
PHYSICAL REVIEW B 90, 184515 (2014)

Effect of orbital relaxation on the band structure of cuprate superconductors and
implications for the superconductivity mechanism

J. E. Hirsch
Department of Physics, University of California, San Diego La Jolla, California 92093-0319, USA

(Received 28 June 2014; published 17 November 2014)

Where the doped holes reside in cuprate superconductors has crucial implications for the understanding of the
mechanism responsible for their high-temperature superconductivity. It has been generally assumed that doped
holes reside in hybridized Cu dx2−y2 -O pσ orbitals in the CuO2 planes, based on results of density functional
band-structure calculations. Instead, we propose that doped holes in the cuprates reside in O pπ orbitals in the
plane, perpendicular to the Cu-O bond, that are raised to the Fermi energy through local orbital relaxation, that
is not taken into account in band-structure calculations that place the bands associated with these orbitals well
below the Fermi energy. We use a dynamic Hubbard model to incorporate the orbital relaxation degree of freedom
and find in exact diagonalization of a small Cu4O4 cluster that holes will go to the O pπ orbitals for relaxation
energies comparable to what is expected from atomic properties of oxygen anions. The bandwidth of this band
becomes significantly smaller than predicted by band-structure calculations due to the orbital relaxation effect.
Within the theory of hole superconductivity the heavy hole carriers in this almost full band will pair and drive
the system superconducting through lowering of their quantum kinetic energy.
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I. INTRODUCTION

The question of which atomic orbitals in the Cu-oxide
superconductors host the carriers that drive the system su-
perconducting was recognized as essential already in the
early days of the high-Tc cuprate era since it is likely to
play a key role in the understanding of the mechanism
of superconductivity. Band-structure calculations based on
density functional theory (DFT) yield a metallic ground state
with a broad band of states with a dominant Cu dx2−y2 -O pσ

orbital character crossing the Fermi energy [1–9]. O pσ

orbitals are directed along the Cu-O bond (see Fig. 1). Despite
the fact that these calculations yield a metallic rather than
an insulating state in the undoped case, it has been generally
accepted that holes doped into the insulating state go into this
band and are the carriers responsible for superconductivity.

The possibility that instead doped holes occupy planar
oxygen orbitals pointing in a direction perpendicular to the
Cu-O bond (pπ orbitals) was proposed early on by Guo and
co-workers [10] based on quantum chemical calculations. Also
simple electrostatic considerations suggest that doped holes
(positive carriers) should prefer to occupy O pπ orbitals since
they give rise to larger carrier concentration near the center of
Cu-O plaquettes (furthest away from the Cu++ ions) where the
electrostatic potential is most negative. This was also found in
detailed calculations of Madelung potentials [11]. However,
it is generally believed that the strong hybridization between
O pσ and Cu dx2−y2 orbitals along the Cu-O bonds renders
those orbitals more favorable for hole doping as predicted by
the DFT calculations.

Experimentally it is possible to ascertain that doped holes
occupy planar O orbitals (px,y rather than pz) from x-ray
absorption [12] and electron-energy-loss spectroscopy [13]
studies, but it is not possible to differentiate between pσ and
pπ holes.

The bands arising from direct overlap of oxygen orbitals are
predicted by DFT theory to have a width of approximately 6
to 7 eV [14] and be located with the top at a distance of 1 [6] to

2.5 eV [14] below the Fermi energy, thus remaining completely
filled by electrons and hence inert when the system is doped
with holes. In this paper we question this point of view and
argue that it is in error, resulting from ignoring the important
effect of local orbital relaxation of the filled oxygen orbitals
when an electron is removed. We argue that when this effect
is taken into account the O pπ bands rise to the Fermi energy
and as a consequence host the hole carriers responsible for
superconductivity in the cuprates [15,16].

II. BAND STRUCTURE

As pointed out by Mattheiss and others [1–9], the main
features of the band structure of the cuprates obtained from
density functional calculations can be reproduced with simple
tight-binding models that include the Cu dx2−y2 and O px,py

orbitals. Since superconductivity is clearly driven by transport
in the planes, we consider only the Cu dx2−y2 and O px,py

orbitals in the planes. There is one Cu and two O atoms in the
unit cell which we denote by O1 and O2. Figure 1 shows the
orbitals schematically. The oxygen orbitals in the direction of
the Cu-O bond are denoted pσ , and the ones perpendicular to
the Cu-O bond are denoted pπ .

We denote the d-pσ hopping amplitude by td and the direct
hopping amplitudes between oxygen orbitals by t1 for π -π or
σ -σ hopping and t2 for π -σ hopping. Following estimates
by McMahan et al. [14] and Stechel and Jennison [17]
we take t1 = 0.65, t2 = 0.35, and td = 1.75, all in eV. For
site energies we take εd = −5.2, εpσ = −5.5, and εpπ =
−4.7 eV. Because of electrostatics, εpπ is higher than εpσ .

The resulting band structure obtained by diagonalization
of the 5 × 5 matrix of Bloch states is shown in Fig. 2 in
the direction (0,0) − (π,π ), i.e., � → X. Figure 3 shows the
weights of the different orbitals in the band states for bands
1–5 ordered from lowest to highest energy. Band 2, that is not
shown in Fig. 3, is mostly pσ , with some pπ contribution and
no contribution from the d orbitals. The band of interest to
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FIG. 1. Unit cell in the Cu-O plane with five electronic orbitals:
Cu dx2−y2 and O pσ ,pπ orbitals. There are two oxygen atoms in the
unit cell denoted by O1,O2.

us is band 4, which is almost entirely of pπ character at its
highest energies near the X point as shown in the lower left
panel of Fig. 3.

The Fermi level corresponds to energy 0. This tight-binding
band structure, extending from −9.2 to 1 eV, resembles
the main features of the band structures obtained from
density functional calculations [1–9]. The Fermi level cuts the
Cu dx2−y2 -O pσ antibonding band that extends from energy
−3.6 to 1 eV, hence according to this band structure when the
system is doped with holes they should occupy this band. This
is the general consensus. The antibonding oxygen pπ band
(band 4) is full, and its top is approximately 2 eV below the
Fermi level, hence it should remain full and inert when the
system is doped with holes according to this band structure.

There are two problems with this argument, the first one is
well recognized, but the second one is not.

The first problem is that the band structure in Fig. 2 does
not reflect the fact that the undoped system is insulating. This
is attributed to the strong Coulomb repulsion of electrons in
the Cu dx2−y2 orbital, which is argued to open up a gap (Mott-
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E

FIG. 2. Band structure in the Cu-O planes in the �-X di-
rection [(0,0) to (π,π )] from a tight-binding calculation with
five orbitals per unit cell (see Fig. 1). Parameters used
are tππ = tσσ ≡ t1 = 0.65, tπσ ≡ t2 = 0.35, tdσ ≡ td = 1.75, εd =
−5.2, εpσ = −5.5, and εpπ = −4.7 (see text).

FIG. 3. Weights of the different orbitals in the band states. Bands
1–5 are numbered from lowest to highest energy. Band 2 (not shown)
has only contributions from pσ (mostly) and pπ and none from d

for all values of k.

Hubbard gap) when the band is half-filled, corresponding to
the undoped case. Hence, band 5 in Fig. 2 is argued to split
into two upper and lower Hubbard bands when the system is
undoped with the Fermi level in the gap between the two bands
rendering it insulating.

There have been various calculations performed using these
ideas that take the Mott-Hubbard gap into account [4,8,14,17–
24]. The general consensus is that doped holes still go into the
Cu dx2−y2 -O pσ band and are responsible for the transport in
the underdoped through overdoped regimes. However, these
calculations rely on approximations that are not necessarily
well controlled.

The second problem is that the antibonding pπ band (band
4 in Fig. 2), which comes to about 2 eV below the Fermi level
at the X point, is assumed to be rigid. Here we argue that
this assumption is incorrect and that in reality the energy of
holes doped into this band is raised by several eV by orbital
relaxation and that as a result doped holes will go into this
band rather than into the Cu-O pσ band. In other words,
the energetics of orbital relaxation, not reflected in the band
structure shown in Fig. 2, makes it easier to remove electrons
from band 4 rather than from the band above it (band 5 in
Fig. 2).

III. ORBITAL RELAXATION

When an atomic orbital is doubly occupied, its size expands.
This is certainly well known from atomic physics [25], but
surprisingly its consequences are not properly taken into
account in band-structure calculations nor in the many-body
Hamiltonians commonly used for solids. In a series of papers
we have argued that this effect is essential to understand
the physics of electrons in electronic energy bands that are
more than half-full [26–30] and have proposed a new class
of model Hamiltonians, “dynamic Hubbard models” to take it
into account. The magnitude of this effect increases as the net
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FIG. 4. Atomic orbitals in the CuO2 unit cell for the undoped case
(left) and when an electron is removed (hole is added) (right). If the
hole goes into the pπ orbital, it will shrink as shown schematically
with the dashed and full lines in the right panel of the figure.

charge of the ion decreases as discussed, e.g., in Ref. [26].
Hence this effect will be large for O= anions [31], e.g.,
compared to the isoelectronic F− and Ne0 ions. As emphasized
by Bussmann-Holder et al. [32] and Bilz et al. [33], the
oxygen O= is unstable in free space, and it is stabilized in
the solid by long-range Coulomb forces only, resulting in a
high polarizability [34].

In the undoped situation the oxygen ion is nominally O=,
which suggests that it has a large amount of excess negative
charge. The pσ orbitals share electrons with neighboring
Cu++ ions, hence the total excess negative charge in the O=
ions is not 2 but somewhat less, approximately 1.5, still large.
Regarding the individual p orbitals, the oxygen pπ orbitals
in the plane as well as the pz orbitals are doubly occupied
and hence will be enlarged by Coulomb repulsion. Instead, the
oxygen pσ orbitals are less enlarged because they share their
electrons with the neighboring Cu ions.

As mentioned earlier, experiments show that when the
system is doped with holes, i.e., when electrons are removed
from the system, these electrons come from planar orbitals.
Let us assume that an electron from a pπ orbital is removed
as shown in Fig. 4. As a consequence, the size of the orbital is
reduced because it goes from being doubly occupied and hence
enlarged by Coulomb repulsion to being singly occupied.
This has two important consequences: (i) The overlap with
neighboring orbitals will change, changing the effective mass
and bandwidth of carriers in this band because of Franck-
Condon overlap matrix elements [31], and (ii) because of the
energy lowering caused by orbital relaxation, the energy cost
in removing this electron will be smaller than what would be
predicted from the band structure shown in Fig. 2.

As a simple illustration, consider the states of one and two
electrons in an atomic p orbital shown in Fig. 5. The wave
function for one electron is

ϕα(r,θ ) =
(

α5

π

)1/2

r cos θe−αr . (1)

The single-electron energy is

E(1) = α2 − αZ, (2)

with Z as the ionic charge and the Coulomb repulsion for two
electrons in this orbital is

U = 501
640α, (3)

FIG. 5. States with one and two electrons in an atomic p orbital.
E(1) and E(2) are the energies of the lowest-energy states with one
and two electrons, respectively. The orbital expands when the second
electron is added. Ē(1) is the energy of one electron in the expanded
orbital, and Ē(2) is the energy of two electrons in the unexpanded
orbital.

all in atomic units [length in units of a0 and energy in units
of e2/(2a0)]. For a single electron in the orbital the orbital
exponent is

α = Z

2
, (4)

and the atomic energy is

E(1) = −Z2

4
. (5)

For two electrons in the orbital, the energy is minimized by
the orbital exponent,

ᾱ = Z

2
− δ, (6a)

δ = 501

2560,
(6b)

reflecting the expansion of the orbital, and the energy in the
two-electron atom is

E(2) = −2

[
Z

2
− δ

]2

. (7)

The overlap matrix element between the wave functions for
the expanded and nonexpanded orbital is

S =
∫

d3r ϕ∗
α(�r)ϕᾱ(�r) = (αᾱ)5/2

(
α+ᾱ

2

)5
, (8)

and becomes arbitrarily small for Z approaching 2δ = 0.39.
The single-electron energy is higher in the expanded orbital,

Ē(1) = −
[(

Z

2

)2

− δ2

]
, (9)

but the electrons pay this price in order to minimize the total
energy. If the orbital is not allowed to expand, the total energy
of the two-electron orbital is

Ē(2) = −Z

[
Z

2
− 2δ

]
, (10)

larger than Eq. (7) by

Ē(2) − E(2) = 2δ2, (11)

which is twice the cost in single-electron energy in expanding
the orbital,

Ē(1) − E(1) = δ2. (12)

Thus, we can define the relaxation energy per electron as

εR = 1
2 [Ē(2) − E(2)] = Ē(1) − E(1). (13)
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This is both the reduction in energy per electron achieved by
expanding the orbital versus keeping it unexpanded when a
second electron is put in as well as the excess energy of the
electron remaining in the orbital after the second electron is
removed if it does not relax to the unexpanded orbital.

We can relate this relaxation energy to the bare and effective
Coulomb repulsions. The bare Coulomb repulsion is the
Coulomb energy if the orbital is not allowed to expand

Ubare = Ē(2) − 2E(1) = 2 δZ, (14)

which is the same as Eq. (3) with unexpanded orbital exponent
α = Z/2. The “effective U” is given by

Ueff = E(2) − 2E(1) = 2 δZ − 2δ2, (15)

so that

εR = 1
2 (Ubare − Ueff). (16)

For a single p orbital this yields for the relaxation energy,

εR = δ2 = 0.52 eV. (17)

However, this estimate does not take into account the
presence of other electrons in the atom. In particular, when
the pπ orbital expands the Coulomb interaction energy of an
electron in that orbital with electrons in other p orbitals is also
reduced so that the relaxation energy should be substantially
larger than Eq. (17). We can obtain a quantitative estimate for
oxygen ions using Eq. (16). The effective U for two electrons
in the oxygen ion On is given by

Ueff(O
n) = E(On) + E(On+2) − 2E(On+1), (18)

with E(On) as the electronic energy for the ion On. This can
be obtained from the difference in ionization energies,

Ueff(O
n) = I (n + 2) − I (n + 1), (19)

with

I (n) = E(On) − E(On−1), (20)

the nth ionization energy for n � 1 and I (0), I (−1) are the
first and second electron affinities of O0.

The experimental values for ionization energies and elec-
tron affinities and resulting effective U ’s are given in Table I.
Note that the effective U ’s for two electrons in the O0, O+,
and O++ ions are all on the order of 20 eV or slightly larger.
This is also approximately the value for Slater’s F 0(2p,2p)
parameter, the spherically averaged Coulomb repulsion for

TABLE I. nth ionization energy I (n) and effective electron-
electron repulsion Ueff (On−1) = I (n + 1) − I (n) for two electrons
in the On−1 ion.

n I (n) (eV) Ueff (On−1) (eV)

−1 −8.75 10.20
0 1.45 12.17
1 13.62 21.5
2 35.12 19.82
3 54.94 22.47
4 77.41

two electrons in p orbitals in O0,

F 0(2p,2p) = 93μc

128
= 21.94 eV, (21)

with 2μc = 4.44 from Tables 15-6 and 15-7 in Ref. [25]. When
the ion becomes negatively charged the orbitals expand, and
the effective U decreases substantially to 12.17 and 10.20 eV
for two electrons in O− and in O=, respectively. Thus, we
conclude that the “bare U” for two electrons in the neutral
oxygen atom O0 is on the order of 20 eV and the effective U

for two electrons in the negative anion O= is on the order of
10 eV. According to Eq. (16) this then yields

εR ∼ 5 eV (22)

for the lowering of energy per electron due to the orbital
expansion when an electron is added to O− to form O=.
Conversely, when adding a hole to O=, i.e., removing an
electron from O=, the energy of the final state is ∼5 eV lower
than would be estimated if the orbital relaxation effect is not
taken into account.

In concluding from Fig. 2 that when the cuprate plane is
doped with holes and the oxygen pπ band remains full, the
effect of orbital relaxation is not taken into account. Even
a new band-structure calculation with a low level of doping
will not capture this effect since it will only take into account
the average charge distribution which will not change much
for low doping compared to the undoped state. Instead we
argue that even doping with a single hole changes the outcome
qualitatively when the orbital relaxation effect is taken into
account.

Thus, the conclusion from the band structure shown in Fig. 2
that band 4 remains full when the system is doped with holes
needs to be reconsidered. Let Einitial and Efinal be the initial and
final energies of the system upon bringing an electron from the
top of band 4 to the Fermi energy, and


 = Efinal − Einitial, (23)

the energy cost of this. According to the band structure shown
in Fig. 2,


 ∼ 2.1 eV, (24)

and other calculations yield estimates in the range of 1 to
2.5 eV [6,14]. These calculations (using density functional
or tight-binding methods) assume the charge distribution and
kinetic, potential, and interaction energies of electrons in the
system when the system is undoped and do not change upon
infinitesimal doping since on average the charge distribution
does not change. Thus, they do not take into account the
relaxation of the orbital when an electron is removed. A correct
calculation taking this effect into account would yield instead
for the final energy,

E′
final = Efinal − εR, (25)

since the atomic energy is lowered by εR through the process
of orbital relaxation. As a consequence,


′ = E′
final − Einitial = 
 − εR, (26)

and it will change sign from positive to negative if εR > 
,
which is the case for the cuprate superconductors according to
the estimates discussed above. This then implies that when the
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FIG. 6. Effect of orbital relaxation on the band structure (b)
(schematic) compared to the case when orbital relaxation is not taken
into account (a). The energies of the states of band 4, arising from
overlap of oxygen pπ orbitals, are lifted by an amount given by the
orbital relaxation energy εR with respect to the energies when orbital
relaxation is not taken into account. In addition, the bandwidth of
band 4 becomes significantly smaller due to the modulation of the
hopping amplitude by the overlap matrix elements.

insulating system is doped with holes, the holes will occupy
the oxygen pπ band, or in other words that the states near the
top of the band of band 4 rise to the Fermi level. An additional
important effect is that the bandwidth will become significantly
smaller because the hopping amplitude is reduced by the
square of the overlap matrix element S between expanded
and unexpanded atomic states Eq. (8) [26]. The resulting band
is shown schematically in Fig. 6.

IV. DYNAMIC HUBBARD MODEL CALCULATION

To take into account the effect of orbital relaxation
quantitatively we use a dynamic Hubbard model [26,29] and
diagonalize it exactly for the small cluster shown in Fig. 7 with
four Cu sites with one d orbital each and four O sites with a pσ

and a pπ orbital each. There is in addition a spin-1/2 degree of
freedom associated with each oxygen pπ orbital to represent
the orbital expansion/contraction. We denote by d

†
iσ , c

†
iσ , and

p
†
iσ the creation operators for electrons in orbitals d, pσ ,

FIG. 7. Eight-site cluster for the exact diagonalization calcula-
tion. There is one electronic d orbital at each of the four Cu sites, a
pσ and a pπ orbital at each of the four O sites, and an auxiliary spin
degree of freedom at each O site to describe the expansion/contraction
of the pπ orbitals indicated by the dotted lines.

and pπ , respectively, and ndi, nci , and npi the corresponding
electronic site occupations. The Hamiltonian is given by

H =
∑

i

εdndi +
∑

i

εcnci +
∑

i

hi + Hkin, (27a)

Hkin = td
∑
ijσ

(d†
iσ cjσ + H.c.) + t1

∑
ijσ

(c†iσ cjσ + H.c.)

+ t1
∑
ijσ

(p†
iσ pjσ + H.c.) + t2

∑
ijσ

(c†iσ pjσ + H.c.),

(27b)

hi = εc + ε0(npi↑ + npi↓) + ω0σ
i
x + gω0σ

i
z

+(
Up − 2gω0σ

i
z

)
npi↑npi↓, (27c)

εc = ω0

√
1 + g2. (27d)

The justification for the site Hamiltonian hi is given in
the references, particularly, Refs. [26,27,30]. The auxiliary
spin degree of freedom describes the expansion/contraction of
the O pπ orbital depending how many holes are at the site
as discussed in Sec. III. We have discussed several possible
versions of this model in Ref. [30], all giving rise to the same
physics, the simplest one given by Eq. (27c). The parameters
of the model are determined by comparison with properties of
the atom as discussed in the following.

The ground-state energy of the Hamiltonian hi when the
orbital is doubly occupied is

E(2) = 2ε0 + Up. (28)

If we take an electron out of this orbital and do not let the
orbital relax the energy is [30]

Ē(1) = εc + ε0 + g2 − 1√
1 + g2

ω0. (29)

Therefore, we choose the parameters in the Hamiltonian hi so
as to give

E(2) = 2εpπ , (30a)

Ē(1) = εpπ . (30b)

If the orbital is allowed to relax, the lowest energy of hi

with one electron is

E(1) = ε0, (31)

so that the relaxation energy is

εR = Ē(1) − E(1) = ω0

√
1 + g2 + g2 − 1√

1 + g2
ω0. (32)

The overlap matrix element between relaxed and unrelaxed
orbitals is

S = 1√
1 + g2

, (33)

which corresponds to the overlap matrix element between
expanded and unexpanded orbitals Eq. (8), and determines
the bandwidth of the renormalized band when the orbital
relaxation effect is taken into account. We take it here as a free
parameter. For given S and relaxation energy εR the parameters
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FIG. 8. Occupation of the orbitals in the cluster of Fig. 7 in the
ground state when there is one hole in the cluster as a function of the
orbital relaxation energy εR (in eV) for S = 0.333.

in the Hamiltonian hi are then,

g =
√

1

S2
− 1, (34a)

ω0 = εR√
1 + g2 + g2−1√

1+g2

, (34b)

ε0 = εpπ − εR, (34c)

Up = 2εR. (34d)

Finally, to match the band-structure results of Fig. 2 we
take εd = −5.2, εpσ = −5.5, εpπ = −4.7, t1 = 0.65, t2 =
0.35, and td = 1.75.

We consider only the dynamics of the one added hole to
the cluster, assuming the other four holes are “frozen” on the
Cu sites. This is a reasonable approximation in view of the
fact that the undoped system is insulating due to the strong
Coulomb interactions. The Hilbert space for one hole in this
cluster has 192 states (12 states for the hole and 16 states
for the auxiliary spins), and thus the Hamiltonian Eq. (27) is
easily diagonalized in this subspace. Considering instead the
motion of five holes would require dealing with 232 320 states
in the Hilbert space making the calculation unmanageable.
We calculate the occupation of the orbitals d, pσ , and pπ as
functions of the relaxation energy εR and plot the occupations
for the lowest-energy state for the case of S = 0.333 in Fig. 8.

The results are qualitatively as expected. For zero or small
relaxation energy the hole resides in the d and pσ orbitals, i.e.,
band 5 in Fig. 2. Note in Fig. 8 that the occupation of the d

orbitals is slightly larger than that of the pσ orbitals, contrary
to the results shown in Fig. 3, lower right panel. This is simply
due to the finite size of the cluster used. When the relaxation
energy exceeds a critical value εRc ∼ 2.5 eV the hole occupies
the oxygen pπ orbital, i.e., the top of band 4 in Fig. 2. In other
words, the states at the top of that band are now at the Fermi
energy as shown schematically in Fig. 6, right panel.

The critical value εRc ∼ 2.5 eV is similar to the distance
between the top of band 4 and the Fermi energy in Fig. 2 or
between the top of band 4 and the top of band 5 in Fig. 2. This
critical value depends somewhat on the value assumed for the

S

S

S
S

FIG. 9. Energy eigenvalues for the cluster of Fig. 7 with one
hole in the absence of orbital relaxation and when orbital relaxation
is included with the dynamic Hubbard model with S = 0.333 and
εR = 3. The four pπ states in the cluster are moved up in energy by
several eV when orbital relaxation is included. The numbers next to
the symbols indicate the pπ occupation for the state. Note also that
the spread in energy of the pπ states becomes much smaller in the
presence of orbital relaxation.

overlap matrix element S and decreases monotonically from
εRc = 2.7 to εRc = 1.6 eV for S going from 0 to 1.

In Fig. 9 we show the energy eigenvalues for all the
electronic states with one hole in the cluster in the absence
of orbital relaxation and the change in the energy of the pπ

states when the effect of orbital relaxation is included. The
diamonds and squares denote the states in the absence of
orbital relaxation of d-pσ and pπ characters, respectively,
as determined by the occupations of the sites. For the states
denoted by the diamonds the pπ occupation is zero or very
small. Note that the highest-energy states in the absence of
orbital relaxation are diamonds, corresponding to the d-pσ

states of band 5 in Fig. 2, which are the states where holes
would be created in the absence of orbital relaxation. When
orbital relaxation is included, the pπ states (squares) go up
in energy and become the states denoted by the crosses,
which are higher in energy than the highest d-pσ states,
indicating that doped holes will be created in those states.
The numbers next to the squares and crosses give the hole
occupation of the pπ orbitals for those states. Note also that
the spread in energy of the states denoted by the crosses is
much smaller than the states denoted by the squares, reflecting
the band narrowing caused by orbital relaxation. Examination
of the states denoted by the crosses shows that they are
small “electronic polarons” with the auxiliary spin distortion
representing the expansion/contraction of the orbital following
the occupation of the pπ orbitals as expected.

V. CONSEQUENCES FOR NORMAL-STATE PROPERTIES
AND FOR SUPERCONDUCTIVITY

If the doped holes in the cuprate superconductors occupy
the O pπ rather than the O pσ orbitals this has fundamental
consequences for the understanding of both the normal state
of the cuprates and the mechanism of superconductivity. In
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particular, Chen and Goddard III [35], Stechel and Jenni-
son [17], and Birgenau et al. [36] have proposed superconduc-
tivity mechanisms based on magnetic interactions between
oxygen pπ hole carriers and Cu spins, and Ikeda [37] has
proposed an exciton mechanism for pairing of O pπ holes
induced by interactions with d-pσ excitations.

Here we focus on the physics predicted by the theory of
hole superconductivity [38]. The hole carriers doped into the
O pπ states shown in Fig. 9 that were raised to the Fermi
energy by orbital relaxation will be highly dressed by the
orbital relaxation processes with quasiparticle weight given
by [39,40]

z = S2 (35)

for infinitesimal hole doping. If we assume that half of the
missing electron in the Cu-O pσ bond resides on the Cu and
half on the O it corresponds to Z = 0.5 in Eq. (2), yielding
ᾱ = 0.054 in Eq. (6) and S = 0.263 from Eq. (8). If we assume
the d9.45 occupation for the Cu ion predicted by band-structure
calculations [14] it corresponds to Z = 0.45, ᾱ = 0.029, and
S = 0.106. These estimates illustrate that the value of S (and
hence z) is very sensitive to the charge distribution but in any
event is likely to be much smaller than unity.

As the doping level increases, the quasiparticle weight
increases as [40]

z(n) = S2

[
1 + nh

2
ϒ

]2

, (36)

with nh as the hole concentration and ϒ as the “undressing
parameter”[40],

ϒ = 1

S
− 1, (37)

which should be particularly large for negative ions, such as
O=. This will give rise to a vanishingly small quasiparticle
weight for infinitesimal hole doping (z = 0.1062 = 0.01 if
we use the d9.45 value) that grows upon doping leading to
increasing coherence in the normal state. This behavior is
seen experimentally [41,42] but attributed to physics of the
t-J model and the Mott-Hubbard gap in the O d-pσ band
instead of the physics and band discussed here. In addition,
within our theory the same parameter ϒ determines the
correlated hopping interaction 
t that gives rise to pairing
and superconductivity [16] driven by lowering of kinetic
energy [43],


t = ϒth, (38)

with th = tS2 and t = tππ = t1 as the bare pπ -pπ hopping.
Through the same physics, the model predicts increased
coherence [39,40] and increased low-energy optical spectral
weight [44,45] as the system goes superconducting, which is
seen experimentally in photoemission [41] and optical [46,47]
experiments.

The mechanism of hole superconductivity [38] only oper-
ates when a band is almost full, hence it can only be relevant to
the cuprates if the doped holes go into a pπ band rather than
a pσ band that is half-full in the undoped case. The predicted
doping dependence of Tc [48] closely resembles the doping
dependence seen in the cuprates [49]. Many other predictions
of the model are in agreement with observations [45,48,50].

In addition the model predicts a strong tendency to charge
inhomogeneity [28] as seen experimentally.

VI. DISCUSSION

The question of the nature of the charge carriers in the high-
Tc cuprates is undoubtedly a complicated one, both because of
the existence of strong correlations induced by the Hubbard U

on the Cu sites [51] and because of the effects of strong orbital
relaxation in the negative O= anions focused on in this paper.
Band-structure calculations capture neither of these effects.
For the past 25 years the physics community has focused its
attention on the former of these effects and has ignored the
latter. With this paper we attempt to restore some balance to
this situation.

It is possible that in fact doped carriers occupy both
Cu-O pσ bands as the Mott-Hubbard gap closes and an O pπ

band lifted to the Fermi energy by orbital relaxation. We have
considered such a two-band model [52] and found that high-
temperature superconductivity would also result, driven by the
kinetic pairing interaction of the O pπ carriers that would in-
duce a weaker pairing of the Cu-O pσ carriers. Angle-resolved
photoemission experiments have detected a superconducting
gap opening in the k-space region consistent with belonging
to the approximately half-full d-pσ band [41,53] and to date
have not shown the presence of the pπ holes nor the associated
superconducting gap that our model predicts close to the (π,π )
point in the Brillouin zone. Presumably this is explained by
the fact that the quasiparticle weight associated with this band
Eq. (36) is very small. A more detailed explanation for why
the opening of the superconducting gap seen in photoemission
is associated with the d-pσ rather than the pπ band is given
in Ref. [40], Sec. VII.

More generally, the purpose of this paper is to point out that
the effect of orbital relaxation on the band structure cannot be
ignored when negative ions are involved and that it is not
taken into account in standard band-structure calculations.
Similar physics is emphasized in the approach developed by
Fulde [54], Stoyanova et al. [55], and Hozoi et al. [56] as
a substitute for standard band-structure approaches. Within
dynamical mean-field theory [57] it is also possible to take the
effects focused on in this paper into account [58], although
this has not yet been performed in the context of a realistic
band-structure calculation.

To summarize, we argue that the arguments and calculations
in this paper indicate that orbital relaxation of the oxygen
pπ orbitals in the cuprate superconductors raises an O pπ

band to the Fermi level when holes are doped into the system,
hence that the carriers responsible for superconductivity in
the cuprates are holes in a full pπ band rather than in a
half-filled d-pσ band as generally assumed. In a band close to
full and in the presence of strong orbital relaxation the theory
of hole superconductivity predicts that high-temperature su-
perconductivity results with many characteristic features seen
in the high-Tc cuprates.

To conclude we point out that a strong argument in favor of
our point of view is that if it is correct for the cuprates it is likely
to also explain the high-temperature superconductivity of
several other materials, such as MgB2 [59], iron pnictides, and
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dichalcogenides [60] and explain the reason for why all high-
temperature superconducting materials appear to have negative
ions [61,62], an observation also made by Overhauser [63]. It
also suggests an explanation for why elements under high
pressure are superconducting [64] for the fact that electron-

doped cuprates have hole carriers in the regime where they
become superconducting [65] and for the pervasive presence
of hole carriers in superconducting materials ranging from the
elements [66] to A15 compounds [67] to MgB2 [68] to high-Tc

cuprates.
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