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Equivalence of Rashba-Hubbard and Hubbard chains
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We review the fact that U (1) gauge symmetry enables the mapping of one-dimensional Hubbard chains
with Rashba-type spin-orbit coupling to renormalized Hubbard Hamiltonians. The existence of the mapping
has important consequences for the interpretation of ARPES experiments on one-dimensional chains subject to
Rashba spin-orbit coupling and can be exploited to check for the applicability of the mapping. We show numerical
applications of the mapping and consider the implications for bosonization as well as for the Heisenberg limit of
the Hubbard model. In addition we point out the consequences for various generalized Hubbard models.
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I. INTRODUCTION

The steady advances in controlling the surface of a solid
coupled with the ingenuity of experimental groups [1–4] have
made it possible to grow monatomic chains in a controlled
manner. Since in this setup inversion symmetry is broken the
Rashba spin-orbit interaction is not negligible and its coupling
strength is proportional to the gradient of the electrical
potential perpendicular to the surface. Since these chains are
now within reach of our experimental devices the question is
now asked to theory which behavior is expected in this setup
with strong spin-orbit coupling. A very detailed answer to this
problem has already been given a long time ago by Kaplan [5].
He gave a detailed description how the single-band Hubbard
model with Rashba spin-orbit interaction is solved in terms
of the same model without spin-orbit interaction by a gauge
transform of the fields. He analytically proved the shift in the
single-particle spectra and, inspired by work of Calvo [6],
he showed how the spin-spin correlations change in the
presence of spin-orbit interaction by considering the strong-
coupling limit of the Hubbard model, the Heisenberg chain.
Some years later the same transform was found by Meir et al.
and used to study disorder in mesoscopic rings in Ref. [7].
Persistent currents in mesoscopic Hubbard rings with this par-
ticular form of spin-orbit interaction were studied by Fujimoto
et al. in Ref. [8]. To our knowledge they were the first that noted
the interpretation in terms of a comoving frame of reference
for the spin quantization axis. This peculiar rotation was also
noted by Refs. [5,9,10]. The transformation is naturally present
in one dimension but also exists in higher dimensions as
already pointed out by Kaplan [5]. The realization is possible
if one considers the interplay of Rashba and Dresselhaus
spin-orbit interaction at special values of the coupling strength
[9,11], which has been experimentally realized in ultracold-
atom experiments [12,13]. Another possibility is to assume
the existence of a vector potential with a specific direction
[14,15] that generates the spin-orbit interaction. Aspects of this
mapping in a bosonization context were already mentioned
in Ref. [10] which discussed the special case of an infinite
parabolic band and considered the Peierls transition in 1D
systems. Results on the critical exponents for this model
using the Bethe ansatz were obtained by Zyvagin [16]. In
this paper we review the fact that despite the complications
due to the seemingly more complex band structure because of
the spin-orbit interaction all results can be connected back to

the familiar Hubbard model. Since experimental groups now
have the possibility to study these surface chains we focus on
the details of finite lattices with finite bandwidth at nonzero
temperature and its experimental consequences, which should
also be of importance to the field of ultracold fermionic
chains [17,18]. The importance of this mapping has grown
since algorithmic progress allows for a very precise numerical
evaluation of spectral and thermodynamic properties of the
Hubbard model. The mapping now enables them to address
systems with Rashba spin-orbit interaction using almost the
same codes. In this paper we will reinterpret simulations
of the Hubbard model in the Rashba-Hubbard setting. As
a further consequence of the mapping we will consider
the strong-coupling Heisenberg limit for the half-filled band
and give spectra for spin-spin correlations. The structure of
the paper is as follows: We will first pin down the lattice
Hamiltonian model in Sec. II. In Sec. III we derive in detail
the mapping from the Rashba-Hubbard chain to the plain
Hubbard model at the Hamiltonian level. This section is
finished by Sec. III C which discusses the consequences for
observables. This sets the stage for Sec. IV which in particular
discusses the experimental consequences for spin-resolved
ARPES measurements. Here we discuss experimental tests
on the validity of the mapping. In Sec. V we study the
consequences for limiting cases of the Hubbard model, namely
for a bosonization treatment and for the Heisenberg limit. We
will compare correlation functions derived from both limits to
actual Monte Carlo data. After that we briefly consider some
generalizations in Sec. VI before we conclude the paper with
Sec. VII and give an outlook.

II. THE MODEL AND ITS HAMILTONIAN

We consider the Hamiltonian

H = Ht + HU + Hλ (1)

with the bare hopping Hamiltonian

Ht = −t
∑

r

�c †
r �cr+1 + H.c. − μN

= −2t
∑
kσ

cos(k)nk,σ − μN (2)

of electrons on a linear chain. �cr denotes a spinor of fermionic
operators c

†
r,σ (cr,σ ) which create (annihilate) an electron at site
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r with spin σ . Here t denotes the hopping matrix element which
is set to t = 1 for all that follows and nk,σ = c

†
r,σ cr,σ . The

Rashba-type spin-orbit interaction (SOI) that we will consider
reads

Hλ = λ
∑

r

�c †
r+1iσy �cr + H.c.

= −2λ
∑
k,σ

σ i sin(k)c†k,−σ ck,σ . (3)

This is derived from the familiar expression of the Rashba term

HR = λ�ez(�σ × �j )

by restricting the current �j of the electrons to the �ex axis. The
Rashba spin-orbit coupling with coupling strength λ breaks
SU (2) spin symmetry but preserves time-reversal symmetry. σi

with i ∈ {x,y,z} denotes the set of three Pauli spin matrices and
�σ = (σx,σy,σz)T . Finally the Hubbard interaction is written in
a particle-hole symmetric form:

HU = U
∑

r

(
nr,↑ − 1

2

) (
nr,↓ − 1

2

)
. (4)

Its strength is given by U . Note that in all these equations
σ ∈ {↑,↓} denotes the physical spin and periodic boundary
conditions are imposed.

III. THE HAMILTONIAN IDENTITY

A. The helical base

First we diagonalize the noninteracting part given by

H0 = Ht + Hλ

=
∑
kσ

ε(k)c†k,σ ck,σ + iσV (k)c†k,−σ ck,σ − μN (5)

with ε(k) = −2 cos(k) and V (k) = −2λ sin(k). The Hamilto-
nian is already diagonal in k space; therefore we only need
to perform a rotation in spin space from the �ey axis onto the
�ez axis to fully diagonalize it. One possibility to perform this
transformation is a rotation around the x axis given by the 2×2
matrix S with elements

Si,j = 1√
2

(1 + iσx)i,j , (6)

such that

ck,s =
∑

σ

Ss,σ ck,σ . (7)

The index s ∈ {+,−} will exclusively refer to the new “heli-
cal” fermions given by the above equation. The effect is that
we have rotated σy onto σz. Note that (6) is valid irrespective of
the internal structure of ε(k) and V (k). Performing the algebra
the noninteracting Hamiltonian then reads

H0 = −2
∑
k,s

Es(k)nk,s − μN (8)

with the new noninteracting dispersion given by

Es(k) = cos(k) − λs sin(k). (9)

Using the harmonic addition theorem this can be recast into
the form

Es(k) =
√

1 + λ2 cos[k − sφ(λ)], (10)

where φ(λ) = arctan(λ). Simple as this step may seem it
is enlightening since it shows that the effect of the Rashba
interaction can be separated into an increase of the bandwidth
given by

√
1 + λ2 and a phase shift φ(λ) that differs in sign

for the different helicity branches. In terms of helical fermions
we find from (6) for the spin-resolved particle densities

nk,σ = 1
2 (nk,+ + nk,− − σc

†
k,+ck,− − σc

†
k,−ck,+). (11)

Inserting this into the Hubbard interaction (4) we see that it
stays form-invariant under this transformation. We find

HU = U
∑

r

(
nr,+ − 1

2

) (
nr,− − 1

2

)
(12)

with the helical particle densities nr,s .

B. The phase-shift and gauge symmetry

The phase shift is given by the arctangent, φ(λ) = arctan(λ).
The following addition theorem holds for arctan(x):

arctan(x) + arctan(y) = arctan

(
x + y

1 − xy

)
+ π

2
g(x,y) (13)

with xy �= 1 and

g(x,y) = sgn(x)[sgn(xy − 1) + 1]. (14)

Setting x = λ we now impose the condition

arctan

(
λ + y

1 − λy

)
= jπ

m
, (15)

where m > 2,1 � j < m denote integers with a greatest
common divisor of 1. Defining

tm = tan

(
jπ

m

)
= sm

cm

= sin
(

jπ

m

)
cos

(
jπ

m

) , (16)

(15) links λ and y in the following way:

y = tm − λ

1 + tmλ
. (17)

Next we check the requirement that λy �= 1:

λy = λ(tm − λ)

1 + tmλ
�= 1

→ λtm − λ2 �= 1 + tmλ

→ λ2 �= −1. (18)

So this should hold for all real λ. Next we consider g(λ,y):

g(λ,y) = sgn(λ)

[
sgn

(
λ(tm − λ)

1 + tmλ
− 1

)
+ 1

]

= sgn(λ)

[
sgn

(−1 − λ2

1 + tmλ

)
+ 1

]
=: σm(λ). (19)

We note that σm(λ) can only take the values 0 and ±2.
Combining all these preliminaries we find the following
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identities parametrized by m for the phase shift:

φ(λ) = jπ

m
+ π

2
σm(λ) + φ(λm) (20)

with the definition of the new SOI

λm = λ − tm

1 + tmλ

= cmλ − sm

smλ + cm

. (21)

Note that (21) is an elliptic Möbius transform. Equation (21)
forms a cyclic group of length m which is the reason that
the j dependence is suppressed since the transform for j = 1
is the generator for all elements by repeated insertion. Now
we need to apply this to the noninteracting Hamiltonian. It is
convenient to transform the noninteracting Hamiltonian given
in the helical base in (8) back to real space. We find

H0(λ) = −
√

1 + λ2
∑
rs

eisφ(λ)c
†
r+1,scr,s + H.c. (22)

and see that in real space the effect of the phase shift is
that of a helicity-dependent magnetic flux. Inserting (20) and
employing gauge invariance we find

H0(λ)

= −
√

1 + λ2
∑
rs

eis[ jπ

m
+ π

2 σm(λ)+φ(λm)]c
†
r+1,scr,s + H.c.

= −νm(λ)
√

1 + λ2
m

∑
rs

eisφ(λm)c̃
†
r+1,s c̃r,s + H.c.

= νm(λ)H0(λm). (23)

We have defined the scaling factor

νm(λ) =
√

1 + λ2

1 + λ2
m

=
∣∣∣∣cos

(
jπ

m

)
+ sin

(
jπ

m

)
λ

∣∣∣∣ , (24)

as well as gauge-transformed new fermionic operators

c̃r,s = cr,se
−isr[ jπ

m
+ π

2 σm(λ)]. (25)

An important ingredient is how the boundary conditions
transform under this choice of the gauge. Our original
operators were subject to the condition cr+L,s = cr,s . This is
fulfilled for c̃r,s , if

c̃r+L,se
−is(r+L)[ jπ

m
+ π

2 σm(λ)] = cr,se
−isr[ jπ

m
+ π

2 σm(λ)] (26)

and therefore

e−isL[ jπ

m
+ π

2 σm(λ)] = 1, (27)

which is equivalent to

sL

[
jπ

m
+ π

2
σm(λ)

]
= 2πn (28)

with an arbitrary integer n. Simplifying we find

L = 4nms

2j + mσm(λ)
. (29)

In total we now have for the Hamiltonian the following
identity:

H (λ,μ,U ) = νm(λ)H

(
λm,

μ

νm(λ)
,

U

νm(λ)

)
. (30)

This means that for a given λ, H (λ,μ,U ) is connected to m

other Hamiltonians that are identical at the Hamiltonian level,
with the new SOI given by λm. Now we want one of those
points to be the plain Hubbard model at λ = 0. For that we
have to start to explore the consequences of the equation

λm(λ) = 0, (31)

which implies

tm = tan

(
jπ

m

)
= λ. (32)

Or stated in terms of the phase shift:

jπ

m
= φ(λ). (33)

This implies σm(λ) = 0. For the scaling factor we find

νm =
√

1 + t2
m = 1

|cm| . (34)

Stated in terms of an operator identity between Hamiltonians
we derive from (23) the relation

H0(tm) =
√

1 + t2
mH0(0) = H0(0)

|cm| . (35)

Which means for the full Hamiltonian (1)

H (tm,μ,U ) = H (0,μ|cm|,U |cm|)
|cm| . (36)

Of course identities (35) and (36) are independent on the choice
of the ensemble used for the thermal averaging. Hence the
mapping is valid in the canonical as well as in the grand-
canonical ensemble. Setting m = L and compatibility with
(29) requires j = 2n. This can be interpreted as follows: For a
given system size L the plain Hubbard model is connected to
L−1

2 points on the real λ axis corresponding to a Hamiltonian
with a spin-orbit strength determined by λ = tan( 2jπ

L
). In the

limit L → ∞ λ therefore becomes continuous. Note that these
are precisely the points where tan(x) takes algebraic values. In
Fig. 1 we show a selection of spectra which are connected to a
single simulation of the plain Hubbard model via the identity
(36). To conclude this section we give a geometric perspective
on the group structure in (21). Equation (21) exhibits a cyclic
group structure of length n which is the symmetry group of the
regular n-gon which is also the symmetry group of the roots
of

zn = 1, (37)

the roots of unity, in the complex plane. For a finite chain with
arbitrary λ it is not granted that there exists a root that is located
at z0 = 1. The n-gon will be slightly canted with respect to the
solutions of (37) and is given by the solutions of

zn = eiαn (38)

with some arbitrary angle in the complex plane α. The freedom
to rotate the n-gon from one root to the next is given by the
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FIG. 1. (Color online) This panel shows a series of spectra
A(k,ω) which are connected to each other via the mapping (44).
The starting point is the spectrum in (a) at λ = 0. Increasing λ in
the panels (b) to (d) leads to a shift of the spectra and we see the
four Fermi points developing in the left column. Similarly we see in
the logarithmic plots of the right column which are restricted to the
domain [0,π ] the splitting of the original spinon and holon bands.

U (1) gauge symmetry of quantum mechanics. The restriction
on the values of λ in (32) now ensures that α = 0 in (38)
and therefore that exactly one of the roots is located at z0 = 1
which corresponds to the plain Hubbard model and an angle
of rotation between the roots of φ(λ) = arctan(λ). As seen
also by Ref. [9] for a 2D system this model exhibits an SU (2)
symmetry since we have mapped it to the plain Hubbard model.

Of course this is subject to a proper transformation of the
boundary conditions.

C. Consequences for observables

The rescaling due to (36) as well as the transformation of the
operators in (25) forces us to transform our physical quantities
as well. In k space we have for the fermionic operators

ck,s = c̃k+ sjπ

m
,s . (39)

Using this we find for observables in the helical base

nk,s = ñk+ sjπ

m
,s ,

nk =
∑

s

nk,s =
∑

s

ñk+ sjπ

m
,s ,

Sz =
∑

s

snk,s =
∑

s

sñk+ sjπ

m
,s , (40)

S+ = c̃
†
k+ jπ

m
,+c̃

k− jπ

m
,−,

S− = c̃
†
k− jπ

m
,−c̃

k+ jπ

m
,+.

Going forward to thermal averages we find for the single-
particle Green’s function

Gs(k,τ,β,λ = tj,m,μ,U )

= 〈c†k,s(τ )ck,s(0)〉
= Tr

(
e−βH (tj,m,μ,U )c̃

†
k+ sjπ

m
,s

(τ )c̃
k+ sjπ

m
,s

(0)
)

= Tr
(
e−β̃H (0,μ̃,Ũ )c̃

†
k+ sjπ

m
,s

(τ̃ )c̃
k+ sjπ

m
,s

(0)
)

= Gs

(
k + sjπ

m
,τ̃ ,β̃,λ = 0,μ̃,Ũ

)
(41)

with τ̃ = τ
|cj,m| , Ũ = U |cj,m|, μ̃ = μ|cj,m|, and β̃ = β

|cj,m| . The
j dependence on the previously defined quantities tm and cm

is now written down explicitly since we need to determine
the shift in k. Note that the final result on the above equation
has λ = 0 and is therefore measured with the plain Hubbard
model. Inverting this equation to explicitly see which point of
the Hubbard model is connected to which part of the Rashba-
Hubbard chain we have

Gs(kH ,τH ,βH ,μH ,UH )

= Gs

(
k − sjπ

m
,τH |cj,m|,βH |cj,m|,tj,m,

μ

|cj,m| ,
U

|cj,m|
)

,

(42)

where the index H denotes that the parameter was used in a
simulation of the Hubbard model.

IV. CONSEQUENCES

A. Experimental consequences

1. LDOS

Defining the helicity spin resolved single particle spectral
function

As(k,ω) = − 1

π
Im[Gs(k,ω + i0+)], (43)
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we find that it transforms as

As(k,β,ω,λ) = |cj,m|As

(
k + sjπ

m
,β̃,ω|cj,m|,0

)
. (44)

Hence the local density of states D(ω,β,λ) transforms as

D(ω,β,λ) =
∑
k,s

As(k,β,ω,λ)

= |cj,m|
∑
k,s

As

(
k + sjπ

m
,β̃,ω|cj,m|,0

)

= |cj,m|D(ω|cj,m|,β̃,λ = 0). (45)

Therefore the local density of states will not contain any new
structure in comparison to the spectra of a plain Hubbard
model at the lower temperature β̃. Figure 1 shows a selection
of spectra for various parameters. The imaginary-time Green’s
functions for Fig. 1(a) were simulated using an auxiliary field
QMC method [19] along the lines of Ref. [20] and analytically
continued using the stochastic maximum entropy method [21].
Using (44) we can then derive the spectra for other values of
λ. Although these spectra show a seemingly richer structure
than the plain Hubbard model (one can, e.g., identify Rashba
split holon and spinon bands in the spectra), all spectra have in
common that they can be connected back to a single Hubbard
simulation at U = 6 and β = 10 [Fig. 1(a)] with the well-
known signatures of the fractionalization of the electron into
a spinon and a holon [20,22].

2. Spin-resolved spectra

The possibility of doing spin-resolved ARPES experiments
enables spin-resolved measurements of the single-particle
spectral function. Since the measurement device now defines
a preferred spin quantization axis, we have to calculate the
projections of the electrons’ original spin quantization axis
onto this new axis. Assuming this axis is given by the
usual unit vector �D = (sin(θ ) cos(ϕ), sin(θ ) sin(ϕ), cos(θ ))T

with θ ∈ [0,π ] and ϕ ∈ [−π,π ], we can rotate the fermionic
operators �c �ez

, which have �ez as quantization axis, to the new
base using

�c �D = ei θ
2 �σ ·�n�c�ez

. (46)

Here the rotation axis is �n = (− tan(ϕ),1,0)T and �c �D denotes
electrons with the new quantization axis �D. For Green’s
functions Gσσ ′

�ez
which have spins measured with respect to

the quantization axis �ez, and therefore for the spectra, this
implies the following relation:

Gσσ
�D (k) = D(k) − σRe(sin(θ )e−iϕG

↑↓
�ez

(k)) (47)

with D(k) = sin2( θ
2 )G↑↑

�ez
(k) + cos2( θ

2 )G↓↓
�ez

(k). The spectra

shown in Fig. 1 correspond to �D = �ez. In Figs. 2(a) and 2(c)
we see that along �D = ±�ey a clear separation of the helicities
should be observable, whereas in Fig. 2(b) we see that for a
general �D a mixture of the two helicities is observed. It is
worth noting that Fig. 2(a) shows that the separation of the
helicities is crystal momentum independent and a signature of
the one-dimensional nature of the system. This independence
on the variable k should be experimentally observable and,

only in conjunction with the fact that the spectra in the observed
up spin and down spin separated spectra are equal, gives a clear
indicator whether a plain but suitably generalized (see Sec. VI)
Hubbard model is a suitable model system.

B. Numerical consequences

A lot of codes have been heavily optimized for the solution
of Hubbard-like problems. The mapping now enables them
to address questions in the Rashba-Hubbard setting. Since a
direct quantum Monte Carlo (QMC) simulation of (1) would
yield a sign problem, the existence of the mapping (36)
is important because it shows that in the proper basis (the
comoving spin basis) a simulation without the fermionic sign
problem is possible since the plain one-dimensional Hubbard
model exhibits no sign problem at arbitrary chemical potential
μ [23]. Unfortunately we have to trade this fact for a more
complicated representation of observables. Additionally to
the single-particle Green’s function given in (42) we note
various two-particle correlation functions and their respective
equivalents in the Hubbard model analog. The left-hand side
of the equations is measured in a simulation of (1) and
the right-hand side is measured in the Hubbard model analog:

N (k,τ,β,λ,U ) = 〈nk(τ )nk〉
=

∑
s,s ′

〈nk+sφ,s(τ̃ )nk+s ′φ,s ′ 〉(β̃,Ũ ),

Szz(k,τ,β,λ,U ) = 〈Sz
k (τ )Sz

k〉
=

∑
s,s ′

〈c†k+sφ,s(τ̃ )ck−sφ,−s(τ̃ )c†k+s ′φ,s ′

× ck−s ′φ,−s ′ 〉(β̃,Ũ ). (48)

An example of the Green’s function is given in Fig. 1,
whereas examples of spin-spin correlations calculated using
the continuous time interaction (CT-INT) expansion quantum
Monte Carlo method [23–25] are shown in Figs. 3 and 4.

V. VARIOUS LIMITS

A. Bosonization

There are already bosonization studies of the Hamiltonian
(1) in the literature [26–29] but since they consider more
general setups for the bosonization they have not explicitly
written down the connection to the plain Hubbard model. The
connection was mentioned in the context of a bosonization
study of Peierls transitions [10] where the interpretation
in terms of a comoving frame of reference for the spin
quantization axis was mentioned. From (10) we find that the
Fermi wave vectors are given by

k
α,s
F (λ) = α arccos

( −μ

2
√

1 + λ2

)
+ sφ(λ)

= αk0
F + sφ. (49)

Note that this expression is only well defined if | −μ

2
√

1+λ2 | < 1.
This restricts the possible values of μ to lie within the band.
Here we have defined the additional index α ∈ {R,L} which
enumerates the two possibilities for a band of helicity s to
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FIG. 2. (Color online) Figures showing the different spectra that are obtained using a device with a quantization axis �D defined by the blue
arrow in the rightmost column. The leftmost column shows spectra which have spin up and the spectra in the middle column have spin down
with respect to the quantization axis �D. The numbers in the rightmost column denote the x and y components of �D. The spectra are taken from
data at U = 6.43,β = 9.32,μ = −2.45, and λ = 0.39 which was in turn derived from a simulation of the Hubbard model at U = 6,β = 10,
and μ = −2.29.

cross the Fermi level. We also define

k0
F = arccos

( −μ

2
√

1 + λ2

)
. (50)

FIG. 3. (Color online) 〈SzSz〉(k,ω) correlation functions at
U = 3 and β = 10 from a Monte Carlo simulation. (a) has λ = 0.5
which gives φ ≈ 0.15π whereas (b) has λ = 2 with φ ≈ 0.35π .

Since the Fermi velocity is the group velocity at those two
points, we have

vα
F (λ) = vG

(
k

α,s
F (λ)

)

= 2
√

1 + λ2 sin

(
α arccos

[ −μ

2
√

1 + λ2

]
− sφ + sφ

)

= α
√

4(1 + λ2) − μ2. (51)

Therefore the absolute value of the Fermi velocity is the same
for all helicities; it only differs for left and right movers by a
different sign, α.
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FIG. 4. (Color online) 〈S+S−〉(k,ω) correlation functions at
U = 3 and β = 10 from a Monte Carlo simulation. (a) has λ = 0.5
which gives φ ≈ 0.15π whereas (b) has λ = 2 with φ ≈ 0.35π .

1. Derivation

We start the bosonization treatment from the Hamiltonian
in the helical base

H =
√

1 + λ2
∑
k,s

{cos[k + sφ(λ)] − μ}nk,s + HU, (52)

where HU is given by (12). Decomposing the fermionic
operators cs(x) into left and right movers we have

cs(x) = eik
L,s
F xcL,s(x) + eik

R,s
F xcR,s(x). (53)

Linearizing the noninteracting theory around the four Fermi
points we find for the noninteracting part

H0 = vF (λ)
∑
k,s

knR,s(k) − vF (λ)
∑
k,s

knL,s(k), (54)

where only the information about the Fermi velocity enters.
We would like to remind the reader that since in (51) the phase
shift has dropped out, (54) contains no information about the
position of the four Fermi points. To bosonize the interaction
we note that for the particle density we have

ns(x) = c†s (x)cs(x)

=
∑

α=R,L

c†α,scα,s + c†α,sc−α,se
−i2αxk0

F ,
(55)

where the dependence on the phase shift has also dropped
out and k0

F as given in (50) contains only information on
the original Fermi velocity. This means that the Hubbard
interaction stays form-invariant. For these reasons we find
that Hamiltonian (1) still has the same bosonized low-energy
description HB as the plain Hubbard model:

HB = HC + HS (56)

with

HC = 2πvF (λ)
∫

dx

[(
1 + U

vF (λ)

)
(∂xθC)2 + (∂xφC)2

]
(57)

and

HS = 2πvF (λ)
∫

dx

[(
1 − U

vF (λ)

)
(∂xθS)2 + (∂xφS)2

]
.

(58)

We have omitted the umklapp term in the charge sector and
we have assumed that U > 0 so that the spin sector acquires
no mass gap. In terms of the usual left-moving fields φL,s and

right-moving fields φR,s of helicity s we have introduced the
fields

φs = 1

2
√

π
(φL,s − φR,s), (59)

θs = 1

2
√

π
(φL,s + φR,s). (60)

For the finally used charge and spin fields we derive

XC = 1√
2

(X+ + X−), (61)

XS = 1√
2

(X+ − X−), (62)

where X is either the symbol θ or φ. We now proceed to show
that this low-energy Hamiltonian satisfies the same symmetry
as the original lattice Hamiltonian. Simple algebra shows that

vF (λ,μ) = νm(λ)vF

(
λm,

μ

νm(λ)

)
(63)

and hence again this implies

HB(λ,μ,U ) = νm(λ)HB

(
λm,

μ

νm(λ)
,

U

νm(λ)

)
. (64)

From the decomposition into left and right movers,

cs(x) = ei(−k0
F −sφ)xcLs(x) + ei(k0

F −sφ)xcRs(x), (65)

we see that applying the same gauge transform separately to
the left and right movers enables the removal of the phase shift
φ. Finalizing the derivation of the Hamiltonian we have

HB =
∑

a=C,S

Ha, (66)

Ha = 2πvF (λ)K2
a

∫
dx[(∂xθa)2 + (∂xφa)2] (67)

with

KC/S =
(

1 ± U

vF (λ)

) 1
4

, (68)

θC/S = 1
KC/S

θC/S , and φC/S = KC/SφC/S .

2. Observables

With the knowledge of the low-energy Hamiltonian (67)
we can derive spin-spin correlation functions. We find

Szz(x,τ ) = Re
[
ei2φx

(
A

φ

SAθ
S + A

φ

SAθ
C cos 2k0x

)]
(69)

with

A
φ

S = 1

a

[
βS

π
sin

(
π

βS

z

)]−K2
S

,

Aθ
S = 1

a

[
βS

π
sin

(
π

βS

z

)]− 1
K2

S
, (70)

Aθ
C = 1

a

[
βC

π
sin

(
π

βC

z

)]− 1
K2

C
.
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Here βC/S = 2πβvF (λ)K2
C/S and we have left the z = τ +

ix + a dependence for the A’s implicit in the notation. Looking
at Fig. 3 we see that the low-energy features are predicted
correctly. We have peaks at k = π ± φ and no peak at k = π .
Also we are consistent with the predictions of the Heisenberg-
limit outlined in the next subsection. For S± we find

S±(x,τ ) = Szz(x,τ ) + Aθ
CAθ

S cos
(
2k0

F x
)

− 4π2

K2
Sβ2

S

csc2

(
π

βS

z

)
. (71)

This is consistent with the spectra in Fig. 4; especially the
peak at k = π is correctly predicted. The location of the peaks
at k = π ± φ is identical to those in Szz, a prediction that is
also made by a consideration of the Heisenberg limit. A very
detailed analysis of the critical exponents from a Bethe ansatz
solution is given in Ref. [16].

B. The Heisenberg limit

The identity between the Hubbard and the Rashba-Hubbard
model which is valid for all values of the parameters has
implications for the strong-coupling limit. In this limit the
primary excitations will be spin excitations and therefore a
spin model will constitute a suitable model. Here we consider
the half-filled case of (1) with noninteracting part

H0 =
∑

r

�c †
r T �cr+1, (72)

where

T = t1 + iλσy. (73)

1. Derivation

The transform to the helical base can be facilitated by (6).
This gives

H0 =
∑

r

γ †
r (t1 + iλσz)γr+1 (74)

with γr denoting a spinor in the helical base. We can insert the
twist by using

t1 + iλσz =
√

t2 + λ2eiφσz . (75)

Therefore we find that H0 has the form

H0 =
√

t2 + λ2
∑

r

η†
rηr+1 (76)

with fermions given by

η†
r = γ †

r e−iφσzr , (77)

which has the isotropic Heisenberg model Hiso as strong-
coupling limit [30]:

Hiso = 4(t2 + λ2)

U

∑
r

�Sη
r
�Sη

r+1. (78)

This implies a representation of the spin operator in terms of
fermions as

�Sη
r = η†

r �σηr . (79)

Now we start to twist back (78) where we find

�Sη
r = c†rS

†e−iφσzr �σeiφσzrScr

= R

(
π

2
, �ex

)
R(2φr, �ez)�Sc

r . (80)

Therefore we find for the isotropic Heisenberg model

Hiso = 4(t2 + λ2)

U

∑
r

�Sc
r R(2φ, �ez)�Sc

r+1. (81)

Evaluating the rotation matrix we find that the following
extended anisotropic Heisenberg-model corresponds to the
isotropic Heisenberg model after the transform:

H = Haniso + HDM,

Haniso = 4

U

[
J‖

(
Sx

r Sx
r+1 + Sy

r S
y

r+1

) + J⊥Sz
r S

z
r+1

]
, (82)

HDM = −8t

U
λ
(
Sx

r S
y

r+1 − Sy
r Sx

r+1

)
,

with J‖ = t2 − λ2 and J⊥ = t2 + λ2. This corresponds to an
anisotropic Heisenberg model with an added Dzyaloshinskii-
Moriya (DM) interaction that is pointing in the Sz direction.
It is well known [31] that the DM interaction can be gauged
away by a gauge transform on the S± operators.

2. Observables

The static spin-spin correlations in the η basis are

〈
Sη,α

r S
η,α

0

〉 ∝ (−1)r
ln

1
2 (r)

r
(83)

in the long-wavelength limit [32]. This expression is valid
for each spin component α since in the η basis SU (2) spin
symmetry is present. From this result one can obtain the spin-
spin correlations by twisting back into the ↑↓ basis:

�Sη
r = R

(
π

2
,�ex

)
R(2φr,�ez)�S↑↓

r . (84)

With that we find for the correlation functions in the ↑↓ basis

〈S↑↓
α (r)S↑↓

α (0)〉

=
[
R

(
π

2
,�ex

)
R(2φr,�ez)R

T

(
π

2
,�ex

)]
α,α

〈
Sη

α(r)Sη
α(0)

〉
. (85)

Evaluating the matrix we find for the components

〈S↑↓
x (r)S↑↓

x (0)〉 ∝ cos(2φr)(−1)r
ln

1
2 (r)

r
, (86)

〈S↑↓
y (r)S↑↓

y (0)〉 ∝ (−1)r
ln

1
2 (r)

r
, (87)

〈S↑↓
z (r)S↑↓

z (0)〉 ∝ cos(2φr)(−1)r
ln

1
2 (r)

r
. (88)

This is consistent with the Monte Carlo data of Fig. 3
which was simulated using the CT-INT quantum Monte Carlo
method. While U = 3 is certainly not yet bigger than the
bandwidth it is sufficient to gap out the charge degrees of
freedom and therefore at energy scales below the charge
gap the Heisenberg Hamiltonian can be used as a guide for
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understanding the spectra of Figs. 3 and 4. We clearly see the
two low-energy peaks located symmetrically around k = π .
Using the x and y components of the spin vector we find

〈S↑↓
+ (r)S↑↓

− (0)〉 + 〈S↑↓
− (r)S↑↓

+ (0)〉

∝ cos(2φr)(−1)r
ln

1
2 (r)

r
+ (−1)r

ln
1
2 (r)

r
. (89)

We also see this in our CT-INT spectra in Fig. 4. We
have one contribution pinned to k = π and other contributions
located symmetrically around k = π identical to what is found
in 〈S↑↓

z (r)S↑↓
z (0)〉. With the knowledge of the transform for

the spin operators, (84), it is possible to analytically calculate
the transform that is necessary to reinterpret the results
for the full dynamical spin structure factors computed in [33]
for the isotropic Heisenberg model in situations with Rashba
spin-orbit coupling.

VI. GENERALIZATIONS

A. Long-range interaction

The mapping naturally lends itself to some generalizations.
First we have Hubbard models with a long-range Coulomb
interaction:

HLR = H0(λ) +
∑

r

V (r)
∑

i

ni+rni, (90)

where ni = ni,↑ + ni,↓. Again, the spin-orbit interaction can
be rescaled into the coupling parameters:

HLR(λ) = 1

|cm|

(
H0(0) +

∑
r

Ṽ (r)
∑

i

ni+rni

)
(91)

with Ṽ (r) = V (r)|cm|.

B. Coupling to the spin

This can be further extended to anisotropic Hubbard models
by adding spin terms. In particular we consider the additional
term

Hyy =
∑

r

S
y

r+1S
y
r (92)

with S
y
r = −i

2 (c†r,↑cr,↓ − c
†
r,↓cr,↑). Performing the transform

to helical electrons we find that S
y
r given in physical spins

transforms to −Sz
r = 1

2 (nr,− − nr,+), given in terms of helical
spins, which is manifestly invariant under the gauge-transform.
This invariance of Sz can be used to additionally include
an in-plane magnetic field with coupling strength b in the
y direction:

Hmag = b
∑

r

Sy
r , (93)

which transforms to

Hmag = −b
∑

r

Sz
r (94)

and is again invariant under the gauge transform.

C. Phonons

Our results can be further generalized to electron-phonon
models with Holstein-type electron-phonon coupling [34].
Since the part of the Hamiltonian that couples electrons and
phonons is given by

Hep = g
∑

i

Qi(ni − 1), (95)

where ni = ni,↑ + ni,↓, we see that in this case the transfor-
mation required to eliminate the Rashba term corresponds to a
rescaling of the coupling strength g with the bandwidth. Fur-
ther generalization to long-range electron-phonon interaction
is possible. If the interaction is

Hep =
∑
i,j

fi,jQj

∑
σ

ασ

(
ni,σ − 1

2

)
(96)

and we assume a spin-independent α we find

Hep = α
∑
i,j

fi,jQj (ni − 1), (97)

which is again invariant under the transform to helical spins
and the gauge transform.

D. Disorder

Potential disorder

Hdis =
∑

i

μini (98)

couples only to the local particle density ni which is equally
invariant under the transformation to the helical basis and is
not modified by the gauge transform. Reference [5] discusses
the case of how to link different realizations of bond disorder.

E. Long-range hopping

Only a very slight generalization is possible to include long-
range hoppings. Given a hopping Hamiltonian that includes
long-range hopping with distances d,

H0 =
∑
d=1

Hd (td ,λd ), (99)

where for each d we have

Hd (td ,λd ) =
√

t2
d + λ2

d

∑
k,s

cos(kd + sφd )nk,s (100)

with φd = arctan( λd

td
). Hd is already in the helical base which

is always doable for the Rashba spin-orbit interaction in one
dimension. We can only employ the U (1) gauge symmetry
globally if we require

φd = dφ1, (101)

where φ1 = 2jπ

L
, a value commensurate with the lattice. This

enforces a particular form for the λd ’s, namely

λd = td tan

(
2jπd

L

)
. (102)
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With that we find for the hopping Hamiltonian

∑
d

Hd (td ,λd ) =
∑

d

Hd (t̃d ,0) (103)

with

t̃d =
∣∣∣∣∣ td

cos
( 2πjd

L

)
∣∣∣∣∣ . (104)

VII. SUMMARY AND CONCLUSION

We have carefully reviewed the mapping of the Rashba
Hubbard model to the Hubbard model. The validity of the
mapping for a material can in principle be tested by spin
and angle resolved photoemission spectroscopy. In one spatial
dimension this implies that the transformation to the helicity
basis is a global SU (2) transformation (i.e., site or momentum
independent). Assuming global SU (2) invariant interactions,
such as long-range Coulomb interactions, coupling to the
lattice, and potential disorder, the helicity is a good quantum
number. The mapping onto the SU (2) symmetric Hubbard
model requires a helicity-dependent twist, which places
constraints on the form of the hopping matrix elements, and
requires commensurability between the lattice size and the
value of the Rashba spin-orbit coupling. For spin-resolved
ARPES experiments and as explicitly shown for the Hubbard
model, this has for consequence that spin-resolved spectra can
be decomposed into two Hubbard-type spinon-holon spectra,
generically with different weights due to the device’s spin
quantization axis. Both spectra map exactly onto each other
when shifting the momentum in opposite directions. For
open boundary conditions, commensurability issues do not
occur. Reference [35] reports a value of the Luttinger-liquid
parameter WC ≈ 0.26. This particular low value points to
extended Hubbard models with long-range interactions [36]
in addition to an already very large value of U . Since
our mapping is also valid in the presence of long-range
interactions it proves that it is justified to analyze the local
density of states, Eq. (45), in the realm of Luttinger-liquid
theory for the plain vanilla Hubbard model [35], because
the local density of states is a quantity that is not sensitive

to the additional fine structure present in the k-resolved spectra
at a finite λ which is expected to be present in gold chains
[1,2,37]. At the two-particle level the result allows us to
understand the spin dynamics of the Mott-insulating state
of the Rashba-Hubbard chain based on the results of the
plain isotropic Heisenberg model [33]. The mapping equally
impacts numerical simulations. It enables one to reinterpret
simulations of the Hubbard model in the Rashba-Hubbard
setting. In the present article we have shown this explicitly
for the spin-resolved single-particle spectral function as well
as for spin dynamics at half-band filling. It is also interesting
to point out that quantum Monte Carlo CT-INT simulations of
the Rashba-Hubbard model are plagued by the negative sign
problem. Hence, the mapping shows how to carry out a basis
transformation to eliminate it.

Generalizations of this mapping to higher dimensions
with larger coordination require fine tuning by choosing
parameters where the spin-orbit interaction remains effectively
one dimensional [9,11], as already shown by Kaplan [5]. In
light of the very special and robust features encountered in
one-dimensional chains with Rashba spin-orbit interactions, it
is certainly very interesting to revisit the dimensional crossover
[38–41]. In the one-dimensional limit the mapping implies
an SU (2) symmetry [9] which will generically break down
in higher dimensions or when chains are coupled to form
ladder systems [42,43]. It is further expected that in this
crossover regime the interplay between low dimensionality
and spin-orbit coupling may lead to realizations of the Fulde-
Ferrell-Larkin-Ovchinnikov type [18,44,45] superfluidity.
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