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Odd-frequency pairing and Ising spin susceptibility in time-reversal-invariant
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We here illustrate the relation between odd-frequency spin-triplet even-parity (OTE) Cooper pairs and anoma-
lous surface magnetic response in time-reversal-invariant (TRI) spin-triplet superfluids and superconductors.
The spin susceptibility generally consists of two contributions: even-frequency odd-parity pair amplitudes
and odd-frequency even-parity pair amplitudes. The OTE pair amplitudes are absent in the bulk region, but
ubiquitously exist in the surface and interface region as Andreev bound states. We here clarify that additional
discrete symmetries, originating from the internal symmetry and point-group symmetry, impose strong constraint
on the OTE pair amplitudes emergent in the surface of TRI superfluids and superconductors. As a result of the
symmetry constraint, the magnetic response of the OTE pairs yields Ising-like anisotropy. For the topological
phase of the 3He-B in a restricted geometry, the coupling of the OTE pair amplitudes to an applied field is
prohibited by an additional discrete symmetry. Once the discrete symmetry is broken, however, the OTE pairs
start to couple to the applied field, which anomalously enhances surface spin susceptibility. Furthermore, we
extend this theory to TRI superconductors, where the corresponding discrete symmetry is the mirror reflection
symmetry.
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I. INTRODUCTION

Andreev bound states ubiquitously appear in inhomoge-
neous superconductors and superfluids including interfaces,
surfaces, and vortices. The phase-sensitive property has been
utilized as a probe for the pair symmetry of host supercon-
ductors [1,2]. In addition, it has recently been unveiled that
Andreev bound states have multi-faceted properties as odd-
frequency Cooper pair correlation and Majorana fermions,
giving rise to a drastic change of fundamental physical
phenomena.

Anomalous charge and spin transport, electromagnetic
responses, and proximity effects via Andreev bound states have
been clarified in light of odd-frequency Cooper pairing [3–18].
In accordance with the Fermi-Dirac statistics, a wave function
of Cooper pairs must change its sign after a permutation of
two paired fermions. Then, as shown in Table I, the pairing
symmetry in a single-band superconductor is categorized to the
fourfold way when the inversion symmetry is preserved. Two
of them are even-frequency spin-singlet even-parity (ESE) and
even-frequency spin-triplet odd-parity (ETO) pairings, which
do not change the sign of Cooper pair wave function by
the exchange of times of paired fermions. There still remain
two possibilities of Cooper pair symmetries, odd-frequency
spin-singlet odd-parity (OSO) and spin-triplet even-parity
(OTE) pairs. Although conclusive evidence of odd-frequency
pairing in bulk materials has not been observed experimentally
since the first prediction by Berezinskii [19], OSO and OTE
pair amplitudes emerge ubiquitously in spatially nonuniform
systems through Andreev bound states and the anomalous
proximity effect.
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Majorana fermions, which are fermions equivalent to
their own antiparticles, are regarded as a special kind of
Andreev bound state peculiar to topological superconductors
and superfluids. One of the most distinctive characteristics of
Majorana fermions is the Ising anisotropic magnetic response,
Majorana Ising spins [20–27]. Majorana Ising spins appear
in the surface of time-reversal-invariant (TRI) topological
superconductors and superfluids, as a consequence of the chiral
symmetry [24,26,27]:

{H(k⊥),�} = 0, (1)

where the chiral operator �, which is anticommutable with the
Bogoliubov–de Gennes Hamiltonian H(k), obeys �2 = +1.
The chiral operator � in Eq. (1) is constructed as a combination
of the particle-hole symmetry and time-reversal symmetry for
TRI superconductors and superfluids. The chiral symmetry can
be constructed by combining the operators of the particle-hole
symmetry (C), time-reversal symmetry (T ), and a discrete
symmetry (M), � = CT M. The chiral symmetry may be
preserved even if each discrete symmetry is broken [24,26,27].

A promising platform for realizing Majorana Ising spins
is the superfluid 3He-B confined in a slab in which the
chiral symmetry is preserved by a hidden order-two discrete
symmetry even in the presence of a magnetic field [24,27]. The
other possible candidates have been proposed in topological
crystalline superconductors including the E1u scenario of the
heavy-fermion superconductor UPt3 [25], a superconducting
nanowire [28], noncentrosymmetric superconductors [29], and
the superconducting topological insulator CuxBi2Se3 [30,31].
In particular, although conflicting experimental results have
been reported in CuxBi2Se3 [31–36], a consistent understand-
ing is given in Ref. [37] in the context of the topological odd-
parity superconductivity with the Fermi surface evolution. The
discrete symmetry M originates from an internal symmetry
in the case of 3He-B [24,27] and a crystalline symmetry in
superconductors [25,26,28].
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TABLE I. Classification of possible Cooper pairing in bulk
superconductors: ESE, ETO, OSO, and OTE pairs. The fifth and sixth
columns show the Cooper pair amplitudes emergent in systems with
the breaking of translational symmetry and time-reversal symmetry,
respectively.

Parity Broken symmetry

� frequency spin parity translational time inversion

ESE + − + OSO OTE
ETO + + − OTE OSO
OSO − − − ESE ETO
OTE − + + ETO ESE

It has been widely accepted that the multifaceted pictures
of Andreev bound states as Majorana fermions and odd-
frequency pairs are indispensable to understanding their
anomalous contributions to magnetic responses, proximity
effect, transport, and so on. In addition, a strong relation
between the zero-energy Majorana mode and odd-frequency
pairing has been uncovered [38–43]. It is now important
to establish unified understanding on Majorana Ising spins
and the appearance of odd-frequency pairs in topological
superfluids and superconductors.

In this paper, we clarify the direct relation between
odd-frequency Cooper pairs and Majorana Ising spins in
TRI spin-triplet superfluids and superconductors. First, we
derive the generic formalism for spin susceptibilities in TRI
superconductors and superfluids in the frame of the quasi-
classical theory. The spin susceptibility is separated into the
contributions of ETO pairs and OTE pairs in the case of spin-
triplet superconductors and superfluids. We here emphasize
that a discrete symmetry originating from internal symmetry
and crystalline symmetry imposes strong constraint on the
Cooper pair symmetry emergent in a specular surface of TRI
superfluids and superconductors. As a result of the symmetry
constraint, the magnetic response of the OTE pairs yields Ising-
like anisotropy. We also illustrate that once the OTE pairs are
coupled to an applied field, they are responsible for anomalous
enhancement of surface spin susceptibility, contrary to the
contribution of ETO pairs. In this paper, special focus is placed
on the surface spin susceptibility of the superfluid 3He-B and
superconductor UPt3 as concrete examples.

This paper is arranged as follows: In Sec. II, we summarize
the discrete symmetries in the context of the quasiclassical
theory. We also derive the generic formalism of spin sus-
ceptibility, which is applicable not only to superfluids but
also to the surface region of superconductors in the type-II
limit. For TRI superfluids and superconductors, the spin
susceptibility consists of the contributions from ETO and
OTE pair amplitudes. In Sec. III, we examine the role of
a hidden discrete symmetry on the odd-frequency pairs and
the anomalous anisotropy of surface spin susceptibility in
the superfluid 3He-B. In Sec. IV, the theory is extended to
TRI spin-triplet superconductors preserving a mirror reflection
symmetry, such as UPt3. The final section is devoted to
conclusion and discussion. The details on the derivation of the
gap equation in the presence of the dipole-dipole interaction
are described in the Appendix. Throughout this paper, we set

� = kB = 1 and the Pauli matrices τμ in particle-hole space
and σμ in spin space. The repeated Greek indices imply the
sum over x, y, and z.

II. SPIN SUSCEPTIBILITY AND
ODD-FREQUENCY PAIRING

The zero-energy density of states and Cooper pairing
induced by surface and vortices can be directly associated
with discrete symmetries, such as the time-reversal sym-
metry, particle-hole symmetry, and crystalline symmetries.
In Sec. II A, we summarize the discrete symmetries of the
Bogoliubov–de Gennes (BdG) Hamiltonian H(k) and the
quasiclassical propagator g. Subsequently, we clarify that such
discrete symmetry imposes strong constraint on odd-frequency
pairing and gives rise to anomalous magnetic response. In
Secs. III and IV, we will illustrate the remarkable consequence
of the odd-frequency pair amplitudes, that is, the Ising spin
susceptibility in TRI superconductors and superfluids.

A. Discrete symmetries in quasiclassical theory

Before going into the symmetries in the quasiclassical
formalism, let us start with the brief review of discrete sym-
metries of a general BdG Hamiltonian, which play a crucial
role on determining the topologically nontrivial properties of
superconductors and superfluids. The BdG Hamiltonian in
bulk superconductors is in general given as

H(k) =
(

ε(k) �(k)

�†(k) −εT(−k)

)
, (2)

where ε(k) and �(k) are 2 × 2 matrices in the spin space and
we suppose �T(−k) = −�(k).

It is seen thatH(k) in Eq. (2) has the particle-hole symmetry

CH(k)C−1 = −H(−k), (3)

where C = τ xK with K being the complex conjugation oper-
ator converts the particle component of the quasiparticle wave
function into the hole component and vice versa. In this paper,
we consider TRI superfluids and superconductors, which yield
��(k)�T = �(−k). The time-reversal operator � is a unitary
matrix and �2 = −1. When we also suppose the absence of
time-reversal-breaking perturbation, �ε(k)�† = ε∗(−k), the
BdG Hamiltonian H(k) preserves the time-reversal symmetry,

T H(k)T −1 = H(−k), T =
(

� 0
0 �∗

)
K. (4)

In addition to such fundamental symmetry, the pair potential
may hold the discrete rotational symmetry in spin and
momentum spaces [24]. Specifically, the B phase of bulk
superfluid 3He is invariant under the joint rotation of spin
and orbital spaces SO(3)L+S. The π rotation is then defined as
a subgroup of the continuous symmetry group. In this case,
we obtain U (π )�(k)UT(π ) = �(Rk) with the π -rotation
operators U (π ) in spin space and R in momentum space. For
the case that U (π )ε(k)U †(π ) = ε(Rk), the BdG Hamiltonian
satisfies the π -rotational symmetry [24,27],

U(π )H(k)U†(π ) = H(Rk), (5)

where U(π ) = diag[U (π ),U ∗(π )].
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It is also found that superconducting states retain the
mirror symmetry if the pair potential is odd or even under
the mirror reflection, M�(k)MT = ±�(kM) [44]. Here, we
define the mirror operator, M = i(σ · ô), where ô is the unit
vector normal to the mirror plane. The mirror operator changes
the spin σ → −σ + 2ô(σ · ô) and the momentum k → kM =
k − 2ô(k · ô). When the normal state has the mirror symmetry,
Mε(k)M† = ε(kM), the BdG Hamiltonian holds the mirror
reflection symmetry,

MηH(k)Mη† = H(kM), (6)

where

Mη =
(

M 0
0 ηM∗

)
, η = ±. (7)

Note that even if each discrete symmetry is broken, the BdG
Hamiltonian H(k) may still preserve a discrete symmetry
constructed by combining some of discrete symmetries.

The equilibrium properties of superfluids and superconduc-
tors are well describable with the quasiclassical theory [45],
which is reliable in Tc0 � TF (Tc0 is the transition temperature
of the bulk 3He-B). The central object is the quasiclassical
Green’s functions g≡g(k̂,r; ωn), which are obtained by
integrating the Matsubara Green’s function G over a shell
vF|k − kF| < Ec � EF,

g(k̂,r; ωn) = 1

a

∫ +Ec

−Ec

dξkτ zG(k,r; ωn). (8)

The normalization constant a corresponds to the weight of the
quasiparticle pole in the spectral function and the Matsubara
frequency is ωn = (2n + 1)πT with n∈Z. The full propagator
is defined with the Nambu spinor of the fermionic field
operators � = (ψ↑,ψ↓,ψ

†
↑,ψ

†
↓)T by

G(k,r; ωn) = −
∫ β

0
dτeiωnτ

∫
d r12e

−ik·r12

× 〈Tτ�(r+,τ )�̄(r−,0)〉 (9)

with r± ≡ r ± r12/2 and β−1 ≡ T . The quasiclassical prop-
agator g, which is a 4 × 4 matrix, is parametrized with Pauli
matrices in spin space σμ as

g =
(

g0 + σμgμ iσyf0 + iσμσyfμ

iσyf̄0 + iσyσμf̄μ ḡ0 + σ T
μ ḡμ

)
. (10)

Here, σ T
μ denotes the transpose of the Pauli matrices σμ. The

off-diagonal propagators are composed of spin-singlet and
triplet Cooper pair amplitudes, f0 and fμ.

The quasiclassical propagator g ≡ g(k̂,r; ωn) is governed
by the Eilenberger equation [45],

[iωnτ z − v(k̂,r) − �(k̂,r),g] = −ivF · ∇g, (11)

with the normalization condition

[g(k̂,r; ωn)]2 = −π2, (12)

where we introduce

�(k̂,r) =
(

�(k̂,r)

�†(−k̂,r)

)
. (13)

The term v in Eq. (11) consists of an external potential vext
and quasiclassical self-energy associated with Fermi liquid
corrections ν, as v(k̂,r) = vext(r) + ν(k̂,r), where

ν =
(

ν0 + σμνμ

ν̄0 + σ T
μ ν̄μ

)
. (14)

The quasiclassical propagators also satisfy the following
relations arising from the Fermi statistics in Eq. (9):

[g(k̂,r; ωn)]† = τ zg(k̂,r; −ωn)τ z, (15)

[g(k̂,r; ωn)]T = τ yg(−k̂,r; −ωn)τ y. (16)

It is important to mention that the normalization condition,
gf = −f ḡ and ḡf̄ = −f̄ g, leads to the relation

ḡ0(k̂,r; ωn) = −g0(k̂,r; ωn). (17)

The discrete symmetries which are preserved by the BdG
Hamiltonian are extended to the quasiclassical formalism,
which adds constraint on the quasiclassical propagator. First,
the particle-hole symmetry in Eq. (3) is recast into

Cg(k̂,r; ωn)C−1 = g(−k̂,r; ωn). (18)

This symmetry can be obtained from the basic relations of
the quasiclassical propagator in Eqs. (15) and (16). For time-
reversal-invariant superconductors and superfluids which yield
��(k)�T = �(−k), the time-reversal symmetry is

T g(k̂,r; ωn)T −1 = g(−k̂,r; −ωn), (19)

where we also suppose that v does not contains the time-
reversal-breaking term. Similarly, the π -rotational symmetry
in Eq. (5) and mirror symmetry in Eq. (7) are recast into

U(π )g(k̂,r; ωn)U†(π ) = g(R k̂,Rr; ωn) (20)

and

Mηg(k̂,r; ωn)Mη† = g(k̂M,rM; ωn). (21)

We will show in Secs. III and IV that these discrete rotational
symmetries add a strong constraint to Cooper pairings induced
in a specular surface and give rise to the Ising anisotropy of
surface spin susceptibility.

B. Spin susceptibility in quasiclassical theory

We here derive the generic form of the magnetization
density Mμ(r) for superfluids under a spatially uniform
magnetic field H = H ĥ. In this situation, the potential term
v(k̂,r) in the quasiclassical equation (11) is composed of a
magnetic Zeeman field and quasiclassical self-energies ν,

v(k̂,r) = − 1

1 + F a
0

μnHμ

(
σμ

σ T
μ

)
+ ν(k̂,r), (22)

where F a
0 is the Fermi liquid parameter associated with the

enhancement of spin susceptibility and μn is the magnetic
moment of 3He nuclei [46]. In the quasiclassical formalism,
the magnetization density is given by [24,27,45,47]:

Mμ(z) = MN

[
ĥμ + 1

μnH
〈gμ(k̂,z; ωn)〉k̂,n

]
. (23)
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This is also applicable to the surface region of superconductors
in the type-II limit where the surface region within the
coherence length ξ is much thinner than the penetration depth
of the external field. For superconductors, μn in Eqs. (22)
and (23) is replaced by the Bohr magneton μB and the
applied field H is replaced by the internal field B. In
Eq. (23), we introduce the average over the Fermi surface
〈· · · 〉k̂,n = T

NF

∑
n

∫
d k̂

(2π)3|vF(k̂)| · · · , where NF = ∫
d k̂

(2π)3|vF(k̂)|
is the total density of states at the Fermi surface in the
normal state and the Fermi velocity at k = kF k̂ is defined
as vF(k̂) = ∂ε(k)/∂k|k=kF k̂. For a three-dimensional Fermi

sphere, one finds vF(k̂) = vF k̂ and NF = 1
2π2vF

, which reduces

to 〈· · · 〉k̂,n = T
∑

n

∫
dk
4π

· · · . The magnetization in normal
3He is MN = χNH = 2μ2

n
1+F a

0
NFH .

The quasiclassical propagator must satisfy a constraint
given in Eq. (12) which requires the propagators to hold the re-
lation gμ = (f0f̄μ + f̄0fμ + iεμνηfνf̄η)/2g0. This relates the
spin component of quasiclassical propagators to spin-singlet
and spin-triplet Cooper pair amplitudes. Using the relation and
the symmetries in Eqs. (15)–(17), the magnetization density
in Eq. (23) reduces to

Mμ(r)

MN
= ĥμ + 1

μnH

〈
f0f̄μ + f̄0fμ

2g0

〉
k̂,n

. (24)

This indicates that only the mixing term of spin-singlet and
spin-triplet Cooper pair amplitudes contributes to the spin
susceptibilities. This expression is a quite generic form for
Mμ(r) in superfluids and also applicable to the surface region
of type-II superconductors. This was first derived in Ref. [48]
for the aerogel-superfluid 3He-B system.

C. Odd-frequency pairs and spin susceptibility

In general, the Cooper pair amplitudes are separated into
even-frequency and odd-frequency components, fμ = f EF

μ +
f OF

μ and f0 = f EF
0 + f OF

0 , where even- and odd-frequency pair
amplitudes are defined as (j = 0,x,y,z):

f EF
j (k̂,r; ωn) = 1

2 [fj (k̂,r; ωn) + fj (k̂,r; −ωn)], (25)

f OF
j (k̂,r; ωn) = 1

2 [fj (k̂,r; ωn) − fj (k̂,r; −ωn)]. (26)

In the case of spin-triplet superconductors and superfluids,
ETO components f EF

μ exist in the bulk and an applied magnetic
field induces OSO pairs f OF

0 . The other components, f EF
0 and

f OF
μ , do not play an important role in the bulk of spin-triplet

superfluids and superconductors. As summarized in Table I,
however, the translational symmetry breaking due to a surface
boundary condition and vortices induces OTE components
f OF

μ even in the zero-field limit [1,7,38,49–51]. Note that the
OTE Cooper pair amplitudes f OF

μ are associated with the low-
energy density of states originating from the surface Andreev
bound states [40,41]. Furthermore, at the zero-energy limit,
f OF

μ is equivalent to the Majorana zero modes [38,39].
We now clarify the relation between OTE Cooper pairs and

spin susceptibility in spin-triplet superfluids and superconduc-
tors. We here deal with a magnetic Zeeman field perturbatively
in parameter, μnH/��1. Then, we formally expand g0,
f0, and fμ in powers of μnH/�: g0 = g

(0)
0 + g

(1)
0 + · · · ,

f0 = f
(1)
0 + · · · , and fμ = f (0)

μ + f (1)
μ + · · · . At zero fields,

TRI superfluids and superconductors hold the time-reversal
symmetry (19). Combining the symmetric property in Eq. (19)
with Eqs. (15)–(17), therefore, one finds

g
(0)
0 (k̂,z; ωn) = −g

(0)
0 (k̂,z; −ωn). (27)

Substituting all these in Eq. (24) and using the symmetry in
Eq. (27), one finds that the spin susceptibility χ ≡ ĥμχμνĥν is
composed of the contributions of odd- and even-parity Cooper
pair amplitudes,

χ (z) = χN + χOP(z) + χEP(z). (28)

The spin susceptibility tensor χμν is defined as Mμ = χμνHν .
The odd-parity contribution χOP(z) is given by the mixing term
of the OSO pair amplitude f OF

0 and the ETO pair f EF,

χOP(z)

χN
≡ 1

μnH
Re

〈
f

OF(1)
0 ĥμf EF(0)∗

μ

g
(0)
0

〉
k̂,n

. (29)

The even-parity contribution χEP(z) is given by the mixing
term of the ESE pair amplitude f EF

0 and the OTE pair f OF,

χEP(z)

χN
≡ − 1

μnH
Re

〈
f

EF(1)
0 ĥμf OF(0)∗

μ

g
(0)
0

〉
k̂,n

. (30)

This indicates that the spin susceptibility is separated to the
contributions from odd-parity Cooper pair amplitudes, χOP,
and even-parity pairing, χEP, which mix the field-induced
spin-singlet pairing f

(1)
0 and spin-triplet pairing at zero fields

f (0)
μ . The spin-triplet pairings f (0)

μ at zero fields are directly
coupled to the applied field. Note that only the ETO pairings
f EF(0)

μ remain finite in the bulk of spin-triplet superfluids and
superconductors and the behavior of χOP is understandable
with the rotation of the d vector, which is responsible for
the diamagnetic response χOP � 0. In contrast, the OTE
Cooper pairs f OF(0)

μ are absent in the bulk and induced by
the breaking of translational symmetry at surfaces, interfaces,
or vortices. Therefore, the spin susceptibility at surfaces is
determined by the OTE pairing f (0)

μ directly coupled to the
applied field in addition to the ordinary contribution to the
d vectors. It has recently been clarified that odd-frequency
pairs increase the spin susceptibility in the case of spin-singlet
superconductors [17].

III. ODD-FREQUENCY PAIRS AND MAJORANA
ISING SPIN IN 3He-B

In this section, we consider the spin susceptibility in the
B phase of spin-triplet superfluid 3He confined in a restricted
geometry. The geometry is illustrated in Fig. 1. As shown in
Eqs. (29) and (30), the spin susceptibility in TRI superfluids
is determined by the pair amplitudes in the absence of a
magnetic field, f (0)

μ . In particular, we will show that the OTE
pairing f (0)OF

μ plays a key role. It is also clarified that the
discrete symmetries add a strong constraint on the emergent
pair amplitudes f (0)

μ at surfaces, which gives rise to Ising
anisotropy of surface magnetic response.
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specular surfaces

FIG. 1. (Color online) Schematic picture of the geometry con-
sidered here. The liquid 3He is confined to a slab geometry within
z ∈ [0,D], where the two specular surfaces are situated at z = z0 = 0
and D.

A. Symmetry and odd-frequency pairings at zero fields

We start by summarizing the remaining discrete symmetry
in superfluid 3He-B confined in a slab geometry. The symmetry
group relevant to the normal 3He in the bulk is given as
G = SO(3)S × SO(3)L × U (1)φ × T × C, where SO(3)S and
SO(3)L denote the three-dimensional rotational symmetry
in spin and coordinate spaces, and T and C are the time-
reversal and particle-hole symmetries, respectively. The bulk B
phase retains H = SO(3)S+L × T × C, which is the maximal
subgroup of G. The degeneracy space is characterized with
the relative rotation SO(3)S−L as R = G/H = SO(3)S−L ×
U (1)φ . Then, the pair potential is expressed as �(k,r) =
iσμσydμ(k,r), where the d-vector of the B phase is given by

dμ(k̂,r) = Rμν(n̂,ϕ)dνη(r)k̂η, (31)

where Rμν ∈SO(3)S−L and we omit the U (1) phase for
simplicity. The rotation axis n̂, the angle ϕ, and the order
parameter amplitudes �μ are obtained as the self-consistent
solution of the quasiclassical equation coupled with the
gap equation and Fermi liquid corrections. The n̂ texture
is supposed to be spatially uniform, which is forced by the
confinement. The specular surfaces at z0 = 0 and D impose
the quasiclassical propagators on the boundary condition,

g(k̂,z = z0; ωn) = g(k̂,z = z0; ωn), (32)

where k̂ ≡ k̂ − 2ẑ( ẑ · k̂) is the momentum specularly reflected
by the surface.

The confinement in Fig. 1 reduces SO(3)L to SO(2)Lz
,

which is the rotational symmetry about the surface normal axis.
The symmetry group in normal 3He confined in this geometry
is Gslab = SO(3)S × SO(2)Lz

× U (1)φ × T × C. The pair po-
tential relevant to this situation is given with dμν(r) = dμν(z)
in Eq. (31) as [46]

dμν(z) = �‖(z)(δμν − ẑμẑν) + �⊥(z)ẑμẑν, (33)

where without loss of generality, we set �‖ ∈R and �⊥ ∈
R. In such a geometry, the B phase is still invariant under
the simultaneous rotation in spin and orbital spaces about the
surface normal axis, Hslab = SO(2)Sz+Lz

× T × C, where the
SO(2)S+L symmetry is expressed as

U (φ)�(k̂,z)UT(φ) = �(O k̂,z), (34)

where (O)μν ≡ Rμν( ẑ,φ) denotes the rotational matrix about
the ẑ axis by any angle φ. The 2 × 2 matrix in spin space,
U (φ), is the corresponding rotational matrix in spin space and
is defined as

U (φ) = U (n̂,ϕ)e−iφσz/2U †(n̂,ϕ), (35)

where e−iφσz/2 is the SU(2) representation of (O)μν ≡
Rμν( ẑ,φ).

The π -rotational symmetry U (π ) in Eq. (5) is defined as the
subgroup of SO(2)Sz+Lz

, U (π ) ≡ U (φ = π ). This imposes the
additional discrete symmetry on the quasiclassical propagator
as shown in Eq. (20),

U(π )g(0)(k̂,z; ωn)U†(π ) = g(0)(−k̂,z; ωn), (36)

where U(π ) = diag[U (π ),U ∗(π )]. Combining this with the
boundary condition in Eq. (32) and the relation in Eq. (16),
one obtains the relation between g(ωn) and g(−ωn) at the
surface z = z0 as

g(0)(k̂,z0; −ωn) = U(π )τ y[g(0)(k̂,z0; ωn)]Tτ yU†(π ). (37)

It is convenient to introduce g̃(0) obtained by the unitary
transformation of the original quasiclassical propagator as

g̃(0)(k̂,z; ωn) = U†(n̂,ϕ)g(0)(k̂,z; ωn)U(n̂,ϕ). (38)

The propagator g̃(0) obeys the quasiclassical equation with the

definition �̃ ≡ U †(n̂,ϕ)�(k̂,z)U (n̂,ϕ)∗ = iσμσydμν(z)k̂ν ,
[iωnτ z − ν̃(k̂,z) − �̃(k̂,z),g̃(0)] = −ivF · ∇g̃(0). This is
equivalent to Eq. (11) in the case of n̂ = ẑ and ϕ = 0. Then,
Eq. (37) imposes the constraint on the pair amplitudes f̃μ at
the surfaces as

f̃
OF(0)
‖ (θk,z0; ωn) = f̃ EF(0)

z (θk,z0; ωn) = 0, (39)

where (f̃ (0)
x ,f̃ (0)

y ) = f̃
(0)
‖ (cos φk, sin φk) results from the

SO(2)Sz+Lz
symmetry. It turns out from Eq. (39) that at the

surface, only f̃z has odd-frequency Cooper pairs at the surfaces
and the even-frequency Cooper pairs survive only in f̃‖. By
using this notation, the pair amplitudes f (0)

μ ≡ f (0)
μ (k̂,z0; ωn)

at the surfaces of superfluid 3He-B are expressed as

f EF(0)
μ = [Rμx(n̂,ϕ) cos φk + Rμy(n̂,ϕ) sin φk]f̃ EF(0)

‖ , (40)

f OF(0)
μ = Rμz(n̂,ϕ)f̃ OF(0)

z . (41)

Hence, the additional discrete symmetry in Eq. (36) arising
from the SO(2)Sz+Lz

symmetry in Eq. (34) imposes a strong
constraint on the possible symmetry of Cooper pair amplitudes
f (0)

μ in superfluid 3He-B. In particular, the OTE pairing

f OF(0) that is responsible for χEP is forced by the discrete
symmetry to point to the surface normal direction f OF(0) ‖ ẑ.
In Sec. IV, this conclusion will be extended to pair amplitudes
in superconducting states with mirror reflection symmetries.

B. Ising spin anisotropy

Substituting Eqs. (40) and (41) into Eqs. (29) and (30), the
spin susceptibility in Eq. (28) is recast into the following form:

χ = χN +
√

1 − �̂2
zχ̃

OP + �̂zχ̃
EP. (42)
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The contributions from odd-parity and even-parity pair ampli-
tudes are given as

χ̃OP

χN
= − 1

μnH
Re

〈
cos(φ� − φk)f OF(1)

0 f̃
EF(0)∗
‖

g
(0)
0

〉
k̂,n

, (43)

χ̃EP

χN
= 1

μnH
Re

〈
f

EF(1)
0 f̃ OF(0)∗

z

g
(0)
0

〉
k̂,n

. (44)

Here, we introduce the unit vector, �̂μ(n̂,ϕ) [23,24,27,47]:

�̂μ(n̂,ϕ) ≡ ĥνRνμ(n̂,ϕ), (45)

where φ� = tan−1(�̂y/�̂x) is the azimuthal angle of �̂.
The OTE Cooper pair at zero fields, f̃ OF(0)

z , is equivalent
to the low-energy surface density of states within |E| �
�0 [40,41],

− 1

π
Img

(0)
0 (k̂,z; ωn → −iE + 0+)

≈ |Re f OF(0)(k̂,z; ωn → −iE + 0+)|, (46)

which is always induced by the translational symmetry
breaking at the surface. The surface density of states has poles
at the energy

E
(0)
surf(k) = �0

kF
k‖, (47)

which is the dispersion of the surface bound states. In
accordance with Eq. (46), the contributions from the surface
bound states are contained by χ̃OP. Although χ̃OP is finite, the
coupling of the OTE pairing with the applied magnetic field at
the surface is parametrized by �̂z(n̂,ϕ).

Equation (42) is one of the main results in this paper. This
indicates that only the OTE pairs contribute to the surface spin
susceptibility when �̂z = 0, while χ for �̂z = 1 is composed of
only the ETO Cooper pairs,

χ =
{

χN + χ̃OP for �̂z = 0,

χN + χ̃EP for �̂z = 1.
(48)

In the case of bulk superfluid 3He-B, since the OTE pairing
is absent, the spin susceptibility is given as χ = χN + χOP,
where χOP < 0 suppresses the spin susceptibility. In contrast,
the spin susceptibility contributed from the OTE pairs, χEP, is
expected to increase the spin susceptibility, which comes up
to χ > χN [17]. As we will discuss below, there is the critical
magnetic field beyond which �̂z becomes nonzero and the OTE
pair contribute to the surface spin susceptibility.

For 3He-B in a slab geometry, the n̂ texture and the angle
ϕ are determined by the applied magnetic field, the dipole-
dipole interaction arising from the magnetic moment of nuclei,
and the surface boundary condition. This indicates that �̂z

depends on an applied magnetic field. Let us suppose n̂ =
ẑ, which is favored by the dipole-dipole interaction, and the
specular surface boundary condition in a slab geometry. Then,
one finds �̂z(n̂ = ẑ,ϕ) = cos θH for a magnetic field H · ẑ =
H cos θH . This configuration of the n̂ texture gives rise to the
Ising anisotropy of the spin susceptibility,

χ = χN + χ̃OP sin θH + χ̃EP cos θH . (49)

This indicates that for a magnetic field parallel to the surface
(θH = π/2), although the OTE pairings exists at the surfaces,
it does not couple to the applied field. The resultant spin
susceptibility is contributed from only the ETO pairing, which
stays about the same as that in the bulk. The OTE pairing
contributes to the surface spin susceptibility when the applied
field is tilted from the surface normal direction or �̂z is nonzero.

The z component of the unit vector, �̂z(n̂,ϕ), has another
physical meaning that it is associated with nontrivial topologi-
cal superfluidity of the B phase under a magnetic field [24,27].
Since the magnetic field term in Eq. (22) explicitly breaks
the rotational symmetry in spin space as well as the time-
reversal symmetry, the symmetry group of the normal 3He
in a restricted geometry under a magnetic field is reduced to

Gslab,H = SO(2)(ĥ)
S × SO(2)Lz

× U (1)φ × C. Then, the BdG
Hamiltonian of the B phase is no longer invariant under the
π -rotational symmetry, U(π )H(k)U†(π ) �= H(−k). For �̂z =
0, however, the B-phase still holds the hidden Z2 symmetry,
Hslab,H = Z2 × C. The BdG Hamiltonian is invariant under
the discrete transformation given by the combination of the
time-conversion operator T and the π rotation U(π ),

T U(π )H(k)[T U(π )]−1 = H(k). (50)

Combining the particle-hole symmetry in Eq. (3) with the
hidden Z2 symmetry, the chiral symmetry is preserved in the
momentum space along the kz axis. As a consequence, �̂z = 0
ensures the nontrivial one-dimensional winding number,

w = − 1

4πi

∫
dkztr[� H−1(k)∂kz

H(k)]k‖ = 2, (51)

where the chiral operator is defined as � = C T U(π ). Ac-
cording to the bulk-edge correspondence proven in Ref. [52],
the winding number w gives the number of the zero-energy
states. The chiral symmetry and nonzero winding number are
responsible for the Ising anisotropy of surface spins [24,27],
which implies that the surface spin operator Ssurf always points
to the ẑ direction, Ssurf = (0,0,Sz

surf). The Ising spin nature
of surface spins is contained in the spin susceptibility (49)
obtained from the perturbative analysis.

When �̂z becomes nonzero, however, the Z2 symmetry is no
longer held and thus the B phase undergoes a phase transition
to the nontopological phase, where the hidden Z2 symmetry is
spontaneously broken by the nonzero �̂z [24,27]. The nonzero
�̂z also destroys the Ising character of surface spins and the
magnetic response becomes isotropic.

C. Ginzburg-Landau regime

To capture the essential part of the relation between the
surface spin susceptibility and emergent Cooper pairs, we here
explicitly solve the quasiclassical Eilenberger equation (11)
within the Ginzburg-Landau approximation. In the Ginzburg-
Landau regime near Tc0, we may replace the diagonal
component of the quasiclassical operator g to the normal-
state propagator gN = −iπsgn(ωn). For simplicity, the pair
potential is assumed to be spatially uniform. In addition, we
formally expand the anomalous propagator f and the d-vector
d in powers of the applied field: f = f (0) + f (1) + · · · and
d = d(0) + d(1) + · · · . We first solve the equation with H = 0
and then the finite field corrections are obtained, by order
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(μnH/�0). In the zero field, it is obvious that the spin-singlet
pair amplitudes are absent; that is, f

(0)
0 = 0. We also note

that the spatially uniform pair potential is distorted by order
(μnH/�0)2 and we neglect d(1). The pair potential at zero
fields preserves the SO(2)Lz+Sz

symmetry, which is given in
Eq. (33). The Cooper pair amplitudes at zero field are obtained
by solving the equation for f̃

(0)
‖ [53],

vFk̂z∂zf̃
(0)
‖ = −2ωnf̃

(0)
‖ − 2πsgn(ωn)�‖, (52)

and for f̃ (0)
z ,

vFk̂z∂zf̃
(0)
⊥ = −2ωnf̃

(0)
⊥ − 2πsgn(ωn)�⊥. (53)

Using the specular boundary conditions at z = 0 and z = D,
one obtains the ETO pair amplitudes at zero field as

f̃
EF(0)
‖ (θk,z; ωn) = −π

�‖
|ωn| sin θk, (54)

f̃
EF(0)
⊥ (θk,z; ωn) = −π

�⊥k̂z

|ωn|
[

1 − cosh[(z − D/2)/λ]

cosh(D/2λ)

]
,

(55)

where we have introduced λ = vF| cos θk|/2|ωn|. The OTE
component emerges in the surface region as

f̃
OF(0)
⊥ (θk,z; ωn) = −π

�⊥|k̂z|
ωn

sinh[(z − D/2)/λ]

cosh(D/2λ)
, (56)

and f
OF(0)
‖ = 0.

The ESE and OSO pair amplitudes are induced by the
linear Zeeman corrections. The field-induced spin-singlet pair
amplitudes are governed by the following equation that is
obtained from Eq. (11),

ivFk̂z∂zf
(1)
0 = −2iωnf

(1)
0 − ω̃L�̂zf̃

(0)
⊥ . (57)

The magnetic Zeeman term is parametrized by the topological
order �̂z and the effective Lamor frequency ω̃L is defined as
ω̃L = 2μnH

1+F a
0

. Solving the equation shown above, one finds that
the ESE Cooper pair amplitude is induced at the surface z = 0
by the magnetic Zeeman field as

f
EF(1)
0 (k̂,0; ωn) = i

π

2
�̂z

ω̃L�⊥|k̂z|
|ωn|2

×
[

tanh

(
D

2λ

)
+ D

2λ
sech2

(
D

2λ

)]
, (58)

while the OSO pair amplitude does not appear at the surface,
f

OF(1)
0 (k̂,0; ωn) = 0. It is also found that the intensity of

the ESE Cooper pair amplitude in the central region of the
system (z ≈ D/2) exponentially decreases with increasing
D/λ. Therefore, the ESE pair amplitude that is induced by the
linear Zeeman corrections is localized in the surface region.

For D � λ, the OTE and ESE pair amplitudes emergent at
the surface are simplified as

f̃
OF(0)
⊥ (θk,0; ωn) = π

�⊥|k̂z|
ωn

(59)

and

f
EF(1)
0 (k̂,0; ωn) = i

π

2
�̂z|k̂z| ω̃L�⊥

|ωn|2 . (60)

Substituting these expressions of OTE and ETO pair ampli-
tudes into Eq. (44), one obtains the first-order correction to the
even-parity Cooper pair contribution as

χ
(1)EP
surf = 7ζ (3)

12
(
1 + F a

0

) (
�⊥
πT

)2

> 0, (61)

where ζ (3) is the Riemann zeta function. This clearly shows
that the even-parity Cooper pairs carry the paramagnetic
response χ

(1)EP
surf > 0. Note that the odd-parity Cooper pair

contribution χ
(1)OP
surf is absent in the Ginzburg-Landau regime.

To this end, the surface spin susceptibility in the superfluid
3He-B is anomalously enhanced by the coupling of emergent
OTE Cooper pairs to the field-induced ESE pair as

χsurf = χN + �̂2
z(n̂,ϕ)χ (1)EP

surf . (62)

This implies that although the OTE pair amplitudes always
exist in the surface of ETO superconductors and superfluids
and yield paramagnetic response, they do not necessarily
couple to the applied magnetic field. The topological order �̂z

that is associated with the spontaneous breaking of the hidden
Z2 symmetry determines the contribution of odd-parity Cooper
pairs to the surface spin susceptibility.

D. Numerical results

In the previous subsection, it has been clarified that the
surface spin susceptibility is parametrized by �̂z(n̂,ϕ) as shown
in Eq. (42). The quantity �̂z quantifies the coupling of the
OTE pairing with the applied field, leading to the Ising spin
susceptibility and the zero value ensures that the B-phase stays
in the symmetry-protected topological phase with a gapless
Majorana cone. However, the value of �̂z(n̂,ϕ) in equilibrium
is determined by minimizing the thermodynamic potential.

We here numerically evaluate the surface spin susceptibility
with self-consistent solutions. For this purpose, we solve
the closed set of self-consistent equations, composed of the
quasiclassical equation (11) for the quasiclassical propagators
g(k̂,r; ωn), and the equations for quasiclassical self-energies

ν(k̂,r) and the pair potential �(k̂,r). The pair potential is de-
termined by the following gap equation with the quasiclassical
propagators,

dμν(r) = 3|g|〈k̂νfμ〉k̂,n − g̃D(1 + 3δμν)〈k̂νfμ〉k̂,n

− 3g̃D[〈k̂μfν〉k̂,n − 〈k̂νfμ〉k̂,n]. (63)

The pair interaction consists of the isotropic p-wave in-
teraction channel with the coupling constant g and the
anisotropic part originating from the dipole-dipole interaction
between 3He nuclei. The dipole interaction, which reduces
the SO(3)S×SO(3)L symmetry to SO(3)L+S, plays a crucial
role on the topological phase transition induced by a parallel
magnetic field [24]. The details on the derivation of the gap
equation are described in the Appendix.

The quasiclassical self-energies ν0 and νμ are associated
with the quasiclassical Green’s functions ĝ as

νj (k̂,r) = 〈A(j )(k̂,k̂
′
)gj (k̂,r; iωn)〉k̂

′ , (64)

where A(j )(k̂,k̂
′
) is expanded in terms of the Legen-

dre polynomials P� as A(j )(k̂,k̂
′
) = ∑

� A
(j )
� P�(k̂ · k̂

′
). The
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FIG. 2. (Color online) Momentum resolved surface density of
states N (k̂,z = 0; E) (a) and the OTE pair amplitude |Imf OF

z (k̂,z =
0; E)| (b). (c) Field dependence of the surface spin susceptibilities,
χ (0), χOP(0), and χEP(0) at T = 0.2Tc0. We find �̂z = 0 for H < Hc,
while �̂z �= 0 when H > Hc.

coefficients A(j=0) = As and A(j �=0) = Aa are the symmetric
and antisymmetric quasiparticle scattering amplitudes, which
are parametrized with the Landau Fermi liquid parameters,
F

s,a
� , through F

s,a
� = A

s,a
� /[1 − A

s,a
� /(2� + 1)], where F s

0 =
9.3, F a

0 = 5.39, F s
1 = −0.695, and F a

1 = −0.5. The numerical
scheme to solve the self-consistent equations with a specular
boundary condition in Eq. (32) is described in Refs. [47,54].
We fix the thickness to be D = 20ξ0.

Figures 2(a) and 2(b) show the momentum resolved surface
density of states

N (k̂,z; E) = − 1

π
Img0(k̂,z; ωn → −iE + 0+) (65)

and the OTE pair amplitude |Imf OF
z (k̂,z = 0; E)| at the surface

z = 0, respectively. Here, we set T = 0.2Tc0 and μnH = 0,
where �̂z = 0. It is clearly seen that there exists the gapless
surface bound state with the dispersion E(k‖) = �0k̂‖, which
is called the Majorana cone, where k̂‖ =

√
k̂2
x + k̂2

y is the
momentum in the surface. The momentum dependence of the
OTE pairing tracesN (k̂,z; E), which indicates that the surface
density of states is equivalent to the OTE pair amplitude,
described in Eq. (46). We also find f OF

x = f OF
y = 0, which

is consistent with Eq. (41).
The field dependence of the surface spin susceptibility

at T = 0.2Tc0 is plotted in Fig. 2(c). It is found that the
topological phase transition occurs at Hc = 0.001πTc0/μn ∼
30 G below which the dipole interaction favors �̂z = 0 and the
Z2 symmetry is preserved even in the presence of the magnetic

 0

 0.2
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 0.6

 0.8

 1.0

 0  0.2  0.4  0.6  0.8  1.0

FIG. 3. (Color online) Temperature dependence of the spatially
averaged spin susceptibilities, 〈χ〉, 〈χOP〉, and 〈χEP〉, at μnH =
0.009πTc0 and D = 20ξ0.

field. This is the topological phase with w = 2 protected
by the Z2 symmetry. At the critical field H = Hc, since �̂z

becomes nonzero, the B-phase undergoes the spontaneous
breaking of the Z2 symmetry which triggers the topological
phase transition without closing the bulk energy gap. It turns
out from Fig. 2(c) that the topological phase transition is
accompanied by the anomalous enhancement of the surface
spin susceptibility.

Figure 2(c) numerically confirms the prediction obtained
from the argument of the discrete symmetry in Sec. II C. The
surface spin susceptibility is divided into two contributions,
χ = 1 + χEP + χOP, where χEP and χOP are the contribution
from the even-parity and odd-parity pair amplitude, respec-
tively. The behavior of the contribution from the ETO pairing,
χOP, is understandable with the orientation of the d-vector
at the surface, because ĥ · f EF(0) contained in χOP indicates
that the d-vector at the surface is parallel to the applied field
for �̂z = 0 and d · d = 0 for �̂z. Therefore, the contribution
of the ETO pairing reduces the spin susceptibility, compared
with that in the normal 3He and the resultant value of χOP

is expected from the Yosida function, χ = 1 + χOP ≈ χbulk.
However, as the �̂z deviates from zero (i.e., H > Hc), the ETO
pair amplitude tends to yield ĥ · f EF = 0, corresponding to the
situation that the d-vector at the surface is normal to the applied
field. Thus as �̂z approaches �̂z = 1, the spin susceptibility
from the ETO pairing becomes zero (χOP → 0).

It is seen from Fig. 2(b) that there exist the OTE pairings
in the symmetry protected topological phase with �̂z = 0 (i.e.,
H < Hc). Although the OTE pairings are responsible for the
anomalous proximity effect [40,48], they cannot be coupled
to the applied field, ĥ · f OF = 0, as shown in Eq. (41). In the
nontopological phase with �̂z �= 0, however, the OTE pairing
contributes to the spin susceptibility.

As seen in Fig. 2(c), in contrast to χOP, the OTE pairings
(χEP) originating from the low-lying surface states enhance the
spin susceptibility and the resultant spin susceptibility at the
surface exceeds χN. We illustrate in Fig. 3 the temperature
dependence of the spatially averaged spin susceptibility,
〈χ〉 ≡ 1

D

∫ D

0 χ (z)dz, at μnH = 0.009πTc0 corresponding to
the nontopological phase. As discussed in Ref. [47], the T

dependence of 〈χ〉 in 3He-B confined to a slab exhibits the
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mirror plane

surface

FIG. 4. (Color online) Configuration of the specular surface and
mirror reflection plane. The unit vectors, ô and ŝ, are normal to the
mirror plane and surface, respectively.

nonmonotonic behavior where there exists a critical temper-
ature below which 〈χ〉 increases as T decreases. We now
identify that the increase of 〈χ〉 in the low-temperature regime
of the nontopological phase reflects the coupling of the OTE
pairing with the applied field, which in the topological phase
with H < Hc 〈χ〉 monotonically decreases as T decreases.
Hence, the anomalous behavior of the spatially averaged
spin susceptibility is understandable with the concept of the
odd-frequency even-parity pairing, which may be observed in
NMR experiments.

IV. TOPOLOGICAL CRYSTALLINE SUPERCONDUCTORS

In Secs. II and III, we have developed the theory on
the relation between odd-frequency pairing and anomalous
magnetic response of time-reversal-invariant superfluids. In
this section, we now extend this theory to time-reversal-
invariant superconductors that preserve the mirror reflection
symmetry. We first summarize the consequence of the mirror
reflection symmetry that imposes constraint on the Cooper pair
amplitudes emergent in the surface.

A. Mirror reflection symmetry and Ising spin anisotropy

Let us first suppose a topological crystalline superconductor
that retains the mirror symmetry. The pair potential is even or
odd under mirror reflection,

M�(k,r)MT = η�(k̂M,rM), η = ±. (66)

The mirror reflection operator M and the mirror reflected
momentum k̂M have been introduced in Sec. II A. We here
consider the configuration of the specular surface and mirror
reflection plane as displayed in Fig. 4, where the unit vectors, ô
and ŝ, are normal to the mirror plane and surface, respectively,
and we set ô ⊥ ŝ. The distance from the specular surface is
denoted by rs ≡ r · ŝ.

The mirror symmetry in Eq. (66) topologically protects
the zero-energy states that are bound to the surface of TRI
spin-triplet superconductors. For a superconducting state that
retains the mirror symmetry (66), the BdG Hamiltonian H (k)
satisfies the discrete symmetry in Eq. (6). Combining the

mirror symmetry Mη with the time-reversal symmetry T
and particle-hole symmetry C, we have the mirror chiral
symmetry [25,27,28]

{�,H(k0)} = 0, � = CT Mη, (67)

where k0 is defined as

k0 · ô = 0. (68)

The mirror chiral symmetry enables us to define the one-
dimensional winding number,

w(km) = − 1

4πi

∫ π

−π

dksTr[�H−1(k0)∂ks
H(k0)], (69)

where we set ks ≡ k · ŝ and

km ≡ k · m̂, m̂ = ŝ × ô. (70)

The nontrivial value of the winding number ensures the
existence of topologically protected zero energy states for the
momentum k ‖ m̂. As clarified in Sec. III and Refs. [38–43],
the topologically protected zero modes are identical to odd-
frequency Cooper pair amplitudes.

We now derive the relation between f (ωn) and f (−ωn) at
the surface rs = 0 from the mirror symmetry that imposes the
relation (21) on the quasiclassical propagator. In the case of the
3He-B, the relation is obtained in Eq. (36) from the π rotation
in the spin space. The spin rotation symmetry may be absent in
the case of superconducting states, while the mirror symmetry
arising from the crystalline symmetry can be preserved. Using
the mirror symmetry (21) and boundary condition (32) with
Eq. (16), one obtains the relation

f (k̂,rs = 0; −ωn) = −ηMf (−k̂Ms,rs = 0; ωn)MT. (71)

We have introduced the momentum scattered by the surface
and mirror plane k̂Ms = k̂M − 2ŝ(ŝ · k̂M). The constraint im-
posed by the mirror symmetry is then recast into

f (−k̂Ms,0; −ωn) = η[ f (k̂,0; ωn) − 2ô(ô · f (k̂,0; ωn))].
(72)

This restricts the component of ETO and OTE pair amplitudes
emergent in the surface of TRI spin-triplet superconductors.

Let us now focus on a particular segment in the momentum
space, k̂ ‖ m̂ and |km| < kF, in which the topologically pro-
tected Fermi arc and odd-frequency pair amplitudes exist. This
momentum segment is invariant under the mirror reflection and
scattering at the surface, k̂Ms = k̂. Using the relation Eq. (72)
and focusing on the momentum segment k̂ = k̂mm̂, one obtains
the explicit form of ETO pair amplitudes for the particular
region of momentum as

f EF
μ = 1

2 (1 + η)fμ − ηôμ (ô · f ) , (73)

where we set f EF
μ ≡ f EF

μ (k̂0,0; ωn) and fμ ≡ fμ(k̂0,0; ωn).
Similarly, the OTE pair amplitude is obtained from Eq. (72) as

f OF
μ = 1

2 (1 − η)fμ + ηôμ (ô · f ) . (74)

The ETO and OTE pairs emergent on the surface exhibit strong
anisotropy, since the projection of f EF and f OF onto the mirror
normal axis ô is determined by the parity of �(k̂,r) under the
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mirror reflection, η:

f EF · ô = 1
2 (1 − η)ô · f , (75)

f OF · ô = 1
2 (1 + η)ô · f . (76)

This implies that for η = + (η = −), the OTE pair amplitude
is forced by the mirror reflection symmetry to be parallel
(perpendicular) to the mirror normal axis, ô ‖ f OF (ô ⊥ f OF).

We illustrate that the anisotropy of the emergent ETO
and OTE pairs is responsible for the anisotropic magnetic
response on the surface. The generic form of the surface spin
susceptibility in Eq. (28) with Eqs. (29) and (30) is rewritten
to

χ ≈ χN + 1
2 (1 − η)χOP + 1

2 (1 + η)χEP, (77)

where the applied field is parallel to the mirror normal axis, ĥ ‖
ô. We here neglect the contributions from the momentum space
of k̂ ⊥ m̂. In the case of ĥ ⊥ ô where the applied magnetic
field lies in the mirror plane, the surface spin susceptibility is
recast to

χ ≈ χN + 1
2 (1 + η)χOP + 1

2 (1 − η)χEP. (78)

As discussed in Sec. III, the contribution from ETO pairs,
χEP, is always negative and suppresses the spin susceptibility
relative to χN. This behavior is understandable with the
orientation of the d-vector to the applied field. In contrast, χEP

is associated with the OTE pairs and anomalously enhances
the surface spin susceptibility from that of the normal state.
Equations (77) and (78) indicate that the contributions of ETO
and OTE pairs to the spin susceptibility are determined by
the parity of the mirror reflection symmetry, η, introduced
in Eq. (66). Hence, it is from Eqs. (77) and (78) that a TRI
spin-triplet superconductor may exhibit anomalous magnetic
response, when a mirror symmetry is preserved and the OTE
pair amplitudes emerge on the surface.

B. Application to the E1u scenario of UPt3

Let us now consider the E1u scenario of the heavy-fermion
superconductor UPt3 as a prototype of topological crystalline
superconductors [25,55,56]. In the E1u state, the orbital part
of the pair function in the B-phase that appears in the low
temperature and pressure region is isotropic in the a-b plane.
The d-vector is given by [55,56]

d(k̂,r) = �1(r)λa b̂ + �2(r)λb â (79)

for the lower field H < Hrot and

d(k̂,r) = �1(r)λa b̂ + �2(r)λb ĉ (80)

for the higher field regime H > Hrot of the B phase, where
we introduce λa,b = k̂a,b(5k̂2

c − 1) with k̂a ≡ k̂ · â, k̂b ≡ k̂ · b̂,
and k̂c ≡ k̂ · ĉ. The gap function on three-dimensional Fermi
sphere is displayed in Fig. 5. The E1u scenario was proposed
to understand the rotation of the d-vectors in the Knight shift
measurement for H ‖ c [57,58] and is in good agreement with
the recent measurement of the thermal conductivity that ob-
serves the spontaneous breaking of twofold rotational symme-
try in the C phase. Another candidate of the order parameters
of UPt3 has been proposed to be d(k̂) = ĉ(k̂a ± ik̂b)2k̂c in the
B phase [59,60]. Since this pairing state spontaneously breaks

FIG. 5. (Color online) A stereographic view of the gap function
(bottom) of the E1u state and the dispersion (top) of the surface
bound state, the Majorana valley. The topologically protected Fermi
arc connects to two-point nodes as shown in the central panel.

the time-reversal symmetry, the present argument based on
the time-reversal symmetry and the crystalline symmetry is
not applicable and the Ising spin anisotropy of the surface
bound states is absent.

In the E1u state, the configuration of both the d-vectors in
Eqs. (79) and (80) holds the mirror reflection symmetry with
respect to the a-c plane,

M�(ka,kb,kc)MT = �(ka,−kb,kc), (81)

which corresponds to the case of η = + in Eq. (66). As shown
in Fig. 5, the point nodes lie on the mirror plane. The mirror
operator is defined as M = iσb. This situation corresponds to
ô = b̂ and we set a specular surface to be normal to ŝ = â. The
mirror symmetric Hamiltonian of the UPt3-B,

MηH(k)Mη† = H(ka,−kb,kc), (82)

holds the chiral symmetry in Eq. (67). Using this Hamiltonian,
the one-dimensional winding number (69) is evaluated as

w(km) =
{

2 for k ‖ ĉ and |kc| < kF,

0 otherwise.
(83)

The bulk-edge correspondence ensures the existence of the
zero-energy Majorana valley two-point nodes; i.e., Esurf(k) =
0 for |kc| < kF and k ‖ ĉ. Therefore, as shown in Fig. 5, the
topologically protected Fermi arc appears in the surface of the
E1u state of the heavy-fermion superconductor UPt3-B.

As a generic consequence of the mirror chiral symmetry, the
topologically protected Fermi arc is responsible for the Ising
anisotropic magnetic response that the surface bound states
are gapped only by a magnetic field along the kb axis (kb ≡
k · b̂) [24,25,27]. This is understandable with the emergence
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of OTE pairing on the surface as discussed in Sec. IV A. It is
obvious from Eq. (76) that for ô = b̂ and η = +1, the OTE
pairing emergent on the surface is restricted by the mirror
reflection symmetry as

f OF = (
0,f OF

b ,0
)
, (84)

when a magnetic field is absent. Similarly, the ETO pairing
normal to the mirror reflection plane vanishes on the surface,
f EF · b̂ = 0. The anisotropy of the emergent ETO and OTE
pairings is responsible for the anisotropic spin susceptibility.
The surface spin susceptibility contributed from the topologi-
cally protected Fermi arc is obtained from Eq. (77) as

χ ≈ χN + χEP > χN, (85)

for ĥ ‖ b̂. The anomalous enhancement of the surface spin
susceptibility is attributed to the contribution of odd-frequency
Cooper pairs. In contrast, the surface spin susceptibility is
suppressed,

χ ≈ χN + χOP < χN, (86)

as long as the applied field lies in the mirror plane (ĥ ⊥ b̂).
The OTE pairing emergent on the surface is not coupled
to the applied field, since f OF · ĥ = 0 and only the ETO
pairing is responsible for the magnetic response. Since one
of the d-vectors is parallel to the applied field, the surface
spin susceptibility is rather suppressed from χN. Hence, the
topologically protected Fermi arc in the E1u state of the UPt3-B
possesses the Ising-like anisotropic magnetic response.

Finally, to confirm the generic argument on emergent
odd-frequency and Ising spin susceptibility, we here explicitly
solve the quasiclassical equation (11) for the d̂ = λa b̂ + λb â
state. Since the equation is block-diagonalized to the spin-up
and spin-down sectors, the quasiclassical propagator can be
reduced in the Nambu space to

g(0) = gτ z + i(f1τx − σzτyf2). (87)

Here, for simplicity, we neglect the Fermi liquid correction
term, ν = 0. The quasiclassical equation for f1, f2, and g is
then obtained as

1

2
vF · ∇

⎛⎝f1

f2

g

⎞⎠ =
⎛⎝ 0 −ε ∓�2

ε 0 �1

−�2 �1 0

⎞⎠ ⎛⎝f1

f2

g

⎞⎠ . (88)

The homogeneous differential equation with constant coeffi-
cients can be solved for a semi-infinite system with the specular
boundary condition,

g(0)(k̂,a = 0; ε) = g(0)(k̂,a = 0; ε), (89)

by using the procedure developed in Refs. [61,62].
For the d̂ = λa b̂ + λb â state, the quasiclassical propagator

g0(k̂,a; ε) for ε ∈ C is obtained as

g
(0)
0 (k̂,a; ε) = − πε

λ(k̂,ε)

[
1 − �2

1(k̂)

ε2 − �2
2(k̂)

e−2λ(k̂,ε)a/va

]
, (90)

where we set va = vF cos(α) with α ∈ [−π/2,π/2]. We have
here introduced

λ(k̂,ε) ≡
√

|d(k̂)|2 − ε2, (91)

where |d(k̂)| = d(k̂,a = ∞) denotes the excitation gap in the
bulk. The poles of the retarded propagator gR

0 (E) = g0(ε →
E + i0+) appear on the real axis

Esurf(k) = ±�0

∣∣5k̂2
c − 1

∣∣ k̂b = ±�0

k3
F

∣∣5k2
c − k2

F

∣∣ kb. (92)

This is the dispersion of the surface bound states, which is
displayed in Fig. 5. The zero-energy flat band appears for
kb = 0 and |kc| < kF as expected from the winding number in
Eq. (83).

The quasiclassical propagator still has nonzero compo-
nents,

g(0)
c (k̂,a; ε) = −π

�1(k̂)�2(k̂)

ε2 − �2
2(k̂)

e−2λ(k̂,ε)a/va . (93)

This component of the propagator responsible for the spin
current flow in the equilibrium is localized in the surface for
the low-energy states |ε| < |d(k̂)| but extended to the bulk for
|ε| > |d(k̂)|. The anomalous propagator, f = (fa,fb,fc), is
given as

f (0)
a (k̂,a; ε) = π�2(k̂)

λ(k̂,ε)
− π�2

1(k̂)�2(k̂)

λ(k̂,ε)

× �2
1(k̂) − ε2

λ2ε2 − �2
1(k̂)�2

2(k̂)
e−2λ(k̂,ε)a/va , (94)

f
(0)
b (k̂,a; ε) = π�1(k̂)

λ(k̂,ε)
(1 − e−2λ(k̂,ε)a/va )

+ iπ
ε�1(k̂)

(
�2

1(k̂) − ε2
)

λ2ε2 − �2
1(k̂)�2

2(k̂)
e−2λ(k̂,ε)a/va , (95)

and f (0)
c (k̂,a; ε) = 0. Hence, at the surface a = 0, one finds

f (0)
a (k̂,a = 0; ωn) = f EF(0)

a (k̂,a = 0; ωn), (96)

f
(0)
b (k̂,a = 0; ωn) = f

OF(0)
b (k̂,a = 0; ωn), (97)

and f OF(0)
a (k̂,a = 0; ωn) = f

EF(0)
b (k̂,a = 0; ωn) = 0. This is

consistent with Eq. (84), which is obtained from the generic
argument based on the mirror symmetry.

The emergent OTE pair amplitude is identical to the
zero-energy density of states on the surface. The momentum-
resolved density of states defined in Eq. (65) is obtained from
Eq. (90) as

N (k̂,x; E) = π

2

�2
1(k̂)

λ(E)
[δ(E − Esurf(k̂))

+ δ(E + Esurf(k̂))]e−2λ(E)a/va , (98)

for the bound states |E| < |d(k̂)|. The OTE pair amplitude
at E = 0 is equivalent for the momentum-resolved density of
states,

N (k̂,a; E = 0) = 1

π
|Re f OF(k̂,a; E = 0)|, (99)

where N (k̂,E) =
√

|d(k̂)|2 − E2. Hence, the zero-energy
states protected by the mirror symmetry are equivalent to the
OTE pair amplitude. The zero-energy density of states on the
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surface is responsible for the Ising anisotropy of the surface
spin susceptibility.

V. CONCLUSIONS

In this paper, we have examined the role of an order-two
discrete symmetry on emergent Cooper pair amplitudes and
magnetic response in time-reversal-invariant spin-triplet su-
perfluids and superconductors. We have first derived in Eq. (28)
the general form of spin susceptibility within the quasiclassical
formalism, which is composed of the contributions from the
odd-parity pairing and even-parity pairing, χOP and χEP. The
former is associated with ETO pair amplitudes that exist in
the bulk region, while the latter is the contribution from
the odd-frequency Cooper pair amplitudes that emerge in
the surface region as Andreev bound states. The odd-parity
contribution χOP � 0 is understandable with the orientation
of the d-vector to the applied field. In contrast, the coupling of
even-parity Cooper pair amplitudes to the applied filed gives
rise to the anomalous enhancement of the spin susceptibility,
χEP. From generic argument based on the symmetry and
topology of the Bogoliubov–de Gennes Hamiltonian, we have
clarified that an order-two discrete symmetry preserved by the
Hamiltonian imposes a strong constraint on the spin state of
emergent Cooper pair amplitudes at the surface, resulting in
the Ising-like anisotropy of surface spin susceptibility.

As promising examples of time-reversal-invariant topo-
logical superfluids and superconductors with an order-two
discrete symmetry, we have focused on the superfluid 3He-B
in Sec. III and heavy-fermion superconductor UPt3 in Sec. IV.
The discrete symmetry in the former (latter) system originates
from the π rotation of spin and orbital spaces (mirror reflection
symmetry). We have illustrated in Sec. III B that in the case of
3He-B, the spin state of the emergent Cooper pair amplitudes
is associated with the topological order �̂z that characterizes
the topological superfluidity of the 3He-B. In the symmetry
protected topological phase with �̂z = 0, the emergent OTE
pairing is not coupled to the applied field by the order-two
discrete symmetry and the surface spin susceptibility results
in χ = χN + χOP < χN. For �̂z > 0, however, the OTE pairing
is forced to couple to the applied field, which is responsible
for a large paramagnetic response as χ = χN + χEP > χN.
By numerically solving the quasiclassical equations, it is
shown that there is the critical field beyond which the surface
spin susceptibility is anomalously enhanced. This anomalous
behavior is attributed to the OTE pairing enforced by the order-
two discrete symmetry. The anomalous spin susceptibility is
detectable with the NMR measurement in 3He-B confined in
a slab geometry under a parallel magnetic field [47].

We have also illustrated that owing to the mirror reflection
symmetry, the E1u state [25,55,56] of the UPt3-B yields
the Ising-like anisotropy of the surface spin susceptibility.
The anisotropic magnetic response protected by the mirror
symmetry is not observed in the E2u state that is another
possible scenario for the UPt3-B [59,60]. Since the E2u state
spontaneously breaks time-reversal symmetry, in the case of
the E1u state, the tunneling conductance might be sensitive to
the tilting angle of the magnetic field from the mirror reflection
plane. This theory is applicable to the A1u and Eu states
of CuxBi2Se3, which are the three-dimensional topological

superconducting states preserving the mirror reflection sym-
metry [30,31]. In this paper, however, we do not take account
of the magnetic field effect coupled to the orbital motion of
electrons. Full understanding of the tunneling conductance in
the UPt3-B still remains as a future problem.
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APPENDIX: GAP EQUATION

We here derive the gap equation (63) for superfluid 3He,
where the pairing interaction is contributed from a p-wave
interaction and magnetic dipole-dipole interaction between
3He nuclei. We start with the gap equation in the Nambu-
Gor’kov formalism,

�ab(k,r) = T
∑

n

∫
dk

(2π )3
Vcd

ab (k,k′)Fcd (k′,r; ωn), (A1)

where the repeated Roman indices imply the sum over the
spins, a,b,c,d = ↑,↓. The anomalous Green’s functions Fab

is defined from Eq. (9) as

G(k̂,r; ωn) =
( G(k,r; ωn) F(k,r; ωn)

−F̄(k,r; ωn) −Ḡ(k,r; ωn)

)
. (A2)

At the low-pressure limit, the pair interaction Vγ δ

αβ (k̂,k̂
′
) for

3He atoms is described as

Vcd
ab (k,k′) = 3|g|k̂μk̂′

μδacδbd − Qμν(k,k′)σμ
acσ

ν
bd . (A3)

The first term is an isotropic p-wave interaction with SO(3)S×
SO(3)L ×U (1) and the second term arises from the dipole-
dipole interaction between 3He nuclei. The function Qμν(k̂,k̂

′
)

is obtained from

Qμν(k,k′) = 4μ2
nR

∫
δμν − 3r̂μr̂ν

r3
e−i(k−k′)·rd r, (A4)

where the factor R includes the contributions of high-energy
quasiparticles [63,64].

Using the partial wave explanation with the �th spher-
ical Bessel function j�(z) and the spherical harmonic
functions Y�,m, eik·r = 4π

∑
�,m i�j�(kr)Y∗

�,m(k̂)Y�,m(r̂), the

anisotropic part Qμν(k̂,k̂
′
) is expanded in terms of the partial

wave series

Qμν(k,k′) = (4π )2
∑
�,�′

i�
′−�

∑
m�,m�′

c��′(k,k′)

×〈�,m�|Qμν |�′,m�′ 〉Y�,m�
(k̂)Y∗

�′,m�′ (k̂
′
). (A5)

Here, c��′(k,k′) describes the coupling constant,

c��′(k,k′) ≡
∫ ∞

0

1

r
j�(kr)j�′(k′r)dr. (A6)
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The anisotropy of the p-wave interaction arises from
〈�,m�|Qμν |�′,m′

�〉, which is given by

〈�,m�|Qμν |�′,m�′ 〉 ≡
∫

d r̂Y∗
�,m�

(r̂)Y�′,m�′ (r̂)(δμν − 3r̂μr̂ν).

(A7)

Hence, it is seen from Eqs. (A5) and (A7) that the
dipole interaction may induce the higher partial waves (�>1).
However, since the pairing interaction between 3He atoms is
dominated by the SO(3)S×SO(3)L symmetric p-wave channel
and the dipole interaction is regarded as a small perturbation,
we take account of only the p-wave contribution of the dipole
interaction,

Qμν(k,k′)σμ
acσ

ν
bd ≈ g̃Dkμ

[
ση

acσ
η

bd − 3
2

(
σμ

acσ
ν
bd + σ ν

acσ
μ

bd

)]
k′
ν,

(A8)

where g̃D ≡ 24π
5 γ 2R. Substituting Eq. (A8) into Eq. (A3), the

gap equation (A1) is recast into

dμν(r) = −3|g|〈k̂νFμ〉k̂,n + g̃D(1 + 3δμν)〈k̂νFμ〉k̂,n

+ 3g̃D[〈k̂μFν〉k̂,n − 〈k̂νFμ〉k̂,n], (A9)

where dμ(k,r) = dμν(r)k̂ν = − 1
2 Tr[iσyσμ�(k,r)]. In the

frame of the quasiclassical theory, the gap equation (A1) is
expressed in terms of the quasiclassical propagators fμ as

dμν(r) = 3|g|〈k̂νfμ〉k̂,n − g̃D(1 + 3δμν)〈k̂νfμ〉k̂,n

− 3g̃D[〈k̂μfν〉k̂,n − 〈k̂νfμ〉k̂,n]. (A10)

The dipole interaction characterized with the effective cou-
pling constant g̃D induces distortion to the isotropic p-wave
interaction with the coupling constant g.

Let us now show that for spatially uniform dμν , the
gap equation (A10) reproduces the Leggett angle in the
thermodynamic limit. The quasiclassical propagator g at
the limit is obtained from Eq. (11) with the normalization
condition as

g(k̂,r; ωn) = −π
iωnτ 0 + �(k̂)√

ω2
n + |d(k̂)|2

, (A11)

where for simplicity a magnetic field is assumed to be absent.
Then, the gap equation (A10) is recast into

dμν

(
1 − 3|g|J (2)

ν

)
= −g̃D

(
3δμνdγγ J (2)

γ − 2dμνJ
(2)
ν + 3dνμJ (2)

μ

)
, (A12)

where

J (n)
μ ≡

〈
k̂n
μ

π√
ω2

n + |d(k̂)|2

〉
k̂,n

. (A13)

We regard the contribution of the dipole interaction as a small
perturbation, which reduces the gap equation (A12) to

dμν

(
1 − 3|g|J (2)

ν

) = − g̃D

3|g| (3δμνdγγ − 2dμν + 3dνμ),

(A14)

where the higher order terms on g̃D are neglected. Without
loss of generality, the rotation axis is set to be along the z

axis in the thermodynamic limit. Then, the order parameter
of the B phase distorted by the dipole interaction is described
as dμν = Rμν(n̂z,ϕ)�ν , where �x = �y ≡�‖ and �z = �⊥.
Substituting this order parameter into Eq. (A14), one finds
the set of three equations for the amplitudes �‖ and �⊥ and
angle ϕ,

�⊥
�‖

(
1 − 3|g|J (2)

z

) = −g̃DJ (2)
z

(
3 cosϕ + 2

�⊥
�‖

)
, (A15)

1 − 3

2
|g|(J (0) − J (2)

z

) = g̃D

2

(
J (2)

z − J (0)
)(

7 cosϕ + 3
�⊥
�‖

)
,

(A16)

1 − 3

2
|g|(J (0) − J (2)

z

) = −5

2
g̃D

(
J (0) − J (2)

z

)
. (A17)

Equations (A16) and (A17) determine the relative angle ϕ of
the rotation matrix within the lowest order on g̃D as

ϕ = cos−1

(
−1

4

�⊥
�‖

)
. (A18)

This is consistent to the so-called Leggett angle that was
obtained in Refs. [65–68]. The orientation of the n̂-vector
is determined by the competition between the dipole in-
teraction, magnetic field, and pair breaking effect at the
surface.

We also microscopically determine the angle ϕ that min-
imizes the thermodynamic potential with the self-consistent
solutions in a slab geometry. In the Ginzburg-Landau regime,
the dipole energy density fdip is obtained as [46]

fdip = 1
5λDNF

(
d∗

μμdνν + d∗
μνdνμ − 2

3d∗
μνdμν

)
, (A19)
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FIG. 6. (Color online) Field dependence of the stable Leggett
angle ϕ for H ‖ ẑ at T = 0.2Tc0 and D = 20ξ0, where the n̂ vector
is aligned to the ẑ axis. The first-order A-B phase transition occurs
at μnH/πTc0 ≈ 0.09 corresponding to 0.36 T. The inset of (a) shows
the D dependence of the Leggett angle ϕ at H = 0 and T = 0.2Tc0,
where the solid curve is obtained from Eq. (A22).
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where λD a dimensionless dipole coupling parameter
and approximately independent of pressure. The value is
estimated as λD ∼ 5 × 10−7 [46]. For simplicity, we here
consider the case of a perpendicular magnetic field H ‖ ẑ
in a slab geometry. In this situation, the order parameter is
given as

dμν(z) = Rμη(n̂,ϕ)[�‖(z)(δη,ν − ẑηẑν) + �⊥(z)ẑηẑν],

(A20)

where ẑ is the unit vector normal to the surface. For H ‖ ẑ,
the n̂-vector is always oriented to the surface normal direction,
regardless of the value of H . Substituting this order parameter
to Eq. (A19), one finds that the local minimum of Fdip ≡∫

fdipdz exists at [27]

n̂ = (0,0,1) (A21)

and

ϕ = cos−1

(
−1

4

〈�‖(z)�⊥(z)〉
〈�2

‖〉

)
. (A22)

This solution is obtained by solving ∂Fdip/∂ n̂ = 0 and
∂Fdip/∂ϕ = 0. We have here introduced the spatial average

over the slab, 〈· · · 〉 = D−1
∫ D

0 · · · dz.
The main panel of Fig. 6 shows the field dependence of ϕ for

H ‖ ẑ and the inset is the D dependence at zero fields, where
we fix T = 0.2Tc0 and D = 20ξ0. As seen in the inset of Fig. 6,
the D dependence of ϕ at zero fields is in good agreement with
Eq. (A22) in the basis of the Ginzburg-Landau analysis. The
angle ϕ approaches zero at the critical thickness D ≈ 9.8ξ0 at
which the A-B phase transition occurs. As seen in the main
panel of Fig. 6, the angle ϕ is relatively insensitive to the
increase of the applied field H .
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