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We study theoretically planar interfaces between two domains of superfluid 3He-B. The structure of the B-B
walls is determined on the scale of the superfluid condensation energy, and thus the domain walls have thickness
on the order of the Ginzburg-Landau coherence length ξGL. We study the stability and decay schemes of five
inequivalent structures of such domain walls using a one-dimensional Ginzburg-Landau simulation. We find that
only one of the structures is stable against small perturbations. We also argue that B-B interfaces could result from
the adiabatic A → B transition and study textures at B-B interfaces. The B-B interface has a strong orienting
effect on the spin-orbit rotation axis n̂ producing textures similar to those caused by external walls. We study
the B-B interface in a parallel-plate geometry and find that the conservation of spin current sets an essential
condition on the structure. The stable B-B interface gives rise to half-quantum circulation. The energies of bound
quasiparticle excitations are studied in a simple model.
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I. INTRODUCTION

The internal interfaces of superfluid 3He can be divided
into soft and hard ones. Soft interfaces have energy density
on the order of the dipole-dipole interaction, and the interface
thickness is on the order of dipole length ξD ∼ 10 μm. Hard
interfaces have higher energy density, which is on the order of
the superfluid condensation energy, and the interface thickness
is much smaller, on the order of the Ginzburg-Landau (GL)
coherence length ξGL ∼ 10 nm. The soft interfaces are also
known as solitons [1]. The solitons are mostly studied in
the A phase (see Ref. [2] for example). In B phase there
is evidence of the so-called θ solitons in the bulk [3] and
different types of solitons occur in restricted geometry [4].
Of the hard interfaces, the best known case is the interface
between the A and B phases [5,6]. In the A phase hard interfaces
have been theoretically discussed in restricted geometry [7].
Hard interfaces in the B phase were discussed theoretically
by Salomaa and Volovik [8] who called them “cosmiclike”
domain walls. There is renewed interest in these because of
two measurements that could be interpreted as evidence of
B-B interfaces. In the first one, a phase shift of π was observed
for a superfluid loop including a weak link [9]. In the second,
anomalously high damping of a vibrating-wire resonator was
observed [10]. Narrow stripes of B-B interfaces are known
to exist in the double-core vortex [11] and similar structures
appear in the anisotextural Josephson effect [12].

In this paper we study several properties of hard B-B
interfaces. These defects are nontopological and thus disappear
by a sufficiently large perturbation. Using numerical solution
of the Ginzburg-Landau equations we study the decay modes
of the five structures suggested by Salomaa and Volovik [8].
We find that only one of them is stable against small
perturbations (Sec. IV). We discuss how a B-B interface could
be generated by adiabatic cooling from the A phase (Sec. V).
We study the texture around the B-B interface and find similar
orienting effect to that near the walls of a superfluid 3He
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sample (Sec. VI). The contact line of the B-B interface with
a wall is studied in parallel-plate geometry, and an essential
effect of spin currents on the structure is found (Sec. VII).
This problem is closely related to the striped phase found
in Ref. [13]. The stable B-B interface is found to generate
superfluid circulation of a half-quantum value (Sec. VIII). The
quasiparticle excitations bound to the interface are calculated
using a simple model for the order parameter (Sec. IX).

II. GENERAL PROPERTIES OF DOMAIN WALLS

Let us consider generally an interface between two degen-
erate states. Often the intermediate states between these two
have a higher energy. This energy cost leads to an interface
of finite thickness, which we call a domain wall. The opposite
case is that there is a continuum of degenerate states between
the two states. In this case the interface tends to expand as thick
as allowed by external conditions such as the homogeneity of
the sample or external fields. In order to distinguish this case
from the domain wall, we call it a texture.

The general order parameter of superfluid 3He is a 3 × 3
matrix Aμi [14]. We are interested in the energy scale of the
superfluid condensation energy. On this scale, we can neglect
the much smaller dipole-dipole energy. We also assume there
is no external fields. In this case the order parameter in bulk B
phase has the form [15]

Aμi = �eiφRμi(n̂,θ ). (1)

Here � is a scalar amplitude (real and positive), φ a phase
(real), and Rμi a proper rotation matrix. The rotation matrix
is real valued, orthogonal (RRT = 1), and proper rotations
also satisfy det R = 1. Proper rotations can be parametrized
through rotation axis n̂ and angle θ . Note that also improper
rotations (det R = −1) could have been allowed, but it is more
convenient to parametrize such a possibility by redefining
the phase φ → φ + π . The B phase is degenerate with
respect to the variables φ, n̂, and θ . This degeneracy space
is denoted by R = U (1) × SO(3). Because this degeneracy
space contains no disjoint pieces, there are no topological
domain walls. Formally this is expressed using the homotopy
group π0(R) = 0 (Ref. [16]). This means that hard B-B
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TABLE I. Summary of different interface structures. The first column gives the name of the interface based on the invariants (3). The second
column gives the number of the interface according to Ref. [8]. The following three columns give the invariants φ, ψ⊥, and ψ‖ (2). The sixth
column gives a possible choice for the reduced order parameter Ã on the right-hand side of the interface (5). On the left-hand side Ã equals
the unit matrix in all cases. The HP column gives the elementary symmetry operators that generate the symmetry group of the domain wall
problem. The elementary symmetry operators of converged interface configurations are given in column HS . For notation see the main text.
The column Type describes the different converged solutions. Column σcalc gives the calculated interface free energy for an arbitrarily fixed
L = 140 ξGL calculation interval and σteor refers to the theoretical value as L → ∞. The last column gives the figure showing the converged
order parameter. The first row refers to the bulk B phase, in the absence of any interface.

Name n φ ψ⊥ ψ‖ Ã
R

HP Type HS σcalc/f
B

c ξGL σteor/f
B

c ξGL Fig.

12 0 0 1 2

⎡
⎣+1 0 0

0 +1 0
0 0 +1

⎤
⎦ ∞,m,T

Bulk
(no interface)

∞,m,T 0 0

10 2,3 π −1 0

⎡
⎣+1 0 0

0 −1 0
0 0 +1

⎤
⎦ 2x,my,mz,T ,2o

y Single 2x,my,mz,T ,2o
y 0.9000 0.9000 1(a)

1̄2 1 π 1 −2

⎡
⎣−1 0 0

0 +1 0
0 0 +1

⎤
⎦ ∞x,my,mz,T ,mo

x Mixed T 1.0797 0.9000 2(b)

12 6 0 1 −2

⎡
⎣+1 0 0

0 −1 0
0 0 −1

⎤
⎦ ∞x,my,mz,T ,mo

x

Double
Texture

2x,my,mz,T

∞x,T

1.7998
0.0953

1.8000
0

3(b)
3(c)

10 4,5 0 −1 0

⎡
⎣−1 0 0

0 −1 0
0 0 +1

⎤
⎦ 2x,my,mz,T ,2o

z

Mixed double
Mixed
Texture

my,T

2x,my,mz

mz,T

1.9809
1.1333
0.1878

1.8000
0.9000

0

4(e)
4(d)
4(b)

12 7 π 1 2

⎡
⎣−1 0 0

0 −1 0
0 0 −1

⎤
⎦ ∞x,my,mz,T ,mx

Mixed triple
Mixed 2
Texture

T

T

∞x,my,mz

2.8732
1.0890
0.2349

2.7000
0.9000

0

5(f)
5(g)
5(c)

interfaces are nontopological; i.e., they can be broken by a
sufficiently large perturbation.

In order to look for possible B-B interfaces, we specify
the order parameters on both sides of the interface. Let φL

and RL
μi denote the order parameter on the left-hand side and

φR and RR
μi on the right-hand side. Let us consider some

scalar observable describing the interface, for example the
interface tension σ . Assuming it is a unique function of the
two phases, it is a function of the φL, RL

μi , φR , and RR
μi .

Similarly as in Ref. [12], symmetry allows us to simplify this
dependence: there is invariance to global phase shifts, to global
spin rotations, and to rotations around the axis x perpendicular
to the interface. Therefore, σ can only depend on three scalar
invariants

φ = φR − φL, ψ⊥ = RL
μxR

R
μx, (2)

ψ‖ = RL
μyR

R
μy + RL

μzR
R
μz,

where we have assumed summation over the repeated index
μ. Alternatively, σ can only depend on two numbers

a = eiφψ⊥ = ei(φR−φL)RL
μxR

R
μx,

b = eiφψ‖ = ei(φR−φL)
(
RL

μyR
R
μy + RL

μzR
R
μz

)
,

(3)

which are complex valued in general.
Only certain values of a and b (3) can lead to stable

interfaces. Values of a and b with a finite imaginary part would
lead to mass current through the interface. Such structures
could be stabilized by an external mass-current bias, but
otherwise they would relax to currentless states. A similar

conclusion applies to most real values of a and b: these give rise
to spin current through the interface and the resulting structure
would be unstable in the absence of external spin-current bias.
The spin current through the interface can vanish only for
certain symmetric cases corresponding to a = ±1 and b = 0,
±2. The resulting six cases are listed in Table I. The interfaces
are labeled by ab, where a minus sign of a or b is indicated by
a bar over the number. For example, 12 implies a = −1 and
b = 2.

For comparison, Salomaa and Volovik [8] studied numeri-
cally 7 types of B-B interfaces. Only five of them are different
so that they have different invariants φ, ψ⊥, and ψ‖ (2). The
two extra ones are duplicates that can be obtained by a rotation
around the interface normal. The numbering of the structures
according to Ref. [8] is given in the second column of Table I.

In order to represent the order parameter components, we
define a reduced order parameter Ãij by the relation

Aμj (r) = AL
μiÃij (r). (4)

This implies that on the left-hand side Ãij (r) reduces to a unit
matrix, ÃL

ij = δij . On the right-hand side Ãij (r) reduces to the
matrix

ÃR
ij = 1

�2
AL∗

μi A
R
μj = ei(φR−φL)RL

μiR
R
μj , (5)

which is closely related to the invariants φ, ψ⊥, and ψ‖ (2).
In the following we assume that the interface is homo-

geneous in its plane. This means that the order parameter
Ãμi(x) only depends on the coordinate x perpendicular
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to the interface. The interface problem has also additional
symmetries, which may be helpful to understand the results
obtained below. The different symmetries of both the problem
(the energy functional and boundary conditions) and the
solutions (the order parameter) are given in Table I using the
following notation. Twofold and continuous rotation symmetry
are denoted by 2 and ∞, respectively, and reflection is
denoted by m. The subscripts indicate the axis to which
each symmetry refers. In the bulk (first row of Table I) the
rotation and reflection symmetries are valid along any axis.
Time inversion is denoted by T . Generally the reflections and
rotations refer to simultaneous operations in both spin and
orbit spaces. However, there are also symmetry operations
that refer to orbit space only, and these are denoted with
superscript o. For example, mo

x means the symmetry operation
Aμi(x) = eic2Aμj (−x + c1)Sx

ji , where Sx
ji is a diagonal matrix

with elements −1, 1, and 1 and c1 and c2 are some constants
depending on the choice of coordinate axes and phases.
The column HP of Table I lists some elementary symmetry
operations of the interface problem in each case. The complete
symmetry group of the problem consists of all combinations of
the elementary symmetry operations. The interface solutions
Aμi(x) have either the same symmetry or lower symmetry, the
latter case being known as broken symmetry. The elementary
symmetry operations, out of which the whole symmetry group
of each solution can be constructed, are given in column HS .

III. GINZBURG-LANDAU CALCULATION

The interface structures are calculated using Ginzburg-
Landau (GL) theory. This is valid in the temperature region
Tc − T � Tc near the critical temperature Tc of superfluid
3He. The free energy functional F = Fb + Fg consists of the
bulk

Fb =
∫

d3r
{
f B

c − αTr(AA†) + β1|Tr(AAT )|2

+ β2[Tr(AA†)]2 + β3Tr(AAT A∗A†)

+ β4Tr(AA†AA†) + β5Tr(AA†A∗AT )
}

(6)

and gradient energies

Fg = K

∫
d3r[(γ − 1)∂iA

∗
μi∂jAμj + ∂iA

∗
μj∂iAμj ]. (7)

The GL theory has the input parameters α,βi,K, and γ . Our
numerical results depend on only the value of γ and the relative
values of βi . For the stability studies we mainly use the weak-
coupling values (γ = 3, −2β1 = β2 = β3 = β4 = −β5), but
we also use the Sauls-Serene βi’s for some tests [17]. These
tests support the conclusion that our stability results remain
approximately unchanged within the stability region of the B
phase. When quoting pressure, it is according to the theoretical
scale of Ref. [17], where the polycritical pressure (2.85 MPa) is
somewhat larger than the measured one. We take zero pressure
to correspond to weak coupling values of βi’s, and use linear
interpolation between 0 and 1.2 MPa.

The GL theory fixes the amplitude of the order parameter
in Eq. (1) to the value

�2 = α

6β12 + 2β345
, (8)

where βij = βi + βj , etc. The GL coherence length is defined
by ξ 2

GL = K/α. The superfluid condensation energy density
of the B phase is f B

c = 3
2α�2. This energy is added in Fb (6)

implying that the energy of the bulk B phase is adjusted to the
zero. With this operation the energy F measures the deviation
from the bulk phase. As the interface is assumed homogeneous,
the interface free energy equals the tension

σ = F

A
, (9)

where A is the area of the interface. Thus only one-dimensional
integration is needed in Eqs. (6) and (7). It is convenient to
express σ in units of f B

c ξGL. Note that this unit is by factor
3/2 larger than the one used in Ref. [8].

The minimization F in one dimension leads to the differ-
ential equations

0 = ∂x∂x[Aμi + (γ − 1)Aμiδix]

− (−αAμi + 2β1A
∗
μiA

∗
νjAνj + 2β2AμiA

∗
νjAνj

+ 2β3A
∗
νiAμjAνj + 2β4AνiA

∗
νjAμj

+ 2β5AνiAνjA
∗
μj ) (10)

for all indices μ and i. At the end points x = 0 and x = L

we fixed the values of Aμi . Alternatively, a zero-derivative
boundary condition could be applied. If the resulting interface
structure is a single domain wall, the solution is independent
of the length L and of the type of the boundary condition
as long as L � 20 ξGL. If it splits into two or more domain
walls, a longer L is needed. However, if the result is a texture,
it will depend essentially on the boundary condition even in
the limit L → ∞. Below we give the interface structures and
energies for L = 140 ξGL with fixed values of Aμi at both ends.
Discretization length �x = 1 ξGL was used in the presented
stability results but the energies in Table I were calculated by
using �x = 0.25 ξGL.

As initial values we used simple forms of Ãij (x) consistent
with the problem symmetries. The boundary value problem
was solved iteratively using a simple relaxation method [11].
The iteration proceeds towards lower energy assuming the
iteration step is kept small. The development under iteration
can be considered qualitatively equal to time evolution. The
iteration was continued as long as a converged solution was
found. The stability of the converged solutions was tested by
adding a perturbation δÃij (x) to Ãij (x) and continuing the
iteration. The perturbations had the form

δÃij (x) =
N∑

k=0

C
(k)
ij

cosh[(x − xk)/s]
(11)

with parameters C
(k)
ij , xk , N , and s. The strength of a

perturbation C is defined as the largest deviation from the
unperturbed configuration,

C = max
x∈[0,L]
i,j

δÃij (x). (12)

The parameter s measuring the width of the perturbation
has typically a value of 5 ξGL; the shifting constants xk and
the number N of simultaneous perturbation peaks are case
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dependent. Typically 10 to 30 different perturbations were
tested.

In the case in which the solution was found stable
against small perturbations, we tested larger perturbations. An
activation barrier can be determined by looking for the smallest
energy perturbation that is sufficient to initiate convergence to
a different type of solution. Note however that this activation
energy is one-dimensional (unit J/m2), whereas the true decay
takes place in three dimensions.

IV. STABILITY AND DECAY SCHEMES

The following five subsections give the stability and decay
schemes of the domain walls, starting from the simplest case
and proceeding to more complicated cases. The results are
summarized in Table I.

A. B-B-10

An example order parameter for a converged solution of
interface 10 is shown in Fig. 1(a). This solution shows a well-
defined domain wall, and is similar to that found earlier [8].
It is characterized by a sign change in the component Ãyy .
The only other nonzero components are Ãxx and Ãzz. They
are almost constants, but are slightly enhanced at the domain
wall. It can be noticed that there is a small difference between
Ãxx and Ãzz at the domain wall. This is a consequence of the
gradient energy (7), which is γ ≈ 3 times more costly for Ãix

(i = x,y,z) than for the other components Ãiy and Ãiz.
The vanishing of Ãμy at the domain wall implies a gap

node in the y direction. The quasiparticle excitations are
studied in more detail in Sec. IX. Note that the gap node
is in the plane of the domain wall. Thus a continuous set of
degenerate domain walls can be formed by rotation around
the interface normal. These include the interfaces 2 and
3 of Ref. [8]. The interface free energy σ is 0.90 f B

c ξGL

in the weak coupling but decreases to 0.83 f B
c ξGL at the

pressure of 28 bars. The presence of the domain wall changes
the magnetic-susceptibility tensor of the B phase by an
additional contribution χμν = gz�

2ξGLRL
μiχ̃ijR

L
νj . For B-B-10

the reduced susceptibility is diagonal and has components

χ̃xx = −1.03, χ̃yy = +4.08, χ̃zz = −1.02. (13)

The interface has spin current Jμi = RμνJ̃νi , where

J̃zy = 2K�2

�

∫
dx(Ãyy∂xÃxx − Ãxx∂xÃyy)

= 1.127 × 4K�2/� (14)

and all other components of J̃νi vanish. Independently of the
chosen coordinates, the spin current tensor can be written
as J = cRû t̂ , where û = ŝ × t̂ , ŝ is the interface normal
pointing towards the B phase (1) of proper rotation matrix
R, t̂ is the direction of the interface gap node, and c =
−1.127 × 4K�2/�. The spin current arises from the filled
states below the Fermi energy as pointed out by Salomaa and
Volovik [8] and is further discussed in Sec. IX.

The domain wall structure has been calculated also by
Vorontsov and Sauls using the weak-coupling quasiclassical
theory [18]. This theory is not limited in temperature, and
thus allows us to generalize the present GL calculations to the
whole temperature range 0 � T < Tc.

Our numerical calculations indicate that B-B-10 is a local
minimum of the free energy; i.e., after small perturbations
the same converged solution was reached. Only a strong
perturbation of amplitude C � 0.7 leads to a different solution.
We looked for the smallest energy perturbation that leads
the iteration away from the original solution. The critical
perturbation energy is roughly 8.7 f B

c ξGL and corresponds to
s = 3.5 ξGL (11) in the weak coupling. The critical perturbation
energy increases with increasing pressure and is 10.7f B

c ξGL

at 28 bars. The optimal amplitude C and the width of
the perturbation s stay unchanged. As the interface energy
simultaneously decreases, this indicates higher stability of
the B-B-10 interface at high pressures, at least within the
one-dimensional approximation.

One possible converged solution that results from a large
perturbation is shown in Fig. 1(b). It also has an analytic
description

Ãij (x) = eiπx/LRij ( ŷ, − πx/L), (15)

where, as above, Rij is a rotation matrix parametrized by an
axis and a rotation angle. This is a texture that has winding both
in phase and in spin-orbit rotation. Its symmetry differs from
the initial interface structure; in particular, the time-reversal

FIG. 1. Two solutions for the order parameter in the B-B-10 interface. The domain wall (a) is locally stable and decays to a texture
(b) only as a result of a large perturbation. Note that the texture solution is independent of where the initial interface is located in the interval
0 < x < 140 ξGL. In this and the following figures, all nonvanishing real and imaginary parts of Ãij are plotted.
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FIG. 2. Two solutions for B-B-12. The single domain wall (a) corresponds to a saddle point of energy and decays to a mixed domain wall
(b). Note the different scales of x in the panels. The domain wall (a) is wider than the one in Fig. 1(a). In the middle of the mixed solution (b)
one recognizes the B-B-10 domain wall in the abrupt change of Ãxy .

symmetry is broken. As could be guessed, this state is most
easily generated by imaginary perturbations in the amplitudes
Ãxz, Ãzx , and Ãyy , centered at the domain wall. As this solution
has broken symmetry, there exist other texture states with
the same energy, which can be reached by a different type
of perturbation. In contrast to the domain wall, the texture
solution (15) expands as long as allowed by the size L of
the calculation region. The texture solution is stabilized by
requiring fixed values of Ãij at the ends. If zero-derivative
boundary conditions would have been used, all variation would
move out of the calculation interval during the iteration, and
the converged result would be a constant order parameter.

B. B-B-12

The first converged solution of the 12 interface is shown in
Fig. 2(a). The domain wall is characterized by a sign change
in the component Ãxx while Ãyy and Ãzz are equal and nearly
constants. The domain wall is thicker than the 10 domain wall
[in Fig. 1(a)], which can be understood by the anisotropy of
the gradient energy (7) discussed above. The same effect at
a general temperature is discussed in Ref. [18]. The interface
free energy σ is 1.5403 f B

c ξGL, which is higher than for the
B-B-10 domain wall.

This domain wall is closely related to the structure at a
planar wall. Namely if one requires vanishing of Ãxx and
zero normal derivative of Ãyy and Ãzz at the wall, the order
parameter is the same as in Fig. 2(a) on one side of the interface.
This boundary condition indeed is valid if the quasiparticles
hitting the wall are reflected specularly [19]. This ideal case has
been calculated repeatedly since the early work of Buchholtz
and Zwicknagl [20].

In contrast to the domain wall B-B-10, we find that the
domain wall 12 is a saddle point of energy. A perturbation
as small as C = 10−40 is sufficient to cause convergence to
another solution. The essential thing is that there is a symmetry
in the original solution, which has to be broken in order to
achieve lower energy. One converged solution is shown in
Fig. 2(b) and it can be represented as

Ãij (x) = Rik( ẑ, − πx/L)Ã1(a)
kj (x − c), (16)

where matrix Ã
1(a)
kj (x) is the B-B-10 order parameter shown

in Fig. 1(a) and c is a constant. This is a mixed solution
of the texture characterized by smooth rotation around the
z axis and the B-B-10 domain wall in the middle. This
corresponds to broken symmetry; in particular the continuous
rotational symmetry of the domain wall is broken. There is
large degeneracy of this state, and the particular state selected
depends on the perturbation given to the domain wall solution.

After a strong perturbation C � 0.6, the single interface
can deform to pure texture similar to the texture of the B-B-10
[Eq. (15) and Fig. 1(b)]; only the rotation axis is changed
from ŷ to x̂. The perturbations leading to this solution can be
designed analogously to the case of B-B-10.

C. B-B-12

The 12 interface is characterized by a sign change in two
components Ãyy and Ãzz. The first converged solution, a
single interface with Ãyy ≡ Ãzz, is shown in Fig. 3(a). The
component Ãxx is nearly constant but has enhancement which
is approximately twice as large as in B-B-10. A question of
independent interfaces emerges: Is B-B-12 a unique domain
wall or a superposition of two B-B-10 domain walls. We find
two different modes by which the single interface structure
can decay by a low-energy perturbation. With larger activation
energies (on the scale of f B

c ξGL) also other decay modes are
possible, but are omitted here.

A small perturbation to either Ãyy or Ãzz leads to the
separation of the two B-B-10 domain walls. The minimum
amplitude of the perturbation is C ≈ 10−5. The solution
consists of two successive B-B-10 domain walls, shown in
Fig. 3(b). The double interface should be stable by the stability
arguments of the B-B-10. With this mode in mind we could
interpret B-B-12 as a double interface.

The other decay mode leads to the pure texture solution
shown in Fig. 3(d) and analytically written as

Ãij (x) = Rij (x̂, − πx/L). (17)

The perturbation needed to break the single interface to
this texture solution is extremely small, minimum amplitude
C � 10−40, but the shape must be at least somehow faithful
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FIG. 3. Three solutions for B-B-12. The single interface (a) decays by minimal perturbation to either a double interface (b) or to a texture
(c). The single interface (a) could be interpreted as two coincident B-B-10 interfaces, one shown in Fig. 1(a) and the other is a rotated version
of it. In the double interface (b) they are separated from each other.

to the final solution. The comparison between the minimum
amplitudes between the different decay modes reveals that
B-B-12 is more likely to disintegrate to a texture solution than
to exist as a stable double-interface structure.

D. B-B-10

The 10 interface is characterized by sign changes in the
components Ãxx and Ãyy . The iteration first seems to converge
towards the single domain wall shown in Fig. 4(a). One can
notice the difference in the slopes of Ãxx and Ãyy , which can be
understood by the anisotropy of the gradient energy discussed
above. Also the enhancement of the idle component Ãzz in the
middle is stronger than in the previous analogous structures
shown in the (a) panels of Figs. 1–3. A question about the
independent interfaces can be posed similarly to the case of
B-B-12. Now the constituents would be the domain walls 10
and 12. The single interface is a saddle point of energy, and
we discuss three distinct decay modes below.

Even without any perturbation, the single domain wall
disintegrates in further iteration to a double domain wall
consisting of 10 and 12 parts; see Fig. 4(c). Due to repulsive
interaction, the distance between the parts grows but stops
at ≈26 ξGL, where their overlap becomes negligible. The 10
domain wall is locally stable and remains unchanged. The 12
domain wall deforms further to a mixture of a texture and a
10 domain wall, as was discussed in connection of Eq. (16).
Then there are two built-in 10 domain walls and a texture in

the same B-B-10 interface, shown in Fig. 4(e). The energy of
the solution (Table I) is the sum of energies of its constituents
12 and 10. The analytic description can be written as

Ãij (x) = Rik( ŷ,πx/L)Ã1(a)
kl (x − c1)Ã′1(a)

lj (x − c2), (18)

where Ã
1(a)
kl is the reduced order parameter of the 10 domain

wall in Fig. 1(a), Ã′1(a)
lj is the rotated version of this, and ci’s

are constants.
The other decay mode of the single domain wall is to a

mixed solution of a texture having phase winding and a 10
domain wall [Fig. 4(d)]. The analytic description is

Ãij (x) = eiπx/LÃ′1(a)
ij (x − c) . (19)

The perturbation needed to trigger the deformation toward this
solution is mid-strength, amplitude C � 0.1, and the shape
must be designed for the form (19).

The third decay mode of the single domain wall is to a pure
texture, shown in Fig. 4(b). The perturbation has to have a
shape faithful to the solution and the minimum amplitude C ≈
10−4. Analytically this texture is similar to the pure texture
solution of B-B-12 (17), except that the rotation axis is now ẑ
instead of x̂.

E. B-B-12

The 12 interface is characterized by a sign change of
all diagonal components of the order parameter Ãij . The
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FIG. 4. Solutions for B-B-10. The single interface (a) is a saddle point of energy and decays to a double domain wall (c) of 10 and 12.
By decay of 12 this further deforms to a mixed double interface (e). A perturbation at the single-domain-wall stage can also lead to a mixed
solution (d) or to a texture (b).

B-B-12 could also be called a pure phase wall. First the iteration
converges toward a single domain wall, shown in Fig. 5(a).
With further iteration this splits spontaneously to a double
domain wall, shown in Fig. 5(b) and also found in Ref. [8].
We find that this structure deforms further with a very small
activation energy.

The double domain wall consists of 12 and 12 parts. As they
are ≈26 ξGL apart, they can decay independently of each other.
The B-B-12 can disintegrate to a double domain wall [Fig. 3(b)]
producing a triple domain wall [Fig. 5(d)]. Alternatively it
can reduce to a pure texture [Fig. 3(c)] producing the mixed
1 configuration shown in Fig. 5(e). Both of these are still
intermediate states as the 12 part disintegrates in response
to a minimal perturbation. The triple domain wall deforms

to a structure which has three successive 10 domain walls
and a background texture [Fig. 5(f)]. As a combination of
three mutually repulsive domain walls, this structure should be
metastable. Similar decay in the mixed 1 structure produces
the mixed state 2 shown in Fig. 5(g). This is similar to the
mixed 1 solution except that the domain wall in the middle is
of type 10 instead of type 12. The mixed 2 configuration is
similar as found in the double-core vortex on the axis passing
between the two cores [11]. The mixed 2 is also obtained
directly from the single domain wall as a result of a properly
designed perturbation with minimum amplitude C ≈ 10−15.

An alternative decay channel of the single domain wall
is to a pure phase texture [Fig. 5(c)]. This is produced by
an imaginary perturbation to diagonal elements of the Ãij at
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FIG. 5. Solutions for the B-B-12. The single domain wall (a) disintegrates spontaneously to a double one (b), which decays either to a triple
domain wall (d) or to a mixed 1 state (e). With minimal perturbation the latter two can turn to a mixed triple interface (f) and a mixed 2 interface
(g), respectively. The single domain wall can also decay directly to a phase texture (c). The structures (b) and (d)–(g) are combinations of the
structures introduced in Figs. 1–4.
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FIG. 6. A → B phase transition scenario. The panel (a) shows
the A phase sandwiched between two independent B-phase patches.
In panel (b) the B-phase patches have joined forming a B-B domain
wall. Also shown are the tension forces and the contact angle at the
point where the B-B domain wall terminates to the A-B interface.

minimum amplitude C � 10−4. The analytic form of the phase
texture is

Ãij (x) = eiπx/Lδij . (20)

V. ADIABATIC A TO B TRANSITION

In this section we sketch how a hard B-B domain wall
could be created in an adiabatic A → B transition. For that
we consider a cell of 3He initially in the A phase. Suppose
that upon cooling the B phase has independently nucleated at
different locations of the cell, and upon further cooling the
patches of the B phase expand adiabatically. In this process
one finds a shrinking A phase region sandwiched between two
independent B phases. The situation is depicted in Fig. 6(a).
We now construct the most general order parameter along the
x axis, which goes through both A-B interfaces.

We define the reduced order parameter (4) using the order
parameter on the left B phase, AL

ij . As above, this means
that ÃL

ij is equal to the unit matrix. The requirement of a
minimum interface energy in the left B-A interface together
with a specific choice for the direction of the y axis determines

that the reduced order parameter in the A phase has to be

Ã
M = �̃A

⎛
⎝1 0 i

0 0 0
0 0 0

⎞
⎠ (21)

with �̃A ∼ 1. The reason for this is that the anisotropy of the
gradient energy (7) dictates that the component Ãxx(x) should
change as little as possible and thus Ãxx ∼ 1. The structure
of the A phase then requires an imaginary Ãxy or Ãxz (or
combination), and Eq. (21) follows by an appropriate rotation
of y and z axes. These boundary conditions on the A-B interface
coincide with those in Refs. [6] and [21]. Next we apply the
same principles to the A-B interface on the right. Since the axes
are now fixed, one should allow an arbitrary rotation around
x. Moreover, also improper rotations are possible. Instead of
explicitly using improper rotations, we represent them with an
additional phase factor as in Eq. (1). Thus we write the two
alternative classes of solutions as

ÃR
ij =

{
Rij (x̂,θ ), case 1,

eiπRik( ŷ,π )Rkj (x̂,θ ), case 2.
(22)

In both cases θ can have any value.
With further cooling the sandwiched A phase tends to vanish

completely. Assuming that this also takes place adiabatically,
we can predict the outcome. The result, which is explained in
more detail below, is that no B-B domain wall is expected to
form in case 1 of Eq. (22) while a B-B domain wall is always
formed in case 2. For independently nucleated B phases the
two cases are equally probable. Thus we expect creation of a
B-B domain wall with the probability of one-half.

We have studied the formation of domain walls using the
same 1D numerical relaxation as in the stability studies. In case
1 the formation of a B-B domain wall is possible only when
the rotation angle θ is in the region π ± ε, where ε/π � 1. If
the order parameter does not meet this constraint, a B-phase
texture is formed instead of any domain wall, as shown in
Fig. 7. Without a method to control the angle θ , the probability
of a B-B domain wall formation in case 1 is nearly zero. In
case 2 the evolution always ends with a B-B domain wall. The
evolution in the latter case is demonstrated in the Fig. 8.

The domain wall, when created, is in contact with the A-B
interface. At the contact line the tensions of the interfaces

FIG. 7. The evolution of B-A-B structure in case 1. (a) An initial order parameter configuration in coexistence conditions of A and B phases
in case 1 of (22) and (b) the final B-phase texture without domain walls.
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FIG. 8. The evolution of B-A-B structure in case 2. (a) An initial order parameter configuration in coexistence conditions of A and B phases
in case 2 of (22) and (b) the final B phase with a B-B-10 domain wall.

must balance. Defining the a contact angle η as indicated in
Fig. 6(b), one gets cos η = σBB/2σAB , where σBB and σAB

are the tensions of the B-B domain wall and the A-B interface,
respectively. We have calculated the tensions (9) numerically
using the GL theory, which then allows us to obtain η. When
magnetic field is applied, the A-B interface can be stabilized in
the validity range of the GL theory at all pressures below the
polycritical pressure. Therefore, we can determine the contact
angle as a function of pressure, η(p). The results are given in
Table II.

In the weak-coupling limit all the intermediate states
in the A-B interface and the B-B-10 domain wall become
degenerate [6,22]. Thus both turn from well-defined domain
walls to textures, and their tensions vanish. Based on our cal-
culation σBB vanishes more rapidly than σAB , and therefore η

approaches 90◦ in the weak-coupling limit (which corresponds
to zero pressure on our scale).

VI. DIPOLE-DIPOLE INTERACTION ENERGY
IN THE DOMAIN WALL

Until now we have studied the interfaces on the
condensation-energy scale. This sets conditions on the the
reduced order parameter Ãij (r), but it leaves the full order
parameter (4) undetermined by a rotation matrix Rij (n̂,θ ). In
order to constrain these soft degrees of freedom, we have to
look at weaker contributions to the energy. In particular, we
consider the dipole-dipole energy

FD = gD

∫
d3r

(
A∗

iiAjj + A∗
ijAji − 2

3
A∗

ijAij

)
. (23)

TABLE II. The contact angle η between A-B interface and B-B-10
domain wall calculated using Ginzburg-Landau theory. At pressures
lower than the polycritical one the coexistence of A and B phases is
achieved by applying a magnetic field. For details of the theoretical
pressure scale see Sec. III.

Pressure (bar) 0.5 1 3 6 12 16 24 PCP

Contact angle η 89◦ 80◦ 77◦ 74◦ 70◦ 68◦ 65◦ 63◦

Because gD is small compared to α (except at temperatures
very close to Tc), the dipole-dipole energy in a domain wall
itself is negligible, but it is important in the bulk on both
sides of the the domain wall. On the left-hand side the
order parameter Aμi = �eiφRμi(n̂,θ ). The minimization of
the dipole energy (23) for this order parameter leads to locking
of the rotation angle θ to θL = arccos(−1/4) ≈ 104◦. This sets
no constraints on the rotation axis n̂. On the right-hand side
of the domain wall, the dipole energy should be minimized by
the order parameter Aμi = �eiφRμj (n̂,θL)ÃR

ji . This leads to
additional conditions if ÃR

ji (see Table I) is not proportional to
the unit matrix.

We concentrate on the most stable domain wall B-B-10
represented in Fig. 1(a). The minimization gives on the rotation
axis n̂ = (n̂x,n̂y,n̂z) the constraint

n̂y = ±
√

3

5
, (24)

or n̂2
x + n̂2

z = 2/5. Considering the minimization of the dipole
energy on the (n̂,θ ) ball [16], the first minimization reduces
the full π radius ball to a θL radius sphere and the second
minimization reduces further the sphere to two

√
2/5 radius

circles perpendicular to the y axis, midpoints lying on the y

axis at the distance
√

3/5 from origin. As the y axis is in the

(b)(a)

L
A

R

B C

x

y

FIG. 9. (Color online) (a) A B-B-10 interface having contact lines
with two sample walls. The figure shows a 2D projection, where
the contact lines appear as points A and B. The arrows indicate
spin flow (J̃zx,J̃zy) in the x-y plane. The thick arrows show spin
currents in the domain wall and on the surfaces. The curved arrows
depict spin current in the bulk that is necessary to satisfy spin
current conservation. (b) The domain wall in a container topologically
equivalent to a torus and a topologically nontrivial closed path passing
through points L, R, and C.
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plane of the domain wall, the component of n̂ on the wall
normal is always less than or equal to

√
2/5.

The constraint for n̂ is very strong compared to other
orienting effects that act on n̂ inside the superfluid. Similar n̂
textures are previously known to occur only near boundaries,
such as the container wall or the free liquid surface [23]. These
n̂ textures should be observable in NMR experiments if the
effect from nearby walls could be suppressed and the relative
volume of the metastable B-B domain wall is sufficiently large.

VII. DOMAIN WALL IN CONTACT WITH SURFACES

Consider superfluid 3He limited by two planar walls at
y = 0 and y = Ly . In such a geometry a B-B-10 interface
can be locally stable stretching from one wall to the other,

and has contact lines with both walls; see Fig. 9(a). We have
studied this situation by solving numerically the GL equations
in two dimensions. At the walls we use the boundary condition
that all components of the order parameter vanish. This
approximately mimics real surfaces where quasiparticles are
scattered diffusely. We have studied the range of Ly/ξGL from
20 to 130. We neglect the effect of dipole-dipole interaction,
which should be a good approximation at length scales smaller
than the dipole length ξD ∼ 10 μm.

One question of interest is to determine the orientation of
the interface gap node with respect to the walls. We find the
lowest energy when the gap-node direction is perpendicular to
the wall. The order parameter corresponding to this solution is
shown in Fig. 10.

FIG. 10. The order parameter of minimum energy B-B-10 interface stretching between two solid walls. The sample walls are at y = 0 and
y = Ly = 50ξGL. Only nonvanishing components of the order parameter are shown. The panel at bottom right shows Ãxy and Ãyz plotted along
the x axis at y = 4ξGL.
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A striking feature of the order parameter is the appearance
of 5 real nonzero components. For both the state on a wall
and the B-B-10 interface, only the diagonal components are
present. The appearance of the extra components Ãxy and
Ãyz can be understood by studying spin currents. The spin
current in the interface was studied above in connection with
Eq. (14). The surface state also has spin current [24]. It is
given by the tensor Jsurf = csurfR(û t̂ − t̂ û). Here û = ŝ × t̂ ,
ŝ is the surface normal pointing to the superfluid, t̂ an arbitrary
unit vector perpendicular to ŝ, and csurf = 0.238 × 4K�2/�.
Applying these to the case of Fig. 10 gives that J̃zi in the
interface as well as in the surface states on both sides of
a contact line are all towards one contact line and away
from the other [Fig. 9(a)]. Since the spin current has to be
conserved (assuming negligible the dipole-dipole interaction),
there has to be compensating spin currents around the interface.
The components Ãxy and Ãyz appear just to generate this
compensating spin current so that the conservation law
∂xJ̃zx + ∂yJ̃zy = 0 holds.

The structure in Fig. 10 is closely related to the striped
phase discovered by Vorontsov and Sauls [13]. They studied
the parallel plate geometry of thickness on the order of the
coherence length using specular boundary condition. They
found that a periodic B-B-10 interface structure can be the
ground state of the system. Similarly as above, the appearance
of the azx component in Ref. [13] is caused by spin current
conservation.

The interface structure in Fig. 10 could be compared to the
one where the gap node is in the z direction. This structure has
no bulk spin currents since in the interface only J̃yz is nonzero
and J̃zx in the surface state is in the same direction on both
sides of a contact line. The reason for the higher energy of this
state is the larger energy associated with the contact line: the
gradient energy associated with ∂yÃyy in this state is by factor 3
more costly than the one with ∂yÃzz in the structure of Fig. 10.

VIII. QUANTIZATION OF CIRCULATION

Evidence of π shift of circulation in superfluid 3He-B was
found in the experiment of Ref. [9]. The purpose of this section
is to show that a B-B-10 domain wall in the flow path can
give rise to this observation. Moreover, as B-B-10 is the only
locally stable structure that can do this, we reach a unique
identification of B-B-10 in this experiment. The π shift of
circulation appears for interfaces having φ = π ; see Table I.
For completeness, we go through the argument in more detail
below.

Let us consider a closed path in superfluid 3He-B. Assuming
the order parameter has the bulk form (1) everywhere on the
path, the phase change �φ = ∮ ∇φ · d r on traversing the
path has to be 2πn with integer n. This is commonly
expressed by saying that the circulation is quantized to integer
values.

Let us study the B phase in a container that is topologically
equivalent to a torus; see Fig. 9(b). Consider a topologically
nontrivial path that circles the torus once. The minimal object
that can lead to deviation from the integer quantization rule is
a hard domain wall so that the path passes through it once. On
the path outside of the domain wall (from L to R via C), the

order parameter on the left-hand side of the domain wall has
to change smoothly to the one on the right-hand side keeping
the bulk form (1). This leads to the condition

ei�φÃ
R = R, (25)

where R is a proper rotation matrix. For B-B-10 we have

Ã
R = diag(1, − 1,1) (Table I). Since R is real and det R = 1,

it follows from (25) that �φ = π + 2πn with integer n. Thus
for the locally stable interface B-B-10 there is a π shift in
the quantization, which allows half-quantum circulation. The
same quantization rule applies also to interfaces of types 12
and 12, but these are not locally stable structures.

IX. BOUND QUASIPARTICLE STATES

The quasiparticle excitation spectrum can be studied either
by solving Bogoliubov–de Gennes equations or by Green’s
function methods. Calculations close to the present case are
reported in Refs. [25–31]. Similarly to earlier work, we find
bound states below the gap energy. These Andreev bound
states can be interpreted to consist of a superposition of a
particle-like and a hole-like excitations that have nearly the
same momentum but travel in opposite directions. The bound
state has no net mass because the hole and particle masses are
opposite. The bound states transport mass, but in equilibrium
the net current vanishes in a B-B-10 interface. In spin-triplet
superfluids the bound states have no spin as the spins of the
particle and hole parts are opposite. The bound states transport
spin in spin-triplet superfluids.

A precise calculation of the bound states requires numerical
methods. Instead, we can get a qualitative picture using the
following model for B-B-10. We assume that Ãyy has a steplike
change from 1 to −1 at the domain wall and other components
stay constants, Ãxx = Ãzz = 1. We find quasiparticle states
with energy

E = ∓�

√
p̂2

x + p̂2
z sgn(p̂y). (26)

Here p̂ is the direction of the momentum of the excitation. The
upper sign is for excitations that transport spin-up particles and
the lower sign for spin-down transport. The energy vanishes in
the gap-node direction p̂ ‖ ŷ. Excitations with negative energy
can be interpreted to be filled in the ground state. In B-B-10
these give rise to the spin current discussed in Secs. IV and VII.

X. CONCLUSION

We have made stability analysis of different candidate
structures of hard B-B interfaces. It is found that only one
of these, B-B-10, is a locally stable structure. We have studied
the properties of this interface and its nucleation in an A → B

transition. The observation of half-quantum circulation in the
experiment of Ref. [9] can be interpreted as the presence
of B-B-10. Evidence of the interface is also presented in
the experiment of Ref. [10]. We suggest that B-B-10 could
also be present in the experiment of Ref. [32]: it could be
stabilized in the high-field measuring region due to a positive
magnetic susceptibility eigenvalue (13), and be responsible for
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the reduction of quasiparticle transmission. What still remains
for future experiments is to localize the defect. This probably
requires measurement of the texture, possibly by NMR, in a
properly designed geometry that can trap the domain wall.
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