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Odd-parity superconductivity from phonon-mediated pairing: Application to CuxBi2Se3
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Motivated by the proposed topological state in CuxBi2Se3, we study the possibility of phonon-mediated
odd-parity superconductivity in spin-orbit coupled systems with time-reversal and inversion symmetry. For such
systems, we show that, in general, pure electron-phonon coupling can never lead to a triplet state with a higher
critical temperature than the leading singlet state. The Coulomb pseudopotential, which is the repulsive part of the
electron-electron interaction and is typically small in weakly correlated systems, is therefore critical to stabilizing
the triplet state. We introduce a chirality quantum number, which identifies the electron-phonon vertex interactions
that are most favorable to the triplet channel as those that conserve chirality. Applying these results to CuxBi2Se3,
we find that a phonon-mediated odd-parity state may be realized in the presence of weak electronic correlations
if the chirality-preserving electron-phonon vertices are much stronger than the chirality-flipping vertices.
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I. INTRODUCTION

The discovery that gapped electronic systems can be
topologically nontrivial has sparked enormous interest [1,2].
While there now exists several clear examples of topological
insulators, such as Bi2Se3 [3] and SnTe [4], the unconventional
gap structure of topological superconductors make these
systems much rarer [5]. Intriguingly, a superconducting state
appears upon doping some topological insulators, most notably
CuxBi2Se3 [6]. Fu and Berg have proposed that this system
realizes a topological superconductor, with a novel odd-parity
(triplet) pairing state [7].

CuxBi2Se3 has subsequently been the subject of intense
study [8–16]. Experiments show a full gap [9,10], and
anomalies in the dc magnetization [11] and an upper critical
field that exceeds the Pauli limit indicate triplet pairing [10].
This interpretation is supported by point-contact spectroscopy
measurements of the expected topologically protected surface
subgap states [12–14], but other experiments find no subgap
structure [15], consistent with nontopological s-wave pairing.
Although the experimental situation in CuxBi2Se3 has not yet
been settled, similar signatures of unconventional supercon-
ductivity have been observed in Sn1−xInxTe [17] and Bi2Se3

under pressure [18]. This raises the tantalizing possibility of an
entire class of topological superconductors obtained by doping
topological insulators.

The origin of a triplet pairing state in any of these doped
semiconductors is mysterious, as they are likely free of the
strong correlations thought to be an essential aspect [19]
of the triplet superconductors UPt3 [20] and Sr2RuO4 [21].
Rather, the electron-phonon interaction is expected to play the
dominant role in the pairing [7,16,17]. This is quite surprising,
however, as it is widely believed that phonon-mediated
pairing generically yields a singlet state [22], although a
definitive proof has been lacking. Furthermore, previous
analyses did not include the strong spin-orbit coupling
characteristic of topological insulators which may favor triplet
pairing [7,17]. As such, they cannot exclude the possibility
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that the electron-phonon interaction indeed stabilizes a triplet
state in these materials.

In this paper we study the fundamental question of
when electron-phonon interactions stabilize a triplet state
and thus evaluate the conditions required for the proposed
topological superconductivity in CuxBi2Se3. We first prove
a theorem, showing that for the BCS theory the symmetries
of the electron-phonon vertex functions ensure that, purely
with electron-phonon coupling, the critical temperature of
the leading triplet state never exceeds that of the leading
singlet. Therefore, the stabilization of the triplet state must
depend on the so-called Coulomb pseudopotential, which may
not be small [23]. We then define a generalized chirality
operator, which allows us to identify electron-phonon coupling
vertices that would stabilize a triplet gap. Materials where
chirality preserving vertices dominate could be candidates for
electron-phonon mediated triplet superconductivity. Finally,
we apply these insights to a model of CuxBi2Se3 [7] and
identify the electron-phonon vertices that cause an attractive
interaction in the triplet channel. If these terms dominate the
electron-phonon interaction, the topological state could be
realized in the presence of weak correlations.

II. ELECTRON-PHONON INTERACTION AND PAIRING

We start by considering a strongly spin-orbit coupled
system with inversion I and time-reversal T symmetries,
so that every eigenstate is at least doubly degenerate [24].
Assuming for simplicity that a single band crosses the Fermi
energy, we can index the degenerate momentum eigenstates
by a pseudospin variable s = ±, such that I|k,s〉 = |−k,s〉
and T |k,s〉 = s|−k,−s〉. In the presence of strong spin-orbit
coupling the electron-phonon interaction may not conserve
pseudospin (in contrast to Ref. [22]), and so we have the
general form

He-p =
∑
k,k′

∑
s,s ′

∑
η

g
η

s ′,s(k
′,k)(b†k−k′,η + bk′−k,η)c†k′,s ′ck,s ,

(1)

where bq,η is the annihilation operator for a phonon in mode η

with momentum q, and ck,s is the annihilation operator for an
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electron in state |k,s〉. The inversion and time-reversal sym-
metries require that the vertex functions satisfy g

η

s ′,s(k
′,k) =

±ηg
η

s ′,s(−k′,−k) and g
η

s ′,s(k
′,k) = ss ′[gη

−s ′,−s(−k′,−k)]∗, re-
spectively, where the sign ±η under inversion depends on the
phonon mode.

Within the BCS approximation, the electron-phonon cou-
pling generates the pairing interaction

Vs2,s1;s3,s4 (k′,k) = −
∑

η

g
η
s1,s3 (k′,k)gη

s2,s4 (−k′, − k)

ωk′−k,η

×�(ωD − |εk|)�(ωD − |εk′ |) , (2)

where ωq,η is the dispersion of phonon mode η, εk is
the electronic dispersion, and ωD is a cutoff on the order
of the Debye energy. The pairing interaction is the kernel of
the linearized BCS equation for the matrix gap function �̂(k),
which is formulated as an eigenvalue problem

λ�s1,s2 (k′) = −
∑

k,s3,s4

Vs2,s1;s3,s4 (k′,k)�s3,s4 (k) . (3)

Only solutions with positive eigenvalues have a finite critical
temperature, and the solution with the largest eigenvalue is
the leading instability. Inversion symmetry limits physical
solutions to either even-parity pseudospin singlet or odd-parity
pseudospin triplet states.

III. SINGLET VS TRIPLET PAIRING

In the conventional case, i.e., in the absence of spin-orbit
coupling, electron-phonon coupling is expected to lead to
the singlet channel being dominant. Such a singlet pairing
state is described by a gap function �̂(s)(k) = f (s)(k)(iσ̂ y),
where f (s)(k) gives the momentum dependence of the pairing
function, and σ̂ y is the y Pauli matrix. For the general electron-
phonon interaction, the symmetries of the electron-phonon
vertices yield a gap equation in the singlet channel of the form

λ(s)f (s)(k′) =
∑
k,s,η

′
∣∣gη

ss(k′,k)
∣∣2 + ∣∣gη

ss̄(k
′,k)

∣∣2

ωk−k′,η
f (s)(k) , (4)

where the momenta are restricted to the shell of thickness ωD

about the Fermi surface, which is indicated by the prime on the
summation. The singlet gap function is therefore an eigenstate
of a matrix with nonnegative entries. It follows from the
Perron-Frobenius theorem [25] that the gap function f (s)(k) of
the dominant instability has no sign changes as a function of
the wave vector k, as is characteristic of conventional s-wave
singlet pairing.

We now consider the triplet pairing function with the
largest critical temperature, �̂(t)(k). To compare with the
singlet channel, we apply a momentum dependent pseudospin-
rotation transformation so that it is recast in the form
�̂(t)(k) = χkf

(t)(k)σ̂ x , where f (t)(k) and χk are the magnitude
and sign of the triplet gap, respectively, and σ̂ x is the x Pauli
matrix. In other words, we have rotated the pseudospin at k and
−k so that in the new pseudospin basis the triplet pair formed
from these states has vanishing z component of pseudospin.
Note that this rotation does not affect the singlet pairing, nor
does it alter the symmetry properties of the electron-phonon
vertices. The gap magnitude f (t)(k) satisfies the eigenvalue

equation

λ(t)f (t)(k′) =
∑
k,s,η

′
χk′χk

∣∣gη
ss(k′,k)

∣∣2 − ∣∣gη
ss̄(k

′,k)
∣∣2

ωk−k′,η
f (t)(k) .

(5)

The magnitude of the matrix elements in Eq. (5) are bounded
by the corresponding elements in the singlet gap equation.
By a corollary to the Perron-Frobenius theorem [25], the
maximal eigenvalue of Eq. (5) therefore cannot exceed the
maximal singlet eigenvalue. Since the leading triplet gap
satisfies Eq. (5), we have our first major result which can be
stated as the following theorem: in a system with inversion and
time-reversal symmetry, the critical temperature of the leading
triplet gap never exceeds that of the leading singlet gap for a
purely phonon-mediated pairing interaction.

Our analysis implies that electronic correlations are vital to
stabilizing a triplet state. In particular, the spatial separation of
the electrons in a triplet Cooper pair reduces the pair-breaking
effect of the Coulomb pseudopotential compared to a s-wave
singlet state. A sufficiently large Coulomb pseudopotential
may therefore reduce the critical temperature of the leading
singlet state below that of the triplet [22]. Such a strong
Coulomb pseudopotential is the necessary condition for the
triplet superconductivity to emerge in the system.

IV. DEGENERATE SINGLET AND TRIPLET STATES

While the singlet pairing typically may be expected to
dominate over triplet pairing, it was pointed out by Fu and
Berg [7] that the singlet and triplet states would be degenerate
if the Dirac-like Hamiltonian considered by them commuted
with a chirality operator. Motivated by this, we generalize the
notion of “chirality” to index the doubly degenerate states
near the Fermi surface of an arbitrary electronic system.
Specifically, the pseudospin states |k,s〉 become the chiral
states |k,ν〉 where the chirality ν = sχk, and χk is the sign of
the leading triplet gap as defined above. We hence replace the
pseudospin indices in the gap equations (4) and (5) by chirality
indices using g

η

s ′,s(k
′,k) = g

η

ν ′,ν(k′,k)δν ′,s ′χk′ δν,sχk , obtaining

λ(α)f (α)(k′) =
∑
k,ν,η

′
∣∣gη

νν(k′,k)
∣∣2 ± ∣∣gη

νν̄(k′,k)
∣∣2

ωk−k′,η
f (α)(k), (6)

where the plus (minus) sign in the summand holds for
α = s (t). Comparing the transformed equations in the singlet
and triplet channels, it is clear that the singlet and triplet
eigenvalues are identical if the electron-phonon vertices do
not flip the chirality index, i.e., λ(s) = λ(t). We see that
electron-phonon vertices which preserve an appropriately
defined chirality index generate attractive interactions in the
triplet channel, while chirality-flipping vertices are always
triplet pair breaking. This is the second major result of our
paper. Note that in other works, unconventional pairing is
achieved via a strongly forward-scattering electron-phonon
interaction, which promotes attractive interactions in many
pairing channels [16,26]. In contrast, our condition precisely
determines the electron-phonon interactions that generate the
triplet state, and there is no requirement that these vertices
involve small momentum transfers.
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We make our discussion more concrete by using the
chirality index to define a chirality operator Och(k) =∑

ν ν|k,ν〉〈k,ν|. When only electron-phonon interactions
which commute with

∑
k Och(k) are present, every singlet

solution �̂(s)(k) is degenerate with a triplet solution �̂(t)(k) =
U (k)�̂(s)(k)U (−k), where U (k) = exp(iπOch(k)/4). On the
other hand, an electron-phonon interaction which does not
commute with the chirality operator is triplet pair-breaking.
Crucially, it is not necessary to solve the gap equations to
define the chirality index, as this only depends upon the
sign structure of the triplet gap. This is very convenient, as
it is common to approximate the exact solution of the gap
equations by a simple function consistent with the point group.
Given such a time-reversal-invariant triplet state, we can hence
define a chirality operator which relates it to a singlet state
with a nonnegative gap. The effective coupling constants for
these two states, obtained by taking the inner product of the
gap functions with the pairing interaction Eq. (2), are then
degenerate if only electron-phonon vertices which preserve
the chirality are present.

V. APPLICATION TO CuxBi2Se3

The proposed odd-parity pairing state of CuxBi2Se3 pro-
vides an excellent illustration of the preceding discussion.
We start by introducing an effective Hamiltonian valid near
the Fermi surface, where the electronic states are primarily
derived from the Se pz orbitals at the top and bottom of the
quintuple-layer unit cell. Denoting these two distinct sites by
sz = ±1, the low-energy spectrum is described by the k · p
model [7]

H0 =
∑

k

ψ†(k)[−μŝ0 ⊗ σ̂ 0 + mŝx ⊗ σ̂ 0 + vzkzŝ
y ⊗ σ̂ 0

+ v(kx ŝ
z ⊗ σ̂ y − ky ŝ

z ⊗ σ̂ x)]ψ (k) . (7)

Here ψ (k) = (ck,1,↑,ck,1,↓,ck,−1,↑,ck,−1,↓)T , where ck,n,σ

destroys an electron with momentum k and spin σ at site
n. The Pauli matrices in site and spin space are denoted by
ŝμ and σ̂ μ, respectively. The chemical potential is denoted by
μ, m is the mass, and vz and v are velocities along the z-axis
and in the x-y plane, respectively. We consider the physical
case where the chemical potential lies in the conduction band,
i.e., μ > m. The Hamiltonian is symmetric under inversion
(I = ŝx ⊗ σ̂ 0) and time reversal (T = iŝ0 ⊗ σ̂ yK), and so the
eigenstates of Eq. (7) can be labeled by a pseudospin [13].

The site degree of freedom allows odd-parity supercon-
ducting states in a relative s wave, such as the A1u state
�A1u

iŝy ⊗ σ̂ x proposed in Ref. [7]. As it opens a full gap on the
Fermi surface [7,13], and has surface bound states consistent
with point-contact spectroscopy measurements [12–14], it is
one of the most promising candidates for a topological state in
CuxBi2Se3. We have seen, however, that the phonon-mediated
pairing interaction generally favors an even-parity state with
a full gap. The simplest example of this is the topologically
trivial A1g state �A1g

iŝ0 ⊗ σ̂ y + �′
A1g

iŝx ⊗ σ̂ y [7].
In the absence of the mass term in Eq. (7), the Bogoliubov

Hamiltonian for the A1g state with �′
A1g

= 0 can be mapped
into that for the A1u state by the unitary transformation
U = exp(iπ ŝy ⊗ σ̂ z/4) [7]. This immediately identifies the

chirality operator as Och(k) = ŝy ⊗ σ̂ z. In the compact nota-
tion of Eq. (7), we have the general electron-phonon interaction
Hamiltonian

He-p =
∑
k,k′

∑
η

∑
μ,ν

f η
μ,ν(k′,k)(b†k−k′,η + bk′−k,η)

×ψ†(k′)ŝμ ⊗ σ̂ νψ(k) . (8)

If only vertex functions f η
μ,ν(k′,k) for which ŝμ ⊗ σ̂ ν com-

mutes with the chirality operator ŝy ⊗ σ̂ z are nonzero, it
follows from the discussion above that the coupling constants
for the A1u and A1g states are identical. Vertex functions
for which ŝμ ⊗ σ̂ ν anticommutes with ŝy ⊗ σ̂ z are generally
expected to be present, however, giving the A1g state the higher
coupling constant.

In the general case of a finite mass gap, the Fu and Berg A1g

and A1u Hamiltonians cannot be mapped into one another by
a chirality transformation. In the vicinity of the Fermi surface,
however, we can define a chirality operator that relates the two
gaps [27]. This is sufficiently close to the chirality operator in
the massless limit that the classification of the electron-phonon
vertices obtained above remains valid to good approximation.
Specifically, the chirality-preserving electron-phonon vertices
for the massless case are now either still chirality preserving, or
contain chirality-flipping terms which are smaller by a factor of
m/μ ≈ 0.3 than the chirality preserving [8]. A similar analysis
holds for the vertices which flip the chirality in the m = 0
limit. Our classification of the electron-phonon vertices is the
starting point for a detailed microscopic analysis of the pairing
instability in CuxBi2Se3.

We make this concrete by considering a toy model where
the electrons couple to a dispersionless optical mode with
frequency ω0. From Eq. (8) we include only the (μ,ν) =
(0,0) and (x,0) terms, representing chirality-preserving and
flipping vertices, respectively. We assume that the corre-
sponding vertex functions g0 and gx are constant. The Fu
and Berg A1g and A1u states are then exact eigenstates
of the phonon-mediated pairing interaction, with eigenval-
ues λA1g

= (g2
0 + g2

x + 2|gxg0|m/μ)/ω0 and λA1u
= (g2

0 − g2
x)

[1 − (m/μ)2]/ω0, respectively. The A1g state is the leading
instability for nonzero gx or m, while the A1u state only has a
finite critical temperature for |gx | < |g0|. We also include the
on-site repulsion He-e = (U/V )

∑
q

∑
s=± ρs,↑(q)ρs,↓(−q),

where ρs,σ (q) = ∑
k c

†
k+q,s,σ ck,s,σ and V is the volume. As

the first A1g gap �A1g
involves on-site pairing, a finite U > 0

will tend to lower its critical temperature. On the other hand,
the intersite A1u state is unaffected by He-e.

We study the pairing in our model within the mean-
field approximation. For simplicity, the conduction band is
assumed to extend from m − μ below the Fermi surface
to W − μ above, with a constant density of states ν0 and
W 
 m. Deriving the gap equations, we find that the critical
temperature of the A1g state satisfies

det

∣∣∣∣∣∣∣∣∣

(
g2

x+g2
0

ω0
− U

2

)
χ0 − 1 −U

2 χ
g0gx

ω0
χ01

−U
2 χ0 −U

2 χ − 1 0

g0gx

ω0
χ01 0 g2

x+g2
0

ω0
χ1 − 1

∣∣∣∣∣∣∣∣∣
= 0 ,

(9)
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FIG. 1. (Color online) Phase diagram for our toy model of
CuxBi2Se3 with (a) vanishing (m = 0) and (b) nonzero (m = 0.4μ)
mass gaps, showing the leading superconducting instability as a
function of |gx/g0| and Uν0. The logarithmic color scale shows
the critical temperature Tc relative to the critical temperature Tc0

at m = U = gx = 0. In the gray region N , the system remains
normal down to zero temperature. We set W = 10μ, ωD = 0.1μ,
and g2

0/ω0 = 0.1225/ν0.

while for the A1u state we have to solve λA1u
χ0 = 1. Following

the notation of Ref. [7], the gap equations are expressed in
terms of χ0 = ν0

∫ ωD

−ωD
dε tanh(ε/2kbTc)/ε, χ01 = (m/μ)χ0,

χ1 = (m/μ)2χ0, and χ = ν0
∫ W−μ

m−μ
dε tanh(ε/2kbTc)/ε − χ0.

The resulting phase diagram is shown in Fig. 1 for the cases
of (a) vanishing and (b) nonzero mass gap. In the absence of
on-site repulsion the A1g state has a higher critical temperature
than the A1u, except for m = gx = 0 where the two are
degenerate. Sufficiently strong on-site repulsion suppresses
the critical temperature of the A1g state below that for the
A1u. For small ratios |gx/g0| � 0.5, this requires only a
relatively weak repulsion U ≈ 0.1W . If |gx/g0| is close to
unity, however, a repulsive potential on the order of the
bandwidth is necessary, and the critical temperature will

be very small. Since CuxBi2Se3 is likely weakly correlated,
we conclude that the A1u state could be realized if the
chirality-preserving electron-phonon vertices are much larger
than the chirality flipping, which is the final major result of our
work. It is not obvious that this should be the case, however, and
this problem requires detailed microscopic modeling beyond
the present discussion. Interestingly, Wan and Savrasov have
recently proposed that a strongly forward-scattering phononic
modulation of the spin-orbit coupling is generic to layered
semiconductors [16], although a nodal A2u state then has
highest eigenvalue in the triplet channel.

VI. SUMMARY

In this paper we have shown that within the BCS theory the
leading instability of a phonon-mediated pairing interaction
can be a triplet state, but this must be degenerate with a
singlet solution. Our analysis relies only on the symmetries
of the electron-phonon vertex functions. We have additionally
formulated a condition in terms of a chirality operator for
when this degeneracy holds. We have hence identified the
electron-phonon vertices that produce an attractive interaction
in the triplet channel and those that are pair breaking, which
we apply to the topological state proposed for CuxBi2Se3. If
the former dominate the latter, we show that weak electronic
correlations could stabilize the odd-parity state. Large-scale
(and quantitatively accurate) first principles calculations can in
principle determine whether specific systems (e.g., CuxBi2Se3,
Sn1−xInxTe, etc.) satisfy the necessary theoretical constraints
derived in our work, providing a route to the realiza-
tion of topological superconductivity in ordinary electronic
materials.
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