity
site and the conduction sites in Sec. III C 3.

A. Models

We study three different single-impurity Anderson models
in this section. The Hamiltonians H
 of these three models
(
 = I, II, and III) are given as

H
 = Ht + HV + HU , (36)

where

Ht = −t
∑
〈r,r′〉

∑
σ

(c†r,σ cr′,σ + H.c.), (37)

HV = V
∑
r∈S

∑
σ

(
c†r,σ crimp,σ + H.c.

)
, (38)

and

HU = U
(
nrimp,↑ − 1/2

)(
nrimp,↓ − 1/2

)
. (39)

Here, c†r,σ (cr,σ ) is the electron creation (annihilation) operator
at site r and spin σ (=↑,↓). Ht describes the conduction
sites with the nearest-neighbor hopping t and thus the sum
for 〈r,r′〉 runs over all nearest-neighbor pairs of conduction
sites at r and r′ on the honeycomb lattice. HV describes
the hybridization between the impurity site at rimp and the
conduction site at r where the sum over r ∈ S is taken for
the conduction sites connected to the impurity site through
V . HU describes the impurity site with the on-site interaction
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model I

model II

model III

FIG. 10. (Color online) (a)–(c) Schematic representation of (a) a
single adatom on the honeycomb lattice (model I), (b) a substitutional
impurity in the honeycomb lattice (model II), and (c) an effective
model for a single structural defect (vacancy) in graphene (model III).
A red sphere with a green arrow indicates the impurity site.
The conduction sites connected to the impurity site through the
hybridization V (denoted by bold blue lines) are represented by cyan
spheres and other conduction sites are indicated by black dots. The
hopping t is finite only between the nearest-neighbor conduction
sites, indicated by thin black lines. (d)–(f) Local density of states
ρ0(ω) per spin for Ht projected onto the second Lanczos basis with
l = 2 in Eq. (10), i.e., the conduction sites connected to the impurity
site through V , as indicated by cyan spheres in (a)–(c). Three models
are indicated in figures (d)–(f).

U and nrimp,σ = c
†
rimp,σ crimp,σ . The models described by H


correspond to a special case of the general Anderson impurity
model HAIM with Ni = Nd = M = 1 in Eq. (1).

These three models are different in the location of the
impurity site and the way how the impurity site hybridizes
with the conduction sites. The first model, model I, is for
a single impurity absorbed (i.e., a single adatom) on the
honeycomb lattice, as depicted in Fig. 10(a). The impurity
site is located on top of one of the conduction sites in the
honeycomb lattice and hybridizes with only this conduction
site. The second model, model II, represents a substitutional
impurity in the honeycomb lattice, i.e., a single-impurity Wolff
model, as depicted in Fig. 10(b). One of the conduction sites in
the honeycomb lattice is replaced by the impurity site, which
hybridizes with the three nearest neighboring conduction sites.
The third model, model III, represents an effective model
for a single structural defect in graphene [see Fig. 10(c)]. In
this model, the impurity site is composed of a localized sp2

dangling orbital, which hybridizes with the two neighboring
sites, as indicated in Fig. 10(c). Model III is obtained from
model II with deleting one of the hybridizing bonds between
the impurity site and the conduction sites in Model II.

Model III deserves more explanation. In the presence of
a single structural defect (i.e., vacancy) in graphene, three

(a) (b) (c)

(d) (e)

x

y

x

y

x

y

z

y

E

FIG. 11. (Color online) Schematic representation of local or-
bitals of carbon atoms (black dots) around the vacancy (red dashed
circles) and a local molecular orbital energy diagram for model
III [19]. (a) sp2 dangling orbitals (yellow leaves) of the three
carbon atoms surrounding the vacancy without structural distortion.
(b) Same as (a) but with structural distortion reported by first-
principles band structure calculations [22–25]. Two of the three
carbon atoms surrounding the vacancy are closer to each other.
(c) The resulting local molecular orbital energy diagram for (b).
Without distortion and hybridization, the three dangling orbitals
are degenerate. The lowest and highest levels correspond to the
bonding and antibonding states, respectively, composed mostly of the
dangling orbitals of the two carbon atoms closer to each other. The
second lowest level corresponds to the nonbonding state composed
mostly of the remaining dangling orbital. Since there are three
electrons (arrows) in these dangling orbitals, the second lowest level
is half-filled. (d) The half-filled dangling orbital (yellow leaf) and
pz orbitals (green circles) of the other two neighboring carbon atoms
surrounding the vacancy. Without additional distortion, the half-filled
dangling orbital does not hybridize with other orbitals. (e) Same as
(d) but the view from the in-plane axis of graphene. The green leaves
indicate the pz orbitals. According to first-principles band structure
calculations, the additional out-of-plane distortion takes place in the
presence of vacancy [22–25], which induces nonzero hybridization
between the half-filled dangling orbital and the pz orbitals of the other
two neighboring carbon atoms.

dangling orbitals appear around the defect, which are formed
by sp2 orbitals of three carbon atoms surrounding the defect,
each carbon atom contributing a single sp2 orbital, and are
pointing towards the defect [see Fig. 11(a)]. Without additional
structural distortion and hybridization, these three dangling
orbitals are degenerate. However, according to first-principles
band-structure calculations [22–25], because of the additional
structural distortion around the defect, these three fold de-
generate dangling orbitals are split into three nondegenerate
levels, as shown in Figs. 11(b) and 11(c). As a result, two of the
three unpaired electrons in the sp2 dangling orbitals occupy
the lowest nondegenerate level and the remaining electron
occupies the second lowest level, forming the localized state
located mostly at one of the nearest neighboring carbon atoms
around the defect [22–25]. Therefore we can ignore the paired
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electrons occupying the lowest level and consider only the
half-filled second lowest level as an impurity site. Note that
the second lowest level is mainly composed of the sp2 dangling
orbital, which points towards the defect and thus hybridizes
mostly with the pz orbitals of the other two neighboring
carbon atoms surrounding the defect, due to the additional
out-of-plane distortion, as depicted in Figs. 11(d) and 11(e),
but not with the pz orbital at the same carbon atom because it is
symmetrically forbidden [19]. Therefore, in model III, the pz

orbital is also present at the same site where the impurity exists,
although there is no direct hybridization between these two
orbitals [see Fig. 10(c)]. As mentioned above, the difference
between model II and model III is the number of conduction
sites which hybridize with the impurity site.

As explained in details in Appendix, the impurity properties
of Anderson impurity models are determined solely by
the hybridization function �(ω) [10,33]. The hybridization
function for models I–III is expressed as

�(ω) = π |T1|2ρ0(ω), (40)

where T1 is the matrix element of Ht + HV between the first
Lanczos basis, i.e., the impurity site, and the second Lanczos
basis (see Sec. II A and Appendix). As described in Appendix,
we can readily show that T1 = V for model I, T2 = √

3V for
model II, and T1 = √

2V for model III. ρ0(ω) in Eq. (40) is
the local density of states per spin for Ht projected onto the
second Lanczos basis and is evaluated as

ρ0(ω) = 1

N

N∑
k=1

(
1√
NS

∑
r∈S

u(k)
r,c

)2

δ(ω − εc,k), (41)

where u
(k)
r,c is the kth eigenstate of Ht at site r with its

eigenvalue εc,k . The sum over r ∈ S in Eq. (41) is taken for the
conduction sites connected to the impurity site through V , as
indicated by cyan spheres in Figs. 10(a)–10(c), and NS is the
number of these sites. Since the hybridization function �(ω) is
proportional to the local density of state ρ0(ω), we can capture
the fundamental difference among the three models simply by
comparing ρ0(ω).

As shown in Fig. 10(d), ρ0(ω) for model I is exactly the
same as the local density of states for the pure honeycomb
lattice model. Therefore model I is equivalent to the so-called
pseudogap Kondo problem [10,12–15]. The pseudogap Kondo
problem has been studied both analytically and numerically
based on the low-energy calculations [9–15]. The previous
studies have found that the ground state is always in the local
magnetic moment phase and hence no Kondo screening occurs
as long as the system is particle-hole symmetric. As will be
shown below, our numerical calculations also find that the
Kondo screening is absent for model I when the particle-hole
symmetry is preserved at half-filling.

In the case of models II and III, ρ0(ω) has a singularity at
the Fermi level (ω = 0), as shown in Figs. 10(e) and 10(f).
The appearance of the zero-energy singularity is understood
as follows. Recall first that ρ0(ω) is the local density of states
for Ht projected onto the conduction sites next to the impurity
site connected through V in the honeycomb lattice. Therefore,
assuming that these conduction sites belong to B sublattice,
the number NA of the conduction sites on A sublattice is
smaller by one than the number NB of the conduction sites

on B sublattice, i.e., NA = NB − 1, where the total number
N of the conduction sites is NA + NB . Consequently, a single
zero-energy state is induced when there is no hopping between
the same sublattices because the rank of N × N matrix for Ht

is N − 1. The zero-energy state is localized mostly around
the impurity site and the amplitude of the wave function of
this state is finite only on B sublattice. This zero-energy state
causes logarithmically diverging behavior in ρ0(ω) at ω = 0
[26,27]. We thus expect that the impurity properties for models
II and III would be similar but different qualitatively from the
ones for model I.

B. Numerical details

As already indicated in Eq. (39), in this paper, we consider
only the particle-hole symmetric case at half-filling. Therefore
the local electron density is always one, including at the
impurity site, irrespectively of U and V values.

To avoid unnecessary finite size effect [44], we always
terminate the BL iteration at an even number L of iterations
when the Q1D model is constructed. Therefore the resulting
Q1D model has the even number L of sites along the leg
direction. For the calculations of physical quantities depending
only on the impurity site, the resulting Q1D model is a
pure one-dimensional chain and we consider L up to 200
with keeping mD ∼ 12L density-matrix eigenstates in the
DMRG calculations. For the calculations of physical quantities
involving the conduction site, i.e., the spin-spin correlation
functions between the impurity site and the conduction sites,
the resulting Q1D model is a two-leg ladder model and we
consider L up to 240 with keeping mD ∼ 16L density-matrix
eigenstates. The discarded weights are typically of the order
10−8 and the error of the ground state energy is ∼10−4t . We
should emphasize that the resulting Q1D model with hundreds
of L sites along the leg direction corresponds to the original
systemH
 with tens of thousands of conduction sites N in two
spatial dimensions. For example, the Q1D model with L = 240
represents the original model H
 with at least N ∼ 180 000.

To calculate the dynamical quantities, we employ the
correction vector method [65,66]. Although the dynamical
quantities can be evaluated with other methods, e.g., by
expanding spectral functions into a continued fraction [67,68],
using Chebyshev polynomials [69], or Fourier transforming
the corresponding real-time dynamics [70], the correction
vector method is most promising for our purpose because it
is a direct calculation of the dynamical quantity by including
the Hilbert space for the excited states and thus there is no
additional error caused, e.g., by the numerical integration or
by terminating the finite number of polynomials.

C. Results

1. Local magnetic susceptibility at the impurity site

Let us first examine the magnetic properties. For this
purpose, here we calculate the local magnetic susceptibility
χi(ω) at the impurity site defined as

χi(ω) = − 1

π
Im〈ψ0|Sz

rimp
(ω + iη + H
 − E0)−1Sz

rimp
|ψ0〉,

(42)
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FIG. 12. (Color online) Local magnetic susceptibility χi(ω) at
the impurity site calculated for models (a) I, (b) II, and (c) III. The
parameters used are L = 100, V = t , and η = 20t/L for U/t = 0
(circles), 2 (squares), and 4 (triangles). For comparison, χ 0

i (ω) for
the noninteracting limit calculated using Eq. (43) is also shown in red
(black) dashed lines with L = 100 (1000) and η = 20t/L. (Insets) L

dependence of χi(0) with keeping η = 20/L. For comparison, χ0
i (ω)

calculated using Eq. (43) is also plotted by red dashed lines.

where Sz
rimp

= (nrimp,↑ − nrimp,↓)/2 is the z-component of spin
operator at the impurity site rimp, |ψ0〉 is the ground state of
H
 with its energy E0, and η (> 0) is a broadening factor (a
real number).

In the noninteracting limit with U = 0, χi(ω) can be
obtained directly using the kth eigenstate u(k) with its eigen-
value εk of the one-body part of H
 described either by the
conduction site bases cσ as in Ĥ0 in Eq. (8) or by the Lanczos
bases aσ as in Ĥ BL

0 in Eq. (14), i.e.,

χ0
i (ω) = η

2π

∑
k∈(εk<μ)

∑
k′∈(εk′>μ)

|u(k)
rimpu

(k′)
rimp |2

(ω − εk′ + εk)2 + η2
, (43)

where u
(k)
r is the site r component of u(k) and μ is the chemical

potential. Since models I, II, and III are all particle-hole
symmetric at half-filling, the chemical potential is μ = 0.
It is very intriguing to find that χ0

i (ω) can be calculated
more accurately, in a sense that it is closer to the one in
the thermodynamic limit, by using Ĥ BL

0 than Ĥ0, as long
as the same matrix sizes of Ĥ BL

0 and Ĥ0 are taken. This is
simply because more important degrees of freedom around
the impurity site are extracted in Ĥ BL

0 already for relatively
small L.

The results of χ0
i (ω) for the three different models in the

noninteracting limit are shown in Fig. 12. It is clearly observed
in Fig. 12 that χ0

i (ω) diverges in the limit of ω → 0 for
model I, while it converges to zero for models II and III.
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FIG. 13. (Color online) Local spin S̄rimp at the impurity site for
V = t , L = 200, and various values of U . For comparison, S̄rimp in
the strong coupling limit (U → ∞) is indicated by dashed line.

The different behavior of χ0
i (ω) in the limit of ω → 0 can be

easily understood by recalling that χ0
i (ω) is proportional to the

convolution of the local density of states, i.e.,

χ0
i (ω) ∝

∫
dωρ0

i (ω′ − ω)ρ0
i (ω′)�(ω − ω′)�(ω′), (44)

where �(ω) is the Heaviside step function and ρ0
i (ω) is the

local density of state at the impurity site [see Eq. (50)]. The
diverging behavior of χ0

i (0) for model I is due to the presence
of the zero-energy state, which causes the zero-energy peak at
the Fermi level in the local density of state at the impurity site
[see also in Fig. 14(a)]. In contrast, the local density of states
at the impurity site for models II and III has the pseudogap
structure at the Fermi level, i.e., ρ0

i (ω) ∝ |ω|, and hence
χ0

i (ω) ∝ ω3. The diverging behavior of the local density of
states at ω = 0 in the noninteracting limit for model I is due to
the fact that the numbers of sites (including the impurity site)
on A and B sublattices, NA and NB , respectively, are different
for model I, but the same for models II and III, the similar
discussion being given in the last part of Sec. III A for ρ0(ω).

The results of χi(ω) calculated using the dynamical DMRG
method for the three models are shown in Fig. 12. First, it is
noticed in Fig. 12 that the dynamical DMRG calculations well
reproduce χ0

i (ω) obtained using Eq. (43) with the same L and
η for the noninteracting limit. In the case of finite interaction
U , we find that χi(ω) for model I diverges in the limit of
ω → 0, which indicates the presence of free magnetic moment
at the impurity site. Although the diverging behavior of χi(0)
for finite U seems similar to the one found in χ0

i (0) for the
noninteracting limit, we find in Fig. 13 that the local spin S̄rimp

at the impurity site,

S̄rimp =
√

〈ψ0|Srimp · Srimp |ψ0〉, (45)

is sizably large for finite U as compared to the one for the
noninteracting limit. Here, the spin operator Sr at site r is
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FIG. 14. (Color online) Local density of states ρi(ω) at the im-
purity site calculated using the dynamical DMRG method for models
(a) I, (b) II, and (c) III. The parameters used are L = 100, V = t ,
and η = 20t/L for U/t = 0 (circles), 2 (squares), and 4 (triangles).
For comparison, ρ0

i (ω) for the noninteracting limit calculated using
Eq. (50) is also shown in red (black) dashed lines with L = 100
(1000) and η = 20t/L. (Insets) L dependence of ρi(0) with keeping
η = 20t/L. For comparison, ρ0

i (ω) calculated using Eq. (50) is also
plotted by red dashed lines.

defined as

(Sr)ν = 1

2

∑
σ1,σ2

c†r,σ1
σ̂ ν

σ1,σ2
cr,σ2 (46)

and σ̂ ν (ν = x,y,z) is the ν component of Pauli matrices.
In addition, as will be discussed later in Fig. 14, the local
density of states at the impurity site is zero at the Fermi
level for finite U , qualitatively different form the case for
noninteracting limit. Therefore we conclude that in the ground
state of model I the local magnetic moment is not screened but
rather isolated, and thus no Kondo screening occurs. This is in
good accordance with the previous studies for the pseudogap
Kondo problem [9–15].

On the other hand, as shown in Fig. 12, χi(ω) for models II
and III monotonically decreases with decreasing ω for small
ω and it becomes zero in the limit of ω → 0, which indicates
the absence of free magnetic moment at the impurity site.
Since limω→0 χ0

i (ω) → 0 already in the noninteracting limit
for models II and III, the absence of free magnetic moment for
a small U region is related to the formation of bonding orbital
composed of the impurity site and the surrounding conduction
sites. However, as shown in Fig. 13, the local spin S̄rimp at
impurity site indeed increases with increasing U smoothly
to the strong coupling limit (i.e., U → ∞), where a single
electron is completely localized at the impurity site and only
the spin degree of freedom is left. Therefore these results imply

that there is the crossover from a small U region to a large U

region where the screening mechanisms are different: for a
small U region, the absence of free magnetic moment is due to
the formation of bonding orbital, whereas for a large U region
the local magnetic moment is screened by the surrounding
conduction electrons, i.e., the formation of a Kondo singlet
state [32].

Other noticeable effects of U on χi(ω) are summarized as
follows. First, the line shape of χi(ω) changes systematically
with increasing U : the overall weight moves downward to a
lower energy region with increasing U . This is associated with
the decrease of the effective exchange interaction between
the impurity site and the conduction site with increasing
U in the strong coupling limit. Second, the total spectral
weight increases with U . Notice that the total spectral weight
is related to the local spin S̄rimp at the impurity site, i.e.,∫ ∞

0 χi(ω)dω = S̄2
rimp

/3. The larger U increases the tendency
of single occupancy at the impurity site with less charge
fluctuations, which in turn increases the local magnetic
moment, as seen in Fig. 13.

2. Local density of states at the impurity site

The local density of states ρ(r,ω) at site r is defined as

ρ(r,ω) =
{

− 1
π

ImGe(r,ω + iη) for ω > 0

− 1
π

ImGh(r,ω + iη) for ω < 0
, (47)

where Ge(r,z) and Gh(r,z) are

Ge(r,z) = 〈ψ0|cr,σ (z − H
 + E0)−1c†r,σ |ψ0〉 (48)

and

Gh(r,z) = 〈ψ0|c†r,σ (z + H
 − E0)−1cr,σ |ψ0〉, (49)

respectively. The local density of states ρi(ω) at the impurity
site rimp is thus ρi(ω) = ρ(rimp,ω).

Figure 14 shows the results of ρi(ω) for the three models
calculated using the dynamical DMRG method. Since these
models are particle-hole symmetric at half-filling and the
spectra are symmetric at ω = 0, we show ρi(ω) only for ω � 0
in Fig. 14. For comparison, we also calculate the local density
of states ρ0

i (ω) at the impurity site for the noninteracting
limit by numerically diagonalizing the one-body part of the
Hamiltonian H
 described by the Lanczos bases aσ as in Ĥ BL

0
in Eq. (14), i.e.,

ρ0
i (ω) = η

π

∑
k∈(εk>μ)

|u(k)
rimp |2

(ω − εk)2 + η2
(50)

for ω � 0. As shown in Fig. 14, the dynamical DMRG
calculations well reproduce ρ0

i (ω) obtained using Eq. (50)
with the same L and η.

Let us first focus on ρi(ω) for model I. As shown in
Fig. 14(a), the spectral weight is redistributed drastically
with increasing U . The diverging behavior of ρi(ω) in the
limit of ω → 0 for U = 0 is strongly suppressed and the
low-energy spectral weight is transferred to a higher energy
region with increasing U . As shown in the inset of Fig. 14(a),
we find that ρi(0) for finite U approaches to zero in the
limit of L → ∞. This implies that for model I a small
U region is qualitatively different from the noninteracting
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limit but rather smoothly connected to the strong coupling
limit where the charge fluctuations are completely suppressed
and only the spin degree of freedom is left at the impurity
site.

It is also observed in Fig. 14(a) that the lowest peak in ρi(ω)
at ω/t ∼ 0.3 (0.5) for U/t = 2 (4) becomes broader and the
peak position shifts slightly to higher energy as U increases.
This is indeed consistent with the previous study of the same
model using the QMC method [71]. In addition, we find that
with increasing U the spectral weight in a much higher energy
region is enhanced and gradually forms a peak structure, e.g,
at ω/t ∼ 3 for U/t = 4.

We shall next examine ρi(ω) for models II and III. As
shown in Figs. 14(b) and 14(c), we find that (i) ρi(ω) for the
low-energy region of ω/t � 0.5 is almost insensitive to the
values of U and (ii) ρi(0) clearly becomes 0 in the limit of
L → ∞, thus exhibiting a pseudogap structure similar to the
one for the noninteracting limit. The pseudogap structure in
ρi(ω) is also found even for much larger U (not shown). The
fact that ρi(ω) for the low-energy region is insensitive to U is
in good qualitative agreement with the previous study by the
perturbation theory for the conventional Anderson impurity
model, in which ρi(ω) at ω ∼ 0 for finite U remains the same
as the one for U = 0 [72,73].

We also find in Figs. 14(b) and 14(c) that the spectral weight
in the high-energy region of ω/t > 3 increases with U , which
is transferred from the low-energy region below ∼3t . This
spectral weight redistribution with increasing U is also very
similar to the one in the conventional Anderson impurity model
[72,73], where the spectral weight in the low-energy region
is suppressed and the high-energy peaks, corresponding to
the lower and upper Hubbard peaks at ω ∼ ±U/2, gradually
emerge with increasing U , although the excitation energy
of the high-energy peak found in Figs. 14(b) and 14(c) is
significantly different from U/2. Therefore U dependence of
the spectral weight for models II and III can be qualitatively
explained by the conventional Anderson impurity picture,
except for the absence of Kondo resonance peak, which is
simply due to the pseudogap structure in ρ0

i (ω) at ω ∼ 0 for
the noninteracting limit.

3. Spin-spin correlation functions between the impurity
site and the conduction sites

Finally, we shall calculate the spin-spin correlation func-
tions Si(r) between the magnetic impurity site at rimp and the
conduction site at r,

Si(r) = 〈ψ0|Srimp · Sr|ψ0〉. (51)

As described in Sec. II B, the ladder model is constructed
separately for each conduction site r to which the spin-spin
correlation function Si(r) is evaluated.

We should first note that one can easily construct the
symmetric and antisymmetric BL bases for model II because
the symmetry of the lattice structure remains the same
as the one for the honeycomb lattice. However, it is not
straightforward to construct the symmetric and antisymmetric
BL bases for models I and III. In the case of model I,
we can in principle perform the BL iterations taking as the
initial BL bases two conduction sites, i.e., the conduction
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FIG. 15. (Color online) Intensity plot of the spin-spin correlation
functions Si(r) between the impurity site and the conduction sites for
models (a) I, (b) II, and (c) III. The impurity site is located at rimp =
(rx,ry) = (0,0) for (a) and (b), and rimp = (0, −0.5) for (c), indicated
by black circles. The parameters used are U/t = 4 and V/t = 1.
The system size L is chosen to satisfy L = lpath + 100 + mod(lpath,2)
where lpath is the minimum path length to reach the conduction site
from the impurity site in the honeycomb lattice. Notice that the color
intensity used here is for |Si(r)|1/4 sign [Si(r)], instead of Si(r) itself,
for clarity.

site of interest and the conduction site connected to the
impurity site via V [the conduction site denoted by cyan
sphere in Fig. 10(a)]. After the BL iterations are completed,
the impurity site can be added to the resulting ladder model.
With this slightly modified implementation, we can readily
construct the symmetry adapted BL bases and the resulting
ladder model is essentially decoupled for the symmetric and
antisymmetric BL bases, as explained in Sec. II B. However,
this implementation naturally introduces an odd number of
sites, which is problematic in the DMRG calculations. In the
case of model III, it is generally difficult to construct the
symmetry adapted BL bases. Therefore we use the reduction
scheme for spin degrees of freedom described in Sec. II B (see
also Fig. 6) for models I and III.

Figure 15 shows the spatial distribution of the spin-spin
correlation functions Si(r) for the three models. Because of the
bipartite nature of the honeycomb lattice and the particle-hole
symmetry at half-filling, we can clearly see in Fig. 15 the
alternating dependence of the sign of Si(r) for all models:
the spin-spin correlation functions Si(r) at the conduction site
belonging to the same (different) sublattice of the impurity site
is positive (negative). We can also notice in Fig. 15 that model
I exhibits relatively strong ferromagnetic correlations, while
antiferromagnetic correlations are dominant for models II and
III. The different behavior among the models is attributed to
the fact that the ground state of model I is characterized with
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the appearance of unscreened local magnetic moment but the
ground states of models II and III are instead both spin singlet,
as discussed above in Sec III C 1 and Sec. III C 2.

To discuss more details of the spin structures around the
impurity site, the log-log scale plots of the spin-spin correlation
functions Si(r) for the three models are shown in Fig. 16. We
should notice first that the correlation functions can be very
small for large |r|, as small as ∼10−9–10−8 at the maximum
distance studied in Fig. 16. However, we can still distinguish
clearly the significant difference in the asymptotic behavior of
Si(r) for these models. We find in Fig. 16 that the spin-spin
correlation functions Si(r) between the impurity site and the
conduction sites decay as

Si(r) ∝
{

1/ |r|3 for model I
1/ |r|4 for models II and III

(52)

in the asymptotic |r|. These calculations thus demonstrate
the capability of the BL-DMRG method to study spatially
dependent quantities with extremely high accuracy.

To better understand these results, we also calculate the
spin-spin correlation function S0

i (r) for the noninteracting
limit, which is given as

S0
i (r) = 3

2

∑
k∈(εk<μ)

∑
k′∈(εk′ >μ)

(
u(k)

rimp

)∗
u(k′)

rimp

(
u(k′)

r

)∗
u(k)

r . (53)

In the noninteracting limit, the spin-spin correlation functions
between any two sites on the same sublattice are exactly
zero, whereas they are negative between any two sites on the
different sublattices. As shown in Fig. 16, we find that in the
noninteracting limit the spin-spin correlation functions decay
as

S0
i (r) ∝

{
1/ |r|2 for model I
1/ |r|4 for models II and III

(54)

in the asymptotic |r|. Therefore the interaction U drastically
changes the exponent of the spin-spin correlation functions
for model I. The asymptotic behavior of Si(r) for model I
with finite U is rather the same as the one for Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [74–76] between
two magnetic impurities coupled through the Dirac electrons
on the honeycomb lattice at half-filling, which has been indeed
found to be as ∝|r|−3 [77–83]. In sharp contrast, the exponent
remains the same for models II and III with and without U . The
different effect of U on the asymptotic behavior of Si(r) for
the three models is understood because the magnetic moment
at the impurity site is not screened but rather isolated in the
ground state of model I while the impurity moment is screened
by the conduction electrons to form the spin-singlet ground
state for models II and III, as discussed in Sec. III C 1 and
Sec. III C 2.

It is also noticed in Fig. 16 that the absolute value of the
spin-spin correlation functions are suppressed with increasing
U for model I, but they are enhanced for models II and III
with positive (negative) values between the same (opposite)
sublattices. These different behaviors are also understood
by considering the different nature of the ground states of
these models. The former results are due to the increase of
unscreened local magnetic moment at the impurity site with
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FIG. 16. (Color online) Log-log scale plots of the spin-spin cor-
relation functions Si(r) between the impurity site and the conduction
sites for models (a) I, (b) II, and (c) III. The impurity site is located
at rimp = (x,y) = (0,0) and the conduction sites r are chosen along
(0,1) direction (see Fig. 15). The parameters used are V/t = 1 and
different values of U/t indicated in the figures. The system size L

is chosen to satisfy L = lpath + 100 + mod(lpath,2) where lpath is the
minimum path length to reach the conduction site from the impurity
site in the honeycomb lattice. The spin-spin correlation functions
S0

i (r) for the noninteracting limit calculated using Eq. (53) are shown
by red open circles. For comparison, |r|−α with different exponent α

is also plotted by black dashed lines.

increasing U (see also Fig. 13). The latter results are because
the ground states for models II and III are both spin singlet,
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where the increased ferromagnetic correlations have to be
compensated by enhancing the antiferromagnetic correlations.

IV. SUMMARY AND DISCUSSION

We have introduced the BL-DMRG method for single-
as well as multiple-impurity Anderson models in any spatial
dimensions. The BL recursive technique is employed to map,
without losing any geometrical information of the lattice, a
general Anderson impurity model onto a Q1D model, to which
the DMRG method can be applied with high accuracy. One of
the key ideas in the BL-DMRG method is to include, as the
initial BL bases, the Anderson impurity sites where the two-
body interactions are finite. With this choice of the initial BL
bases, the two-body interactions remain local in the resulting
Q1D model. We have also introduced two reduction schemes
to save the computational cost for the DMRG calculations.
One is to construct the symmetry adapted BL bases when the
Hamiltonian possesses a certain point group symmetry such
as rotation and reflection. The other is to use spin degrees
of freedom when the one-body part of the Hamiltonian is
separated for up and down electrons. We have also discussed
briefly the extension of the BL-DMRG method and the
symmetry adapted BL bases for a multiorbital single-impurity
Anderson model. Furthermore, we have demonstrated how the
BL-DMRG method is applied to calculate spatially dependent
quantities such as spin-spin correlation functions and local
density of states at the conduction sites.

We should emphasize that the resulting Q1D model in
the BL bases with L sites along the leg direction represents
the original Anderson impurity model in real space with
approximately at least πL2 and 4πL3/3 conduction sites
in two and three spatial dimensions, respectively. Therefore,
as long as the impurity properties are concerned, the BL-
DMRG method can treat quite large systems for a wide
class of Anderson impurity models, which are currently out
of reach with the direct application of the QMC methods
and the Lanczos exact diagonalization method. The spa-
tially dependent quantities are rather difficult to calculated
with the NRG method. Therefore the BL-DMRG method
has a great advantage on this aspect as well over the
NRG method.

As an application of the BL-DMRG method, we have stud-
ied the ground state properties of single-impurity Anderson
models for graphene with an adatom and with a structural
defect (vacancy). For this purpose, we have considered three
different models: (i) a single impurity absorbed on the
honeycomb lattice (model I), (ii) a substitutional impurity
in the honeycomb lattice (model II), and (iii) an effective
model for graphene with a single vacancy of carbon atom
where the impurity site represents one of the sp2 dangling
orbitals at the carbon atoms surrounding the vacancy (model
III). We have focused only on the particle-hole symmetric
case at half-filling and thus the electron density is always
one, including at the impurity site. Our numerical results for
the local magnetic susceptibility, the local spin, and the local
density of states at the impurity site clearly show that the
magnetic moment at the impurity site is not screened but rather
isolated, and thus no Kondo screening occurs in the ground
state of model I, while the impurity moment is screened by the

conduction electrons to form the spin-singlet ground state in
models II and III.

Moreover, we have applied the BL-DMRG method to cal-
culate, with extremely high accuracy, the spin-spin correlation
functions Si(r) between the impurity site and the conduction
sites for the three models. We have found the qualitative
difference in the spatial distribution of the spin structures of the
conduction electrons around the impurity site. The spin-spin
correlation functions Si(r) decay asymptotically as ∝|r|−3 for
model I, the same asymptotic behavior as the one for the RKKY
interaction between two magnetic impurities coupled to the
Dirac conduction electrons, but qualitatively district from the
one for the noninteracting limit (∝|r|−2). On the other hand,
the spin-spin correlation functions Si(r) decay asymptotically
as ∝|r|−4 for models II and III, which are exactly the same
as the ones for the noninteracting limit. This difference can
be understood because the magnetic moment in the ground
state of model I is isolated but the spin singlet is formed in the
ground state of models II and III.

It is now interesting to discuss these results based on Lieb’s
theorem [84]. According to Lieb’s theorem for bipartite lattice
systems with no hopping between the same sublattices (except
for the on-site potential), the total spin Stot of the ground state
at half-filling is Stot = |NA − NB | /2, where NA (NB) is the
number of sites belonging to A sublattice (B sublattice) [84].
Regardless of the rigorous condition for Lieb’s theorem [85],
the theorem can be applied to the three models studied here
because all models are bipartite and at half-filling. Since model
I has different number of sites (including the impurity site) on
A and B sublattices, |NA − NB | = 1, the theorem predicts the
total spin of the ground state is 1/2, which can be regarded
as the isolated impurity spin. On the other hand, in models
II and III, NA = NB and thus the theorem predicts that the
ground state of these models is spin singlet, which is also in
accordance with our numerical results.

We shall now discuss our results in comparison with the
recent experiments on graphene. The experiments on graphene
with hydrogen or fluorine adatoms as well as with structural
defects (vacancies) have revealed that these systems carry
magnetic moments with spin 1/2 per adatom or vacancy
and that these magnetic moments behave paramagnetically
even at lowest temperatures [6,7]. Therefore these experiments
strongly indicate that no Kondo screening occurs. On the other
hand, different experiments on graphene with vacancies have
observed the Kondo-like signature in the temperature depen-
dence of the resistivity [8]. Although we have focused only
on single impurity models with the particle-hole symmetry at
half-filling, our results should be relevant to these experiments
as long as the number of adatoms or vacancies are dilute. We
have found that the magnetic moment is unscreened but rather
isolated in the ground state of model I, which therefore can
explain, at least qualitatively, the spin 1/2 free moment per
adatom observed experimentally on graphene with hydrogen
or fluorine adatoms [6,7]. On the other hand, we have found
that the ground state of model III, a model for graphene with
a single structural defect, is spin singlet and no free magnetic
moment is found. Therefore our results for model III are not in
accordance with the experimental observation reported in Ref.
[6] but seem to be consistent qualitatively with experiments in
Ref. [8].
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There are two comments regarding our results for model
III and the experiments on graphene with vacancies reported
in Ref. [8]. First, it is reasonable that the impurity moment
is screened to form the spin-singlet ground state in model
III. The reason is as follows. The number of electrons and
the number of sites are both even in model III and therefore
the ground state is closed shell in the noninteracting limit.
Assuming the adiabatic evolution of the ground state with
interaction U , the ground state must be total spin Stot = 0
unless the correlation induces a level cross between the ground
state and a low-lying excited state. In the experiments, the
number of electrons removed by introducing vacancies must
be even (i.e., six electrons removed per vacancy), and thus
the system easily forms a close shell state with the total
spin Stot = 0 or possibly nonzero integer spin, but not with
Stot = 1/2. Second, although our results for model III seem
to be consistent with the experimental observation in Ref [8],
there is the following fundamental discrepancy. By controlling
the number of electrons through gate voltage, it is found
experimentally that the highest Kondo temperature appears
away from half-filling [8]. This observation seems contradict to
our calculations because the diverging hybridization function
�(ω) at ω = 0 should induce the most tightly screened state
and thus the highest Kondo temperature at half-filling, but not
away from half-filling, for model III. The discrepancy between
our results and the experiments as well as the disagreement
between the two experiments suggest that the understanding
of physics of graphene with vacancies and the corresponding
magnetic properties would be beyond the simple model studied
here and deserve further investigation both theoretically and
experimentally.

Finally, we shall briefly comment on further possible
extensions of the BL-DMRG method. The method is quite
general and can be applied to general Anderson impurity
models in any spatial dimensions. One major advantage of
this method is its flexibility for the form of the conduction
Hamiltonian. In this paper, we have studied Anderson impurity
models in the real-space representation. However, the BL-
DMRG method can be applied, without any difficulties, to
Anderson impurity models in the energy-space representation
(see Appendix). The BL-DMRG method in the energy-space
representation allows us, in principle, to do the calculations in
the thermodynamic limit once the hybridization function �(ω)
is evaluated accurately (see Appendix). The implementation
of these extensions is straightforward and we believe that
the BL-DMRG method in the energy-space representation
should be valuable, e.g., for application as an impurity solver
of DMFT for realistic electronic structure calculations of
correlated materials [64]. Research along this line is now in
progress [86].
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APPENDIX: THE HYBRIDIZATION FUNCTION OF A
GENERAL ANDERSON IMPURITY MODEL

As mentioned in Sec. III A, the difference among different
Anderson impurity models appears only through the hybridiza-
tion function as long as the Anderson impurity terms are
the same. Therefore the hybridization function determines the
physics of Anderson impurity models. In this Appendix, we
shall derive the hybridization function for a general Anderson
impurity model described by the Hamiltonian HAIM in Eq. (1),
and show that indeed the model difference appears through
the hybridization function. The hybridization function is also
required to apply the BL-DMRG method to Anderson impurity
models in the energy-space representation.

To this end, we shall use the path integral formulation
for a general Anderson impurity model HAIM. The partition
function Z for HAIM is given as

Z =
∫

Dd∗DdDc∗Dc exp[−S(d∗,d,c∗,c)], (A1)

where

S(d∗,d,c∗,c) = S0(d∗,d,c∗,c) + SU (d∗,d), (A2)

and

S0(d∗,d,c∗,c) = −Triωn

∑
σ

(d†
σ (iωn),c†σ (iωn))

×
(

iωn − Ĥd −V̂

−V̂ † iωn − Ĥc

)(
dσ (iωn)
cσ (iωn)

)
.

(A3)

Here, S0(d∗,d,c∗,c) [SU (d∗,d)] is the one-body part (the two-
body part) of the total action S(d∗,d,c∗,c), and

d†
σ (iωn) = (d∗

1,σ (iωn),d∗
2,σ (iωn), . . . ,d∗

M,σ (iωn)) (A4)

and

c†σ (iωn) = (c∗
1,σ (iωn),c∗

2,σ (iωn), . . . ,c∗
N,σ (iωn)) (A5)

are Grassmann variables, corresponding to d
†
m,σ and c

†
n,σ ,

respectively, at Matsubara frequency iωn. Triωn
indicates the

sum over the Matsubara frequencies. The matrices Ĥd , Ĥc,
and V̂ are defined in Eq. (8).

Carrying out the Gaussian integrals over variable c∗ and c in
Eq. (A1), we obtain an effective action Seff(d∗,d) for variables
d∗ and d, i.e.,

Seff(d
∗,d) = S0(d∗,d) + SU (d∗,d), (A6)

where

S0(d∗,d) = −Triωn

∑
σ

d†
σ (iωn)

×(iωn − Ĥd − 
̂(iωn))dσ (iωn) (A7)

and 
̂(z) is the hybridization function for a complex frequency
z defined as


̂(z) = V̂ (z − Ĥc)−1V̂ †. (A8)
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To derive the above formula, we have used the following
identity on Grassmann variables:

∫ N∏
i=1

dx∗
i dxi exp[−x†Âx + x†B̂†y + y†B̂x]

= det(Â) exp[y†B̂Â−1B̂†y], (A9)

where Â is a regular N × N matrix, B̂ is a M × N matrix, and

x† = (x∗
1 ,x∗

2 , . . . ,x∗
N ), (A10)

y† = (y∗
1 ,y∗

2 , . . . ,y∗
M ), (A11)

are the vector representations for Grassmann variables x∗
i and

y∗
i , respectively.

It is now obvious from Eqs. (A6) and (A7) that the
effective action Seff(d∗,d) for the impurity sites depends on the
conduction sites only through the hybridization function 
̂(z).
Therefore all properties at the impurity sites are determined
solely by 
̂(z) when the Anderson impurity term Hd is the
same. In other words, as long as the impurity properties
are concerned, any models with the same Hd and HU

are equivalent if Hc and HV generates the same 
̂(z).
Therefore we can even consider Eqs. (A6) and (A7) as an
effective Anderson impurity model in the complex-frequency
representation which describes exactly the same physics of the
original model HAIM in the real-space representation.

Next, to derive the relation between the hybridization
function 
̂(z) for a complex frequency z and the noninteracting
Green’s function, and also the recurrence relation for the
noninteracting Green’s function, we will use the following
basic matrix algebra. Assuming that matrix X̂ is a regular
square matrix,

X̂ =
(

X̂11 X̂12

X̂21 X̂22

)
, (A12)

with X̂11 being a r × r matrix, the first r × r elements Ŷ11 of
the inverse matrix of X̂ is the inverse of the Schur complement
of X̂22, i.e.,

Ŷ11 = (
X̂11 − X̂12X̂

−1
22 X̂21

)−1
, (A13)

where (
X̂11 X̂12

X̂21 X̂22

) (
Ŷ11 Ŷ12

Ŷ21 Ŷ22

)
= 1̂, (A14)

and we assume that X̂22 is a regular matrix.
We shall now derive the formula for the hybridization

function 
̂BL(z) in the BL bases a†σ and aσ [Eq. (15)], which
block-tridiagonalize Ĥ0 in the form of Ĥ BL

0 , as shown in
Eq. (14). First, notice that since the noninteracting Green’s
function for a complex frequency z is defined as

Ĝ(z) =
(

Ĝdd (z) Ĝdc(z)
Ĝcd (z) Ĝcc(z)

)
=

(
z − Ĥd −V̂

−V̂ † z − Ĥc

)−1

(A15)

in the original conduction site bases c†σ and cσ [Eq.
(6)], the impurity-site components of the Green’s func-
tion, Ĝdd (z), is related to the hybridization function 
̂(z)

through


̂(z) = z − Ĥd − Ĝ−1
dd (z). (A16)

Next, we introduce the following matrix Ĝ
(l)
BL(z) in the BL

bases a†σ and aσ , defined as a part of the block matrices in
Ĥ BL

0 :

Ĝ
(l)
BL(z) =

⎛
⎜⎜⎝

Ĝ
(l)
11(z) Ĝ

(l)
12(z) · · ·

Ĝ
(l)
21(z) Ĝ

(l)
22(z) · · ·

...
...

. . .

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

z − ÊL−l −T̂L−l · · · 0
−T̂

†
L−l z − ÊL−l+1 · · · 0
...

...
. . .

...
0 0 · · · z − ÊL

⎞
⎟⎟⎟⎠

−1

,

(A17)

where l = 0,1,2, . . . ,L − 1 and Ĝ
(0)
BL(z) = Ĝ

(0)
11 (z) = (z −

ÊL)−1. The noninteracting Green’s function is then expressed
simply as Ĝ

(L−1)
BL (z) in the BL bases obtained after the Lth BL

iteration. Therefore the hybridization function 
̂BL(z) in the
BL bases is given as


̂BL(z) = z − Ê1 − [
Ĝ

(L−1)
11 (z)

]−1
. (A18)

It is important to notice here that because of the block-
tridiagonal form of the matrix Ĝ

(l)
BL(z) in Eq. (A17), the

following recurrence relation is satisfied:

Ĝ
(l)
11(z) = (

z − ÊL−l − T̂L−lĜ
(l−1)
11 (z)T̂ †

L−l

)−1
. (A19)

This can be readily shown by using Eq. (A13). Finally, using
Eqs. (A18) and (A19), we obtain the following form for the
hybridization function 
̂BL(z) for a complex frequency z in the
BL bases:


̂BL(z) = T̂1Ĝ
(L−2)
11 (z)T̂ †

1

= T̂1[z − Ê2 − T̂2(z − Ê3 − · · · )−1T̂
†

2 ]−1T̂
†

1 . (A20)

Clearly, this is a matrix extension of the continued fraction
formula [87] and a similar formula has been used in the recur-
sive Green’s function technique [88–90]. The recursive form
for 
̂BL(z) in Eq. (A20) allows us to evaluate the hybridization
function very accurately as compared to the simple full
diagonalization method since the recursive method can treat
much larger matrix sizes.

Now, recall that

Ĝ
(L−1)
BL (z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z − Ê1 −T̂1 0 · · · 0

− − − − − − − − − − −−
−T̂

†
1

0
Ĝ

(L−2)
BL (z)−1

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

(A21)
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and therefore the matrix representation of the local density of
states ρ̂0(ω) for H0 at the second BL bases (i.e., at the sites
next to the impurity sites in the Q1D model HQ1D

AIM) with T̂1 = 0
[see also Fig. 1(b)] is

ρ̂0(ω) = − 1

π
lim

δ→0+
Ĝ

(L−1)
22 (z)

∣∣∣∣
z=ω+iδ, T̂1=0

= − 1

π
lim

δ→0+
Ĝ

(L−2)
11 (z)

∣∣∣∣
z=ω+iδ

= − 1

π
lim

δ→0+
(z − Ê2 − T̂2(z − · · · )−1T̂

†
2 )−1

∣∣∣∣
z=ω+iδ

.

(A22)

Here, 0+ is positive infinitesimal and we have used Eq. (A19)
in the third equality. Hence we finally obtain the hybridization

function �̂(ω) for a real frequency ω as

�̂(ω) = −Im
̂BL(ω + i0+)

= πT̂1ρ̂0(ω)T̂ †
1 , (A23)

where we have used Eq. (A20). Since 
̂(z) for a complex
frequency z is related to �̂(ω) for a real frequency ω,


̂(z) = 1

π

∫ ∞

−∞
dω

1

z − ω
�̂(ω), (A24)

all properties at the impurity sites are determined by the
hybridization function �̂(ω) for a real frequency ω.

Now, consider the single-impurity Anderson models stud-
ied in Sec. III A. In this case, M = 1 in HAIM and thus T̂1

and ρ̂0(ω) are simply scalar. Therefore we can readily find that
T̂1 = V for model I, T̂1 = √

3V for model II, and T̂1 = √
2V

for model III.
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