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Spin-orbit coupling and electronic charge effects in Mott insulators
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We derive the effective charge- and current-density operators for the strong-coupling limit of a single-band Mott
insulator in the presence of spin-orbit coupling and show that the spin-orbit contribution to the effective charge
density leads to novel mechanisms for multiferroic behavior. In some sense, these mechanisms are the electronic
counterpart of the ionic-based mechanisms, which have been proposed for explaining the electric polarization
induced by spiral spin orderings. The new electronic mechanisms are illustrated by considering cycloidal and
proper-screw magnetic orderings on sawtooth and kagome lattices. As for the isotropic case, geometric frustration
is crucial for achieving this purely electronic coupling between spin and charge degrees of freedom.
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I. INTRODUCTION

The Mott insulator is a paradigmatic example of a state
of matter which cannot be understood without including the
crucial role of the electron-electron Coulomb interaction.
Valence electrons of a half-filled band localize in their atoms
because of the large Coulomb energy cost U of double
occupying the same atomic orbital. A low-energy spin degree
of freedom arises from the fact that each atomic orbital
is mainly occupied by a single electron. Spin degrees of
freedom interact with each other via virtual processes through
double-occupied states which arise from a partial electronic
delocalization: Electrons have a finite hopping amplitude t

between neighboring atomic orbitals. This simple mechanism
leads to a large spectrum of exotic phases that range from usual
magnetic orderings, such as the Néel antiferromagnetic phase,
to rather exotic spin liquid states [1,2].

Understanding the magnetic properties of different Mott
insulators has been one of the main goals of condensed-matter
physics over the past decades. However, the recent interest
in multiferroic compounds and magnetoelectric (ME) effects
generated large efforts for understanding the charge effects,
which are still present in Mott insulators. This interest in the
interplay between magnetism and ferroelectricity in magnetic
ferroelectrics, or multiferroics, was triggered by the giant ME
effects observed in some geometrically frustrated magnets
[3–7]. In contrast to conventional ME effects in which the
induced electric polarization is linear or bilinear in the applied
magnetic field H, the giant ME effects of certain frustrated
magnets are not a smooth function of H because the magnetic
field induces an electric phase transition.

Most efforts for understanding the microscopic mecha-
nisms behind giant ME effects focused on the ionic displace-
ments induced by certain magnetic orderings (magnetostric-
tion). However, as was later recognized, purely electronic
charge effects also exist in Mott insulators [8]. Indeed, the
possibility of having a spontaneous electronic polarization in
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strongly correlated insulators had been already pointed out in
the context of the ionic Hubbard model [9,10]. Interestingly
enough, the particle-hole symmetry of Mott insulators implies
that purely electronic contributions to the electric polarization
only exist in frustrated systems, i.e., systems in which it is
possible to close a loop with an odd number of hopping ampli-
tudes [8,11]. Purely electronic charge effects were originally
studied for SU(2) invariant models, i.e., models which do
not include spin-orbit coupling (SOC) [8]. In this isotropic
limit, the electronic charge redistribution is associated with
a modulation of bond operators of the form 〈Sj · Sl〉 [12].
This modulation can exist already in collinear spin structures,
implying that noncollinear spin ordering is not a prerequisite
for inducing electronic polarization.

The perturbative effect of a weak SOC on the effective
charge-density operator of strongly coupled Mott insulators
was derived recently to model the optical conductivity of
these materials [13]. Here we focus on the influence of the
SOC on electronically induced ME effects. Moreover, because
the spin-orbit interaction is not weak for heavy magnetic
ions, such as 4d and 5d transition metals or lanthanide (4f )
and actinide (5f ) elements, it is important to analyze the
charge effects induced by SOC beyond the weak-coupling
regime.

The ionic-based mechanisms rely either on the mag-
netostriction induced by certain bond orderings (both the
bond angle and the bond length are modulated by a peri-
odic change in the scalar product of two neighboring spin
moments 〈Sj · Sl〉) or on the spin-orbit interaction, which
triggers an ionic displacement for spiral spin orderings. Spiral
spin states are characterized by a nonzero vector chirality
〈Sj×Sl〉 �= 0 between neighboring spins. The so-called “in-
verse Dzyaloshinskii-Moriya (DM)” mechanism produces a
net electric dipole proportional to ej l×〈Sj×Sl〉 (ej l is the
relative unit vector between spins j and l) [14–16]. The
polarization is induced by the displacement δx of a third ion
(with charge qI ) away from the bond center (this ion mediates
the superexchange interaction between spins i and j ). The
induced DM interaction Dj l ∝ δx×ej l lowers the magnetic
energy by an amount Dj l · 〈Sj×Sl〉, which is linear in δx.
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Because the elastic energy cost is quadratic in δx, the electric
polarization qI δx is finite as long as 〈Sj×Sl〉 �= 0.

The inverse DM mechanism is only active for cycloidal
spiral orderings: Q ⊥ 〈Sj×Sl〉, where Q is the wave vector of
the spiral. Arima recently proposed an alternative metal-ligand
hybridization mechanism which allows for a net electric polar-
ization induced by proper-screw spiral spin ordering as long as
the lattice symmetry is low enough [17,18]. This mechanism
has been observed in different compounds [19–25].

A question then arises as to whether it is possible to have
spiral orderings inducing a purely electronic contribution to
the net electric polarization. Here we demonstrate that this
is indeed possible as long as the Hamiltonian is frustrated
and it includes a finite SOC. To achieve this goal we
consider the strong-coupling (large U/t) limit of a single-band
Hubbard model and derive effective low-energy operators for
observables associated with the charge degrees of freedom.
In Sec. II we introduce the half-filled Hubbard model with
finite SOC and derive general expressions for the effective
charge- and current-density operators. In Sec. III, we consider
the weak SOC limit of the effective charge-density operator
to explain how the finite SOC leads to a new mechanism
for electronic ferroelectricity induced by spiral ordering.
We consider the cases of cycloidal and proper-screw spiral
orderings on frustrated kagome and sawtooth lattices. Finally,
we compare these novel electronic mechanisms against the
well-known inverse DM and Arima’s mechanisms for spiral
ordering and summarize the results in Sec. IV.

II. HALF-FILLED HUBBARD MODEL
WITH SPIN-ORBIT COUPLING

A. Effective Hamiltonian in the strong-coupling limit

We consider a one-band Hubbard model at half-filling in
the presence of SOC [26,27],

H = −
∑
〈j l〉

[c†j (τjl + dj l · σ )cl + H.c.] + U
∑

j

nj↑nj↓, (1)

with

cj =
(

cj↑
cj↓

)
, c†j = (c†j↑,c

†
j↓).

Here c
†
jα (cjα) denotes the creation (annihilation) of an

electron at site j with spin α = {↑,↓}, njα = c
†
jαcjα is the

electron number operator with spin α at site j , and tj l and
dj l are the coefficients of the hopping matrix between sites j

and l in the basis defined by the identity and the three Pauli
matrices σ ν (ν = x,y,z). The scalar product dj l · σ represents
the SOC. The second term describes the Coulomb repulsion
between electrons on the same orbital.

For convenience, we introduce Aj l ≡ tj le
iθjlnj l ·σ , where

−π < θjl � π, tjl cos θjl = τjl, tj l sin θjl = |dj l|, and dj l =
inj l |dj l| (dj l is pure imaginary, and |nj l| = 1). Therefore,

tan θij = |dij |
τij

, tij = τij

cos θij

, (2)

and sgn(θjl) = sgn(tj l). We note that θjl = θlj tj l = tlj , and
nj l = −nlj . The effect of a U (1) vector potential A(r)
is to add a global phase to the hopping matrix: tj l =

− t exp[−i(e/�)
∫ rl

rj
A(r) · dl], where t is real and the integral

is along the hopping path (Peierls substitution). In contrast, the
SOC leads to an SU(2) rotation of the hopping matrix in each
bond (Wilson line):Aj l = P {exp[−i

∫ rl

rj
σ ν(Aν · dl)]}, where

P is the path-ordering operator and we are using Einstein’s
convention of summation over repeated index ν. We note that
A†

j l = Alj because the Hamiltonian is Hermitian. The hopping
term can then be rewritten in the more compact form

Ht = −
∑
〈j l〉

tj lc
†
jAj lcl + H.c. (3)

In the following we consider the strong-coupling limit (U 
 t)
and expand in the small parameter t/U . The t = 0 ground
space is spanned by the 2N states with one electron per
site, where N is the total number of sites. The massive spin
degeneracy is lifted to order t2/U . This result can be obtained
by applying an adequate canonical transformation,

H ′ ≡ eSHe−S ≡ H + [S,H ] + 1

2!
[S,[S,H ]] + · · · . (4)

The linear t terms mix the t = 0 ground space with states
including one double-occupied site. These terms can be elimi-
nated by choosing a generator S that satisfies: Ht + [S,HU ] =
0, where HU is the Hubbard or interacting term of (1). The
hopping terms can be divided into three contributions [28,29],

Ht = T1 + T0 + T−1, (5)

where

T0 = −
∑

〈j l〉,αα′
tj l{njᾱc

†
jα(Aj l)αα′clα′nlᾱ′

+hjᾱc
†
jα(Aj l)αα′clα′hlᾱ′ },

T1 = −
∑

〈j l〉,αα′
tj lnjᾱc

†
jα(Aj l)αα′clα′hlᾱ′ ,

T−1 = −
∑

〈j l〉,αα′
tj lhjᾱc

†
jα(Aj l)αα′clα′nlᾱ′ ,

hjα = 1 − njα and ᾱ denotes the spin orientation opposite to
α. The hopping terms T1 and T−1 change the number of double-
occupied sites, whereas T0 conserves this number. To eliminate
the hopping terms among states with different numbers nd of
double-occupied sites up to order tk (E0 ∝ ndU ), we introduce
S = iS (1) + iS (2) + · · · + iS (k), where iS (k) is proportional to
t k . One can verify that [Tq,HU ] = −qUTq with q = (1,−1,0).
Through a recursive scheme we obtain

iS (1) = U−1(T1 − T−1),

iS (2) = U−2([T1,T0] + [T−1,T0]),

iS (3) = U−3{[[T1,T0],T0] − [[T−1,T0],T0]

+ 1
4 [[T1,T0],T1] − 1

4 [[T−1,T0],T−1]

+ 2
3 [T1,[T1,T−1]] − 2

3 [T−1,[T−1,T1]]}, (6)

to third order in t/U .
Any low-energy effective operator is obtained from

Õ = Pse
SOe−SPs, (7)

195107-2



SPIN-ORBIT COUPLING AND ELECTRONIC CHARGE . . . PHYSICAL REVIEW B 90, 195107 (2014)

where Ps is the projector into the subspace S0 of states with
no double-occupied sites (ground space for t = 0). At half-
filling, any effective operator can be expressed as a function
of the spin operators Sj = 1

2 c†jσcj because each state of S0

is fully characterized by its spin configuration. For instance,
up to an irrelevant constant term, the effective low-energy
spin Hamiltonian to second order in t is a tilted Heisenberg
model [26,27,30],

H̃ =
∑
〈j l〉

4t2
j l

U
S†

jJj lSl . (8)

Here we have introduced the notation,

Sj =

⎛
⎜⎝

Sx
j

S
y

j

Sz
j

⎞
⎟⎠, S†

j = (
Sx

j ,S
y

j ,Sz
j

)
.

Jj l is the exchange tensor on bond 〈j l〉 that is a function of
θjl and nj l ,

Jj lSl = cos(2θjl)Sl + sin(2θjl)(Sl×nj l)

+ 2 sin2(θjl)nj l(nj l · Sl). (9)

By replacing this expression in (8), we obtain

H̃ = H̃iso + H̃asm + H̃sm, (10)

with

H̃iso =
∑
〈j l〉

4t2
j l

U
cos 2θjlSj · Sl ,

H̃asm =
∑
〈j l〉

4t2
j l

U
sin 2θjlnj l · (Sj×Sl), (11)

H̃sm =
∑
〈j l〉

8t2
j l

U
sin2 θjl(nj l · Sj )(nj l · Sl).

Hiso is the usual isotropic Heisenberg interaction with ex-
change constants Jjl = 4t2

j l/U . The SOC generates Hasm and
Hsm, which correspond to the exchange anisotropy. Hasm is
the antisymmetric exchange anisotropy known as the DM
interaction. H̃sm is the symmetric exchange anisotropy.

B. Effective charge- and current-density operators

The charge-density operator,

nj = c†j cj , (12)

and the current-density operator,

Ij l = iej l tj l

�
(c†lAlj cj − c†jAj lcl) (13)

satisfy a continuity equation ∂tnj = (i/�)[H,nj ] = −∇ ·
I(rj ), where ∇ · I(rj ) is the divergence of the current-density
operator on the lattice at site j and ej l = (rl − rj )/|rl − rj |.
This continuity equation simply reflects the fact that H

conserves the total charge: [H,
∑

j nj ] = 0. We will derive
now the effective charge- and current-density operators in the
presence of SOC. This derivation will reveal the interplay
between the charge and the spin degrees of freedom in

S
j

y

x

Aij

A jk

  
Aki

S
k

S
i

FIG. 1. (Color online) Schematic of the hopping terms in a closed
triangular loop in the presence of SOC. The SOC makes the matrix
A different from a multiple of the identity in each bond. We use
a counterclockwise convention to define the Wilson loop or SU(2)
flux on the plaquette: e−iθijknijk ·σ ≡ AijAjkAki . In the absence of net
SU(2) flux, we can simultaneously transform the three A matrices
into matrices that are proportional to the identity by changing the
local reference frame (applying local rotations) in the spin space.
This is not possible when there is a net flux, i.e., eiθijknijk ·σ differs
from the identity.

Mott insulators. As was explained in Ref. [8], the lowest
nontrivial contribution to the effective charge- and current-
density operators arises from loops of three sites (smallest
possible loop). Therefore, this contribution is of third order in
the hopping amplitude. The SOC allows to flip the spin in the
hopping process and opens the possibility of having charge
redistribution even on triangles with three parallel spins. Such
a charge redistribution is absent without SOC because of the
Pauli exclusion principle.

The deviation from one of the effective charge-density
operators (δñi = ñi − 1) on the triangle (ijk) shown in Fig. 1
is

δñi = 8
tij tj l tli

U 3

∑
j,k

(cos θijkXi,jk − sin θijknijk · Yi,jk), (14)

where the summation is over all possible pairs j,k that close
a triangular loop ijk with site i. Note that for a triangle 1–3,
there are two different contributions to the sum for i = 1: (j =
2,k = 3), and (j = 3,k = 2). The operators that appear in the
sum are as follows:

Xi,jk = (Si − Jij Sj ) · (JikSk),

Yi,jk = (Si − Jij Sj )×(JikSk). (15)

The phase θijk and the unit vector nijk are defined
by e−iθijknijk ·σ ≡ AijAjkAki = exp[−i

�
ijk

A[m]σ [m]dl] for the
counterclockwise convention shown in Fig. 1. θijk denotes
the magnitude of SU(2) flux in a triangle ijk, and nijk denotes
the direction of the flux in spin space. The Wilson loop is equal
to the identity if the counterclockwise integral is equal to the
clockwise integral. To obtain the electric polarization we need
to express the charge density of the three sites of the triangle
in the same “reference frame” (θijk,nijk). In the following we
will consider the charge redistribution of the single triangle
shown in Fig. 1, and we will choose e−iθijknijk ·σ ≡ AijAjkAki .

195107-3



SHAN ZHU, YOU-QUAN LI, AND CRISTIAN D. BATISTA PHYSICAL REVIEW B 90, 195107 (2014)

The charge density on each site is given by

δñi = 8
tij tjktki

U 3
[cos θijk(Xi,jk + Xi,kj )

− sin θijknijk · (Yi,jk − Yi,kj )],

δñj = 8
tij tjktki

U 3
[cos θijk(−2Xi,jk + Xi,kj )

+ sin θijknijk · (2Yi,jk + Yi,kj )],

δñk = 8
tij tjktki

U 3
[cos θijk(Xi,jk − 2Xi,kj )

− sin θijknijk · (Yi,jk + 2Yi,kj )]. (16)

We note that charge conservation holds in the single triangular
plaquette: δn1 + δn2 + δn3 = 0. We also note that the charge-
density operator is explicitly invariant under a global rotation
(both spin and n are rotated simultaneously) and under a time-
reversal transformation.

Based on the charge redistribution in Eqs. (17), the electric
polarization in an equilateral triangle is given by the following
expressions:

P̃ = P̃ij + P̃jk + P̃ki , (17)

with

P̃ij = 8ea
tij tjktki

U 3
[cos θijkSi · Jij Sj

+ sin θijknijk · (Si×Jij Sj )](ejk − eki),

P̃jk = 8ea
tij tjktki

U 3
[cos θijkJij Sj · JikSk

+ sin θijknijk · (Jij Sj×JikSk)](eki − eij ),

P̃ki = 8ea
tij tjktki

U 3
[cos θijkJikSk · Si

+ sin θijknijk · (JikSk×Si)](eij − ejk), (18)

where a is the bond length (see Fig. 2) and −e is the electron
charge.

The effective current-density operator on bond 〈ij 〉 is
obtained by replacing O with the charge-density operator Iij

i

x
ij

x
ki

x
jk

D
ij Dki

D
jk

j k

a

FIG. 2. (Color online) Illustration of one particular realization of
the DM vector with the same magnitude on each bond and antiparallel
to the z axis. The atoms that appear inside the triangle mediate
the hopping between two sites. The DM vector on the bond 〈ij〉 is
Dij = −2Jθ/3ez(Dij ∝ xij×rij ). It is then clear that Dij = Djk = Dki .

in Eq. (7):

Ĩij = 24
eij

�

tij tjktki

U 2
{cos θijkJikSk · (Si×Jij Sj )

+ sin θijknijk · [Si(Jij Sj · JikSk) − Jij Sj (Si · JikSk)

−JikSk(Si · Jij Sj ) + (Si + Jij Sj + JikSk)/12]}.
(19)

The current-density operator is the same for the other two
bonds jk and ki, except for the factor eij , which has to be
replaced by ejk and eki , respectively.

These results can be easily extended to the lattice by adding
the contributions from each triangular loop that contains a
given lattice site j in the case of the charge-density operator
and a given bond 〈j l〉 in the case of the effective current-density
operator.

III. LIMIT OF WEAK SPIN-ORBIT COUPLING

The SOC is weak when the magnetic moment is provided
by a 3d transition metal. Therefore, it is relevant to discuss
the weak spin-orbit coupling limit θjl � 1. By keeping terms
up to linear order in θjl in Eq. (12), the effective Hamiltonian
reduces to

H̃ =
∑
〈j l〉

JjlSj · Sl + Dj l · (Sj×Sl), (20)

where Jjl = 4t2
j l/U and Dj l = 2Jjlθjlnj l to first order in θjl .

For the effective polarization operators of the single triangle
shown in Fig. 1, we obtain

P̃ = P̃ij + P̃jk + P̃ki , (21)

with

P̃ij = 8ea
tij tjktki

U 3
[Si · Sj + Lij · Si×Sj ](ejk − eki), (22)

and Lij = 2θij nij − θij nij − θjknjk − θkinki . P̃jk and P̃ki are
obtained from Eq. (22) by a cyclic permutation of indices ijk.
Equations (21) and (22) coincide with the expressions that
were recently derived in Ref. [13] for studying the effect of
SOC on the optical conductivity of Mott insulators. In the
absence of SU(2) flux(θijknijk = 0), the expression reduces to
the equation that was originally derived in Ref. [8].

The new contribution to the electric polarization is related
to the DM interactions on the three bonds of the triangular unit.
A finite SU(2) flux leads to a contribution that is proportional
to the vector spin chirality (or spin current) on each bond.
This is not surprising on symmetry grounds. The effective
charge-density operator is a scalar under under the group of
rotations (spin plus orbital degrees of freedom), and it is even
under time reversal. Once the lattice anisotropy allows for a
vector nj l on a given bond 〈j l〉, we can build a scalar by taking
the direct product of nj l with the crossed product between
two spins. As we will see below, this new contribution to the
electric polarization leads to a new microscopic mechanism
for ferroelectricity induced by spiral spin ordering. Another
combination that is allowed by symmetry is the product nj l ·
Sj nj l · Sl , which is of order θ2

j l because it is bilinear in nj l .
Therefore, although contributions of this form are included in
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Eqs. (17) and (19), they do not appear in the expansions (21)
and (22) up to first order in θjl .

A. Cycloidal spiral ordering

To illustrate the potential consequences of the electric
polarization component that arises from a finite SOC, we
will first consider the simple case of a sawtooth chain with
uniform DM interactions and DM vectors antiparallel to the
z axis. Figure 2 illustrates one possible physical realization
of this model. Imagine that the hopping between two atoms
has a contribution that is mediated by an atom of a different
kind. This is a common situation in transition-metal oxides
where the magnetic moments are provided by 3d orbitals
of the transition metal, but the hopping between transition
metals has a contribution that is mediated by the p orbitals of
oxygen ions. After integrating out the higher-energy orbitals
of the intermediary O2− ions, we get a contribution to the
hopping term of the Hubbard model in addition to the one
that arises from direct overlap between the 3d orbitals. Based
on symmetry arguments [26], the DM vector Dij on a given
bond 〈ij 〉 is proportional to xij×rij : Dij ∝ xij×rij , where
xij is the displacement of the intermediary ion relative to
the center of the bond (see Fig. 2). It is then clear that
the displacements depicted in Fig. 2 (oxygen ions moving
from the bond centers toward the center of the triangles)
produce DM vectors on each bond that are antiparallel to
the z axis: Djk = −(2Jjkθijk/3)ez for any bond 〈j → k〉
oriented anticlockwise. Correspondingly, the vector potential
is given by Alk = tlke

−iθlkσz for any bond 〈l → k〉 oriented
counterclockwise.

We now consider the case of the sawtooth chain that is
illustrated in Fig. 3. The horizontal bonds are connected
by a hopping amplitude tjk = t , whereas the hopping am-
plitude on the oblique bonds is tij = tki = t ′. The corre-
sponding exchange interactions are Jjk = J = 4t2/U and

FIG. 3. (Color online) Sawtooth chain with a uniform DM vector
parallel to the z axis. The short thin arrows indicate the spin orientation
for a cycloidal spiral ordering with wave-vector Q = (π/a)x̂. The
small circles inside the triangles indicate the positions of ions that
mediate the superexchange interactions between magnetic moments.
The DM vectors point along the negative z direction (crossed circles)
if we circulate anticlockwise around each triangle. The thick arrows
indicate the direction of the electric polarization that is induced by
the SOC according to Eqs. (21) and (22). The exchange interaction
is J (j ′) along the horizontal (oblique) thick (thin) bonds.

Jij = Jki = J ′ = 4t ′2/U , respectively. We will assume that
J > J ′/2 and that the plane of the sawtooth chain is an
easy plane. This easy-plane anisotropy can either arise from
the symmetric exchange anisotropy terms of Eq. (12) or be
induced by applying a uniform magnetic field along the z axis
(see Fig. 3).

In the classical limit, a ground state of the effective spin
Hamiltonian is a spiral state,〈

Sx
j

〉 = S sin(Qja/2 + φ),〈
S

y

j

〉 = S cos(Qja/2 + φ), (23)〈
Sz

j

〉 = 0.

The integer j labels the spins of the sawtooth chain, φ

is an arbitrary phase, and cos (Qa/2) = −J ′/2J. Q is the
amplitude spiral wave-vector Q = Qx̂. The spiral ordering
described by Eq. (24) is not the only ground state in the
classical limit of the Hamiltonian under consideration. There
is another ground state in which the spins on the B sites
are ferromagnetically aligned. However, this degeneracy can
be easily removed by adding an antiferromagnetic exchange
interaction between consecutive B sites. We will then assume
that the DM interaction does not change this spiral ordering
because it is much smaller than the isotropic exchange
interactions (see Ref. [31]). For simplicity, we will also assume
that D′/J ′ = D/J .

We can now compute the electronic contribution to the
electric polarization for the spiral ordering described by
Eq. (24). We first observe that 〈Sj · Sj+1〉 �= 〈Sj · Sj+2〉. This
inequality holds even in the absence of magnetic ordering
because the A and B sites are not equivalent in the sawtooth
chain. According to Eqs. (21) and (22), this inequality implies
that there is a staggered electric polarization parallel or
antiparallel to the y axis, simply reflecting the fact that the
A and B sites of the sawtooth chain are not equivalent. In
contrast, the SOC contribution to Eqs. (21) and (22) leads to a
uniform contribution to the electric polarization, as indicated
by the thick arrows shown in Fig. 3. This uniform polarization
arises from the fact that the vector chirality is staggered for the
spiral ordering. In other words, 〈Si×Sj 〉 has an opposite sign
for the up and down triangles if the arrow that connects i and
j has the same circulation sense (clockwise or anticlockwise)
on both triangles.

Our analysis implies that the cycloidal magnetic ordering,
depicted in Fig. 3, leads to a net electric polarization in the
presence of a finite SOC. The value of the uniform polarization
per triangle is given by

〈P̃u〉 = 4
√

3ea

J
S2 t t ′2

U 3
[sin(Qa/2) + sin Qa]D×Q̂, (24)

where Q̂ is a unit vector parallel to the wave vector of the
spiral (Q̂ = x̂ for the sawtooth chain of Fig. 3). In the long
wavelength limit Qa � 1, Eq. (24) becomes

〈P̃u〉 = 6
√

3ea2

J
S2 t t ′2

U 3
D×Q. (25)

This expression is similar to the equation obtained from the
so-called inverse DM mechanism [14–16]. However, its origin
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FIG. 4. (Color online) Anisotropic kagome lattice (the thick hor-
izontal bonds are different from the oblique bonds) with a uniform
DM vector parallel to the z axis. The short thin arrows indicate
the spin orientation for a cycloidal spiral ordering with wave-vector
Q = (π/a)x̂. The other arrows and symbols have the same meaning
as in Fig. 3.

is completely different. In the inverse DM mechanism, the
DM interaction is induced by the spiral ordering via an ionic
displacement that produces the net electric polarization. In
contrast, for the “direct DM” coupling mechanism that we are
discussing here, the DM interaction is already present in the
paramagnetic phase and it induces a finite electronic polar-
ization when the system develops cycloidal spiral ordering.
Therefore, the new mechanism presented here is the direct
(electronic) counterpart of the inverse (ionic) DM mechanism
introduced in Refs. [14–16].

The spiral ordering discussed for the sawtooth chain can
be naturally extended to an anisotropic kagome lattice by
stacking sawtooth chains on top of each other (see Fig. 4).
In particular, this implies that the J,J ′ Hamiltonian of the
anisotropic kagome lattice can be expressed as a sum of
partial Hamiltonians over the sawtooth chains that compose
this lattice. Because the spiral ordering with the wave vector
parallel to the thick bond direction minimizes the energy of
each partial sawtooth chain Hamiltonian, it also minimizes the
energy of the global Hamiltonian for the anisotropic kagome
lattice. Therefore, the uniform electric polarization given by
Eq. (24) is also obtained in this case (see Fig. 4).

It is important to note that quantum fluctuations will in
general destroy the T = 0 spiral ordering of the sawtooth
chain, whereas thermal fluctuations will destroy the finite-T
spiral ordering of the kagome lattice. This is so because
the spiral ordering 〈Sj 〉 �= 0 spontaneously breaks the U(1)
symmetry of uniform spin rotations along the z axis. However,
the vector chirality 〈Si×Sj 〉, which is the quantity that
induces a finite electric polarization, does not break this
continuous symmetry (it only breaks the discrete spatial
inversion symmetry). Therefore, this quantity will in general
survive together with the electric polarization in the presence
of finite thermal and/or quantum fluctuations (〈Sj 〉 = 0 and

FIG. 5. (Color online) Sawtooth chain with DM vectors (dashed
arrows) perpendicular to the bond direction. These DM vectors are
induced by intermediate ions (small circles) that are shifted relative to
the bond centers along the z direction. The dashed arrows indicate the
orientation of the DM vectors when we circulate anticlockwise around
each triangle. The short thin arrows indicate the spin orientation for
a proper-screw spiral ordering with wave-vector Q = (π/a)x̂. The
thick arrows indicate the direction of the electric polarization that is
induced by the SOC according to Eqs. (21) and (22).

〈Si×Sj 〉 �= 0). Consequently, Eq. (25) has to be replaced by

〈P̃u〉 = 6
√

3eaD

2J

tt ′2

U 3
〈Sr×Sr+aQ̂〉×Q̂. (26)

B. Proper-screw spiral ordering

We will now consider the alternative situation of proper-
screw spiral ordering. The proper-screw spiral depicted in
Fig. 5 can be stabilized by applying a magnetic field H
parallel to the wave vector of the spiral. Although the uniform
component of the magnetic moments is parallel to the applied
field (not shown in Fig. 5), the spiral component is confined to
the plane perpendicular to H. Because we will later consider
a two-dimensional case, it is convenient to introduce a spiral
wave-vector Q = Q(cos φQ, sin φQ,0) that can point along
any direction in the plane (φQ = 0 for the sawtooth chain of
Fig. 5). The applied magnetic field H = H (cos φQ, sin φQ,0)
is parallel to Q. At the mean-field (semiclassical) level,
the proper-screw spiral spin ordering on the sawtooth chain
depicted in Fig. 5 is described by the following equations:〈
Sx

j

〉 = S cos α sin φQ sin(Qja/2 + φ) + S sin α cos φQ,〈
S

y

j

〉 = −S cos α cos φQ sin(Qja/2 + φ) + S sin α sin φQ,〈
Sz

j

〉 = S cos α cos(Qja/2 + φ), (27)

which are the counterparts of Eqs. (24) for the case of cycloidal
spiral ordering. Here α is the canting angle induced by the
uniform magnetic field H.

Like in the previous case, this spiral solution on the
sawtooth chain can be extended to an anisotropic kagome
lattice by stacking the sawtooth chains on top of each other
(see Fig. 6). In this case, the product Qj in Eqs. (28) has
to be replaced by Q · rj where the vector rj corresponds to
the position of site j in units of a. Now we will assume that
the DM vectors remain perpendicular to the bonds connect-
ing the two sites, but they are parallel to the plane of the lattice
(see Figs. 5 and 6): Dij = Dij eij×ẑ. This implies that if the
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FIG. 6. (Color online) Kagome lattice with a DM vector (dashed
arrows) perpendicular to the bond direction. The short thin full arrows
indicate the spin orientation for a proper-screw spiral ordering with
wave-vector Q = (π/a)x̂. The other arrows have the same meaning
as in Fig. 5.

DM vectors point outwards in the up triangles, they will point
inwards in the down triangles. For instance, in the sawtooth
chain and the anisotropic kagome lattice shown in Figs. 5
and 6, the DM vectors point toward the center of the down
triangles and away from the center of the up triangles, when
we circulate anticlockwise around each triangle. This implies
that the displacement along the z axis of the ions which mediate
the superexchange interaction is positive for up triangles and
negative for down triangles. In the rest of this section we
will see that this in-plane component of the DM interaction
produces a uniform component of the electric polarization in
the presence of proper-screw spiral spin ordering.

The isotropic contribution to the electric polarization given
by Eqs. (21) and (22) does not depend on the polarization
plane of the spiral. Therefore, like in the cycloidal case,
this contribution leads to a staggered electric polarization
component that is already present in the paramagnetic phase.
In contrast, it is easy to verify that the SOC to the polarization
is the same on every single triangle (up and down). Conse-
quently, to compute the electric polarization per triangle, it is
enough to consider a single triangle of the sawtooth chain
or the kagome lattice. For simplicity, we will consider an
up triangle and denote the three sites with the labels ijk as
in Fig. 1.

According to Eq. (22), the spin-orbit contribution to P̃ij

is

〈
P̃SO

ij

〉 = 8eaS2θ√
3

t t ′2

U 3
sin (Q · rij ) Q̂ · eij×ẑeij×ẑ, (28)

where Q̂ = (cos φQ, sin φQ,0) and rij = aeij . Here we
have used that 〈Si×Sj 〉 = S2 cos2 α sin(Q · eij )Q̂ +
S sin αQ̂×(〈Sj 〉 − 〈Si〉) and neglected the second term
by assuming that the canting angle α is much smaller than
one: cos α � 1 and sin α � 0. We note that Lij = −Dij /2Jij

and that Dij/Jij = 2θijk/3 = 2θ/3 does not depend on bond
〈ij 〉 because D/J = D′/J ′.

By using the identities Q̂ · eij×ẑeij×ẑ = Q̂ − Q̂ · eij eij

and eij = Q̂ · eij Q̂ + ẑ×Q̂ · eij ẑ×Q̂, we obtain

〈
P̃SO

ij

〉 = 8eaS2θ√
3

t t ′2

U 3
sin (Q · rij ){[1 − (Q̂ · eij )2]Q̂

− (Q̂ · eij )(ẑ×Q̂ · eij )ẑ×Q̂}. (29)

In this way, we have divided 〈P̃SO
ij 〉 into a component 〈P̃SO

ij,‖〉,
which is parallel to the wave-vector Q, and a component
〈P̃SO

ij,⊥〉, which is perpendicular to Q (parallel to ẑ×Q̂),

〈
P̃SO

ij,‖
〉 = 8eaS2θ√

3

t t ′2

U 3
sin(Q · rij )[1 − (Q̂ · eij )2]

〈
P̃SO

ij,⊥
〉 = 8eaS2θ√

3

t t ′2

U 3
sin(Q · rij )Q̂ · eij Q̂×ẑ · eij . (30)

The uniform polarization per triangle 〈P̃u〉 is obtained by
adding the contributions from the three bonds of the triangle.
The value of 〈P̃u〉 for arbitrary Q is given by

〈P̃u,‖〉 = 8eaS2θ√
3

t t ′2

U 3
{sin(Q · rij )[1 − (Q̂ · eij )2]

+ sin(Q · rjk)[1 − (Q̂ · ejk)2]

+ sin(Q · rki)[1 − (Q̂ · eki)
2]},

〈P̃u,⊥〉 = 8ea2S2θ√
3

t t ′2

U 3
[sin(Q · rij )Q̂ · eij Q̂×ẑ · eij

+ sin(Q · rjk)Q̂ · ejkQ̂×ẑ · ejk

+ sin(Q · rki)Q̂ · ekiQ̂×ẑ · eki]. (31)

After taking the long wavelength limit Qa � 1 and perform-
ing the approximation sin(Q · rij ) � Q · rij , we obtain

〈P̃u〉 � −6ea2S2θQ√
3

t t ′2

U 3
[cos 3φQQ̂ − sin 3φQẑ×Q̂]. (32)

This result implies that the uniform electric polarization
induced by the SOC is antiparallel to Q (for Dij > 0) when
Q is parallel to a bond direction (see Fig. 6). In addition,
〈P̃u〉 rotates clockwise by an angle 3φQ in the reference
frame attached to Q when Q rotates anticlockwise by an
angle φQ. This implies that 〈P̃u〉 is orthogonal to Q when
φQ is an odd multiple of π/6. It is important to clarify
that the wave-vector Q is always parallel to the thick bond
direction (see Fig. 6) for the case of the anisotropic kagome
lattice. However, proper-screw spiral orderings with different
Q directions could in principle appear in isotropic kagome
lattices with longer-range exchange interactions. This is the
reason why we have contemplated the more general case in
the derivation of Eq. (32).

The angular dependence of the electric polarization given
by Eq. (32) is the same as the one predicted by Arima’s
mechanism [17] and measured in the the triangular-lattice heli-
magnet MnI2 [21]. Although the microscopic mechanism that
led to Eq. (32) is completely different, the angular dependence
of the electric polarization induced by a proper-screw spiral
is determined by symmetry. Consequently, it is independent
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FIG. 7. (Color online) There is no net electronic polarization
for spiral magnetic ordering on a triangular lattice because the
contributions from the up and down triangles have opposite signs.
The figure shows the electric polarizations induced by the finite SOC
on a pair of up and down triangles for (a) cycloidal spiral ordering
and (b) proper-screw spiral ordering. The arrows that are parallel to
the bonds indicate the bond orientation for the directions of the DM
vectors that are shown in the figure. The rest of the arrows have the
same meaning as in the previous figures.

of the particular microscopic mechanism that couples the
magnetic ordering to the uniform electric polarization.

It is important to note that there is another qualitative
difference between the electronic mechanism that we have
derived in Secs. III A and III B for cycloidal and proper-
screw spirals and the seemingly related inverse DM and
Arima mechanisms, which are based on ionic displacements.
The electronic mechanism arises from loop (of three sites)
contributions, whereas the ionic mechanisms arise from bond
(two sites) contributions. As is clear from the last factor
(ejk − eki) of Eq. (22), if there is spiral ordering on the triangle
ijk, the sign of the electric polarization depends on whether
site i is above or below bond jk. Consequently, single-Q spiral
orderings on triangular lattices do not produce a net electronic
polarization of the type discussed in this paper because the
contributions from up and down triangles cancel with each
other (see Fig. 7). In contrast, as is discussed in Ref. [17],
single-Q spiral orderings on triangular lattices produce net
ionic contributions to the electric polarization via the inverse
DM and Arima mechanisms. There is no cancellation in this
case because the contribution from each bond 〈ij 〉 does not
depend on the position of a third site k. The situation is different
for the sawtooth and kagome lattices because each bond
belongs to a single triangle in these lattices. We emphasize
that a net (uniform) component of the electric polarization
arises from a staggered component of the vector chirality, i.e.,
opposite vector chirality on the up and down triangles.

IV. CONCLUSIONS

To summarize, we have studied the charge effects induced
by SOC deep inside the Mott insulating regime. The SOC
generates new contributions to the effective charge-density
operator, which are proportional to the vector spin chirality
〈Si×Sj 〉 on bonds that belong to the same triangle as the site
under consideration. This simple observation implies that SOC

can potentially induce a net electric polarization for magnetic
orderings that exhibit a spontaneous vector spin chirality
〈Si×Sj 〉 �= 0. Although this chiral ordering can appear in
low-dimensional systems, even in the absence of magnetic
ordering (〈Si〉 = 0) [32–34], the most common realization for
higher-dimensional systems corresponds to spiral magnetic
ordering: 〈Si×Sj 〉 � 〈Si〉×〈Sj 〉 �= 0. Here we have shown that
SOC leads to a net electronic polarization for cycloidal and
proper-screw spiral orderings on the sawtooth and anisotropic
kagome lattices. An important property of these lattices is
that each bond belongs to only one triangle. This property
avoids the cancellation between contributions from opposite
triangles that occurs in triangular lattices (see Fig. 7). Like
for the isotropic case, frustration is an essential ingredient
for having a net electronic polarization. This is so because
the effective charge-density operator is odd under a particle-
hole transformation that changes the sign of the hopping
amplitudes, i.e., it only has contributions from loops which
are closed by an odd number of hopping amplitudes [8,11].

The SOC-induced magnetoelectric coupling described in
this paper has some resemblances with known ionic-based
mechanisms that have been proposed for spiral orderings in the
previous literature [14–17]. This is not surprising given that
the relation between the electric polarization and the magnetic
ordering is strongly constrained by symmetry. Although the
dimensionless parameter θ , which measures the strength of
the SOC, appears both in the ionic and in the electronic
contributions to the electric polarization field induced by spiral
ordering, the other small dimensionless parameter is different
in both cases. The ionic contribution is proportional to the ratio
between the exchange interaction and the energy of the optical
mode associated with the ionic displacement. In contrast, the
electronic contribution is proportional to 8t3/U 3. Therefore,
the ionic contribution should dominate in the strong-coupling
limit t/U → 0, whereas the electronic contribution becomes
dominant when moving towards the intermediate coupling
regime.

Finally, it is important to mention that other contributions to
the electronic polarization also arise when moving away from
the weak SOC limit. This regime is relevant for heavy magnetic
ions, such as 4d and 5d transition metals or lanthanide (4f )
and actinide (5f ) elements. We note that these ions also
contain several valence orbitals, implying that they have to
be described with multiband Hubbard models, instead of the
simplified single-band model that we have considered here.
The spirit of the present paper is simply to demonstrate that
SOC leads to new electronic contributions to the electric
polarization field induced by certain magnetic orderings.
The results that we have derived for a minimal single-band
Hubbard model can be naturally extended to the more complex
models that describe the low-energy physics of each particular
magnet.
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APPENDIX: EFFECTIVE CHARGE DENSITY
AND CURRENT IN THE PRESENCE OF SOC

By applying the canonical transformation (7) to the density
and current-density operators (12) and (13), we obtain expres-
sions for the effective operators in the low-energy sector of the
Mott insulator. The following identity holds for the effective
density operator:

ñi = 1 + Ps{T−1T0[T1,n1] + [T1,ni]T0T1}Ps/U 3.

The effective current-density operator is given by

Ĩij = Ps{T−1T0Iij + T−1Iij T1 + Iij T0T1}/U 2.

For the single triangle shown in Fig. 1, we obtain

δñi = δñi,jk + δñi,kj , (A1)

with δni,jk = tij tjktki/U 3[Pikj − Pjki + Qkji − Qkij + H.c.].
Here Pi1i2i3 = χi1i2ni2↑ni2↓χi2i3ni3↑ni3↓χi3i1 and Qi1i2i3 =
χi1i2 (1 − ni1↑ni1↓)χi3i1ni2↑ni2↓χi2i3 , where χi1i2 = c†i1

Ai1i2 ci2 .
The effective current-density operator on bond 〈ij 〉 can be
expressed as

Ĩij = ieij

�
tij tjktki/U 2[Pikj + Pjik + Pkji

+Qkji + Qikj + Qjik − H.c.]. (A2)

By using the definition AikAkjAji ≡ eiθijknijk ·σ , we can
expand the above equation as

δñi = cos θijkδñ
0
i + i sin θijkn

μ

ijkδñ
μ

i , (A3)

and

Ĩij = cos θijk Ĩ0
ij + i sin θijkn

μ

ijk Ĩμ

ij , (A4)

where we are using Einstein’s convention of summation over
repeated index μ = (x,y,z). Equations (17)–(19) are obtained
by calculating each component in Eqs. (A3) and (A4). We
can easily obtain δñ0

i and Ĩ0
ij by generalizing the result in

Ref. [8] via Si → Si , Sj → Jij Sj and Sk → JikSk (note that
these two contributions are the only ones that survive when
the productAikAkjAji is proportional to the identity matrix).
Because δñi and Ĩij are scalars under global spin rotations (spin
and orbital), we just need to calculate only one component (the
other two are determined by invoking rotational invariance).
We consider the cases of θijk = π

2 and nijk = z by assuming
that Akj = iσz and both Aij and Aik are proportional to the
identity matrix. From Eqs. (A1) and (A2), we obtain

δñz
i = −i8

tij tjktki

U 3
[Si×Sj + Sk×Si − 2Sj×Sk]z,

Ĩz
ij = i24

tij tjktki

U 2
[Si(Sj · Sk) − Sj (Sk · Si) − Sk(Si · Sj )

+ (Si + Sj + Sk)/12]z. (A5)

For a general Aij and Aik , we need to replace Sj and Sk by
Jij Sj and JikSk , respectively, in the above expressions for δñz

i

and Ĩz
ij . In this way we arrive at Eqs. (17)–(19).
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