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Role of the core energy in the vortex Nernst effect
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We present an analytical study of diamagnetism and transport in a film with superconducting phase fluctuations,
formulated in terms of vortex dynamics within the Debye-Hückel approximation. We find that the diamagnetic
and Nernst signals decay strongly with temperature in a manner that is dictated by the vortex core energy. Using
the theory to interpret Nernst measurements of underdoped La2−xSrxCuO4 above the critical temperature regime,
we obtain a considerably better fit to the data than a fit based on Gaussian order-parameter fluctuations. Our results
indicate that the core energy in this system scales roughly with the critical temperature and is significantly smaller
than expected from BCS theory. Furthermore, it is necessary to assume that the vortex mobility is much larger
than the Bardeen-Stephen value in order to reconcile conductivity measurements with the same vortex picture.
Therefore, either the Nernst signal is not due to fluctuating vortices, or vortices in underdoped La2−xSrxCuO4

have highly unconventional properties.
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I. INTRODUCTION

Over the past decade, the Nernst effect has become a
widely used tool in the study of strongly correlated electronic
systems. The Nernst signal, eN = Ey/(−∂xT ), defined by the
ratio between a measured electric field Ey and a transverse
applied temperature gradient ∂xT in an electrically isolated
system subjected to an external magnetic field, Hz, is typically
very small in nonmagnetic normal metals. Conversely, a
much stronger effect may arise in the flux-flow regime of
superconductors, due to the transverse electric fields induced
by the motion of vortices down the temperature gradient.
Consequently, the observation of a large Nernst signal in the
pseudogap state of the cuprates [1–4] has been taken as evi-
dence that these systems support vortexlike superconducting
fluctuations over a wide temperature range above their critical
temperature, Tc. However, others have attributed the large
Nernst signal to the response of quasiparticles in a symmetry-
broken state competing with superconductivity [5–7].

Despite its appealing nature, the vortex-based picture has
not been previously justified by an analytical treatment.
However, several studies have calculated the Nernst signal
arising from superconducting order-parameter fluctuations.
The contribution of BCS Gaussian fluctuations to the ther-
moelectric response of the normal state near Tc was obtained
in Refs. [8,9]. This result was subsequently extended to a
wider range of temperatures and magnetic fields [10–12], as
well as to scenarios beyond that of BCS fluctuations [13–15].
Experimentally, good agreement with the Gaussian theory
was found in amorphous Nb0.15Si0.85 films [16] and in
overdoped, but not underdoped, cuprates [8] (see, however,
Ref. [17]).

A different approach, more pertinent to the present study,
was taken by Podolsky et al. [18], who built upon the
premise [19] that in underdoped cuprates, superconductivity is
destroyed at Tc by strong phase fluctuations, whereas pairing
correlations survive up to a considerably higher scale Tp.
Ignoring superconducting amplitude fluctuations, the authors
calculated the Nernst signal in a stochastic two-dimensional
(2D) XY model via numerical simulations and a high-
temperature expansion. In addition, they devised a simulation

method to calculate the thermoelectric response based on
vortex dynamics [20].

In this paper, we aim to bridge the aforementioned theo-
retical gap and present an analytical study of diamagnetism
and transport in an extreme type-II superconducting film
that is formulated directly in terms of vortices. We focus on
temperatures above Tc, where there is a finite density, nf , of
free, unbound vortices. Our approach, which treats the vortex
interactions within a Debye-Hückel approximation, is inspired
by Ambegaokar et al. [21], who considered vortex dynamics
in the context of superfluid films. A similar route was taken in
the study of the resistive transition of superconducting films
by Halperin and Nelson [22].

Our treatment identifies the vortex core energy εc as an
important energy scale that controls the strong temperature
dependence of the fluctuation signals. Using the theory, we are
able to obtain a fit to the transverse thermoelectric response of
underdoped La2−xSrxCuO4 (LSCO) that is superior to the one
based on Gaussian fluctuations. The available data imply that
both εc and Tc share a similar doping dependence, with εc ≈
4 − 5Tc. Such values are significantly lower than the Fermi
energy, which is the expected εc from BCS theory. Moreover,
in order to reconcile the vortex picture with conductivity data,
one needs to assume that the vortex mobility is much larger
than the Bardeen-Stephen value [23]. Thus, unless the strong
Nernst and diamagnetic signals in underdoped LSCO are not
due to vortices, it appears that the vortex core is unconventional
and plays an important role in this system.

The paper is organized as follows. The vortex Hamiltonian
and dynamics are introduced in Sec. II, as well as some results
based on the Debye-Hückel approximation. In Sec. III, we cal-
culate the equilibrium magnetization currents; in Sec. IV, we
calculate the electric conductivity; and in Sec. V, we calculate
the thermoelectric transport coefficients. We conclude with a
discussion and comparison to Nernst data in Sec. VI. Some
details of the calculation are relegated to the Appendixes.

II. VORTEX HAMILTONIAN AND DYNAMICS

A 2D superconductor, at temperatures well below Tp , where
the order parameter amplitude is frozen, can be described by
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an XY -type Hamiltonian density of a phase field θ coupled via
its charge, (2e < 0), to an electromagnetic vector potential A,
and a constant superfluid density ρs :

H = (1 + ψ)

[
ρs

2

(
∇θ − 2e

�c
A

)2

+
∑

i

εcδ(r − ri)

]
. (1)

We assume that only vortices contribute to the otherwise
uniform ∇θ . A vortex i of vorticity ni = ±1 at coordinates
ri = (xi,yi) contributes

∇θi(r) = ni ẑ × ∇ ln
|r − ri |

r0
= ni

ẑ × (r − ri)

|r − ri |2 , (2)

where r0 is the vortex core radius and ẑ is a unit vector
perpendicular to the plane. The continuum model and vortex
configuration, Eqs. (1) and (2), are valid at scales longer than
r0. Thus, a region of radius r0 around ri is implicitly removed
from the first term in Eq. (1). Its energy is given by the vortex
core energy [24], εc, which we assume to be constant across
the sample. Following Luttinger [25], we have introduced a
“gravitational” field ψ(r) in order to study the response of the
system to a temperature gradient.

For concreteness, we consider a superconducting strip of
infinite extent along the y direction, and of finite width
L in the x direction. When needed, a constant transverse
temperature gradient is applied via ψ(r) = ψ ′x, and a uniform
electric field E = Ey ŷ is applied along the strip. Working
in the extreme type-II limit, we assume the presence of a
uniform perpendicular magnetic field B ẑ, and we choose the
gauge A = A0 + AE , where A0 = Bxŷ, and E = −∂tAE/c.
By symmetry, the average (over the vortices’ positions) phase
gradient 〈∇θ〉 is directed along the strip and is independent of
the y coordinate.

We approach the model given by Eq. (1) within a mean-field
Debye-Hückel approximation, in which correlations between
vortices are ignored. This is possible at temperatures higher
than the Beresinskii-Kosterlitz-Thouless (BKT) transition
temperature TBKT, for length scales longer that the Debye-
Hückel screening length rs , where vortex interactions are
screened by thermally excited vortices. The effective descrip-
tion at such scales is still given by Eq. (1), provided that ρs and
εc assume renormalized values, which include contributions
from the superflow at shorter distances [26]. Consequently,
these parameters become temperature-dependent. The dy-
namics is introduced into the model by assuming that the
probability Pi(ri ,t) to find the ith vortex at position ri

and time t obeys a mean-field Fokker-Planck equation (see
Appendix B for more details). The corresponding probability
current density for vortex i is given by [27]

Ji(ri ,t) = −μPi(ri ,t) 〈∇iH 〉i − μT ∇iPi(ri ,t), (3)

where H = ∫
d2r H, μ is the vortex mobility, T is the temper-

ature (here and throughout, kB = 1), ∇i is the gradient with
respect to ri , and 〈· · ·〉i denotes an average over the position
of all vortices besides ri . Near equilibrium, this reproduces
the mean-field Debye-Hückel theory, provided one ignores
fluctuations by taking 〈(∇θ )2〉 ≈ (〈∇θ〉)2. The residual effect
of fluctuations is accounted for by renormalizing ρs and εc [26].

For convenience, we define the mean field u(x) ≡
〈∂yθ〉 /2π and a(x) ≡ Ay/φ0, where φ0 = π�c/e is the flux

quantum. Using these definitions, we show in Appendix B that
the x component of the probability current density of vortex i

is given by

J i
x(x) = μPi(x)[4π2ρsni(1 + ψ)(u − a) − εc∂xψ]

−μT ∂xPi(x). (4)

Similarly, the average vorticity current density along x is

J v
x (x) =

∑
i

niJ
i
x(x)

= 4π2ρsμnf (1 + ψ)(u − a) − μεc∂xψ∂xu − μT ∂2
xu,

(5)

where ∂xu(x) = n(x) = ∑
i niPi(x) is the mean vorticity,

whose bulk value, as shown below, is set by B, and nf (x) =∑
i Pi(x) is the density of free vortices. Within the equilibrium

Debye-Hückel approximation, it is possible to show (see
Appendix A) that

nf �
√

4r−4
0 e−2εc/T + n2, (6)

which establishes a strong dependence of nf on T for small
B. The average y component of the electric current density
Je = −c〈δH/δA〉 is given by

J e
y = 4π2ρsc

φ0
(1 + ψ)(u − a). (7)

Thus, the first term in Eq. (4) is just the vortex drift in response
to the Magnus force it experiences in an electric current J e

y .
Note that all free vortices, and not only those responsible for
the excess vorticity, contribute to the vorticity current, Eq. (5),
via their response to the Magnus force. As a result, the strong
temperature dependence of nf is also reflected in the transport
coefficients.

III. EQUILIBRIUM MAGNETIZATION

In equilibrium, ψ = 0, Ey = 0, and we must have J v
x = 0.

We therefore need to find u0(x), which solves the following
equation:

4π2ρsnf (u0 − n̄x) − T ∂2
xu0 = 0, (8)

with n̄ defined such that a(x) = Bx/φ0 = n̄x. We solve this
equation, for small B, by choosing boundary conditions in
which the vorticity n(x) = ∂xu(x) vanishes at x = 0 and
x = L. In terms of the Debye-Hückel screening length, r−2

s =
4π2ρsnf /T , we find

u0(x) = n̄

[
x + rs

e−x/rs − e−(L−x)/rs

1 + e−L/rs

]
. (9)

The deviation of u0 from n̄x near the edge leads, according to
Eq. (7), to edge currents. Their integral gives rise to an average
magnetization density

Mz = 1

cA

∫
dy

∫ L

0
dx xJ e

y � − T B

φ2
0nf

, (10)

where A is the area of the strip. Here, and in the following, we
ignore corrections of order O(rs/L). Similar expressions to
Eq. (10) were obtained in several previous studies [22,29,30].
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IV. ELECTRIC CONDUCTIVITY

To study the linear response of the system to a weak
perturbing field, Ey(ω)e−iωt , we need to obtain the dynamics
of u(x,t). By employing translational invariance in the y

direction, one can show (see Appendix C) that

∂u

∂t
= −J v

x . (11)

This is a local version of the equation used in Refs. [21,22].
Solving it using Eq. (5), we find in the bulk u(x,t) = n̄x +
u(ω)e−iωt , where

u(ω) = 1

1 − iωτ

cEy(ω)

iωφ0
, (12)

and where we have introduced the relaxation time 1/τ =
4π2ρsμnf . Equation (7) then implies an electric conductivity

σs(ω) = 4e2

h

1

hμnf

1

1 − iωτ
. (13)

This result is identical to the conductivity obtained by Halperin
and Nelson [22] for temperatures above Tc.

V. THE THERMOELECTRIC COEFFICIENTS

For systems with particle-hole symmetry or when su-
perconducting fluctuations dominate, the Nernst signal is
given by eN = ραxy = −ραyx , where αyx is defined by
J e

y = αyx(−∂xT ) [4]. Luttinger has shown [25] that αyx can
be deduced from the response to a “gravitational” field ψ

according to the relation J e
y = T αyx(−∂xψ). Thus, we solve

Eq. (11) in the presence of ψ(x,t) = ψ ′(ω)xe−iωt . By writing
u(x,t) = u0(x) + u(ω)e−iωt , where u0(x) is the equilibrium
solution of Eq. (8), we find that to first order in ψ ′(ω),

ū(ω) = 1

L

∫ L

0
dx u(x,ω)

= −Mzφ0nf + εcn̄

1 − iωτ

ψ ′(ω)

4π2ρsnf

. (14)

Equation (7) leads then to the average electric current density

J e
y (ω) = 1

A

∫
dy

∫ L

0
dx J e

y (x,ω)

� −Mzφ0nf + εcn̄

1 − iωτ

cψ ′(ω)

nf φ0
+ cMzψ

′(ω). (15)

The response of u(x,ω) is given by the first term above.
An additional contribution, of opposite sign, comes from
magnetization currents near the edges. Contrary to some
previous studies [8,18], where this additional contribution had
to be subtracted [31], in our treatment its opposite effect is
explicitly included in the second term. In the dc limit, ω → 0,
we therefore obtain

αyx = −2ekB

h

B

nf φ0

εc

kBT
= εc

T

cMz

T
. (16)

This result should be compared with the constant ratio between
αyx and cMz/T , which was found for high temperatures in
Refs. [8,18,20].

Next, we consider the linear-response ratio α̃xy between
an applied electric field and a transverse heat current density,
JQ

x = α̃xyEy . We deduce JQ, which in our model equals the
energy current density, from the conservation equation ∂tH +
∇ · JQ = Je · E. Its source term originates from the explicit
time dependence of H via A. The result

JQ = −ρs

〈
∂θ

∂t

(
∇θ − 2e

�c
A

)〉
+

∑
i

εc Ji (17)

is consistent with the form used by Ussishkin et al. [8],
once modified to include the energy current associated with
the vortex cores. If we additionally assume that the long
superconducting strip is periodic in the y direction, then
the x component of the first term in Eq. (17) must vanish
by symmetry, and we find that Onsager’s relation α̃xy(B) =
T αyx(−B) is obeyed.

VI. DISCUSSION

Often (see Refs. [1,4] and references therein), a phe-
nomenological quantity called the vortex transport entropy,
sφ , is invoked in order to relate the temperature gradient to
the thermal force acting on a vortex, i.e., f = −sφ∇T . Based
on Eq. (4) and Luttinger [25], we identify sφ = εc/T . For
low temperatures at which there are no thermally excited
vortices and the flux-flow resistivity is the dominant form of
damping, one can show by neglecting vortex interactions [4]
that αyx = −csφ/φ0. When taken together with the above
identification of sφ , this result is consistent with Eq. (16),
since at low temperatures n̄f φ0 = B.

As the temperature is raised through TBKT, the density of
free vortices, nf , rapidly increases. Our results, Eqs. (6), (10),
and (16), indicate that both Mz and αyx should exhibit a
consequent strong reduction with temperature, much faster
than the 1/T ln(T/Tc) decay expected from Gaussian fluctua-
tions [8,11,12]. To look for such behavior in the cuprates, we
compare Eq. (16) divided by the LSCO layer separation, d =
6.5 Å, α3D

yx = αyx/d, with underdoped LSCO data. According
to Eq. (6), nf is determined by the renormalized vortex core
energy εc, which reflects fluctuations at distances below rs

and is temperature-dependent. For weak magnetic fields and
in the critical regime above TBKT, this renormalization leads to
nF ∼ exp(−b/

√
T − TBKT) [26], while at high temperatures

nF ∼ exp[−εc/(T − b̃)] [26,29]. Here b and b̃ are constants
and εc is the bare core energy. The lack of detailed knowledge
about the full temperature dependence of εc allows for
considerable freedom in the fitting procedure. To constrain
the fit, and since we are only interested in a rough estimate
of εc, we choose to consider a constant εc and also set
φ0/2πr2

0 = 50 T [18]. Furthermore, we concentrate on the
limit B → 0 and temperatures sufficiently above Tc, where
the renormalization effects are expected to be small, but low
enough so that vortices are distinct objects, i.e., r2

0 nf � 1.
Figure 1 depicts the measured B → 0 limit of −α3D

yx /B for
LSCO samples with x (Tc) = 0.07 (11 K) ,0.10 (27.5 K), and
0.12 (29 K). The solid color lines are the theoretical fits in
the temperature window, 1.1Tc < T � 3Tc, with a constant
εc as the only free fitting parameter. From these curves, we
find εc ≈ 58, 114, and 143 K for the different doping levels.
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FIG. 1. (Color online) − limB→0 α3D
yx /B = (ν − νn) of under-

doped La2−xSrxCuO4, where ν is the Nernst coefficient, νn is
a subtracted background due to quasiparticles, and ρ is the in-
plane resistivity. The data for x = 0.07,0.10 were extracted from
Refs. [2,3,32], and for x = 0.12 from Ref. [18]. The data were fitted
to Eqs. (16) (solid color curves). In the regime indicated by the dashed
curves, r2

0 nf > 0.35, and the theory is not expected to be applicable.
The solid black curves depict the best fit to the Gaussian fluctuations
theory [11,12].

Comparable but somewhat larger values, εc ≈ 8Tc, were found
by analyzing penetration depth measurements in underdoped
Y1−xCaxBa2Cu3O7−δ bilayer films [33]. For comparison, we
also include the best fit to the data based on the theory
of Gaussian fluctuations [11,12]. Clearly, the data exhibit a
faster decay than the Gaussian theory above the critical region
around Tc. In addition, we fitted the data to the high-T result
αyx ∝ T −4 of the stochastic XY model [18]. We obtained a
good fit for x = 0.12, but we found an overestimation of the
data in the range 1.1Tc < T < 2Tc (3Tc) for x = 0.10 (0.07).

The Nernst effect onset temperature, Tonset, is defined as the
temperature for which the Nernst coefficient ν = eN/B goes
below a threshold value, typically around ν = 4 nV/K T. Such
levels can be reached using Eq. (16) only if one takes r2

0 nf ∼ 1.
This, however, is beyond the validity of our theory. Indeed, we
find that the experimental data begin to deviate from the theo-
retical curves at temperatures where r2

0 nf > 0.35, indicated by
dashed lines in Fig. 1. Thus, although our theory agrees with
the Nernst measurements up to T ≈ 3 Tc, it cannot account for
Tonset, which is probably controlled by a combination of lattice
effects [18] and amplitude fluctuations [8].

The Nernst signal in the cuprate pseudogap regime exhibits
a maximum as a function of the magnetic field, which shifts
to higher fields with increasing temperature [4,17]. While
we do not have a theory for the maximum, we note that
Eqs. (6) and (16) imply a crossover, set by the condition
B/φ0 ∼ nf (T ,B = 0), from a linear-B dependence of αyx at
weak fields toward saturation at higher fields. Across this
scale, magnetic field-induced vortices dominate, screening
is reduced, and correlation effects are enhanced, leading
potentially to the suppression of αyx .

In conclusion, we showed that within the vortex picture
of phase fluctuating superconductors, εc plays an essential

role in the thermoelectric response. The vortex core energy
was also found to be important in determining Tc of layered
superconductors [34]. Uncovering the role played by εc in other
phenomena may help in identifying the physics underlying
the different temperature scales observed in the cuprates.
Equally pertinent is gaining an understanding of the factors
that determine εc itself. Here we briefly mention the need
for a model of “cheap vortices,” in which vortices support a
state close in energy to the superconducting phase [35–38]. It
seems to us that the checkerboard state observed around vortex
cores [39] is a natural candidate.

Nevertheless, if the Nernst signal in underdoped cuprates
is, in fact, due to thermally excited vortices, one must
also understand why experiments do not show signatures of
fluctuation-enhanced conductivity over a similar temperature
range. More specifically, if the vortex mobility is given by the
Bardeen-Stephen result [23], μ ≈ 8πe2r2

0 /h2σn, then Eq. (13)
gives a fluctuation contribution σs = σn/2πr2

0 nf , where σn

is the normal state conductivity. This would imply, using
our estimate εc ≈ 4 − 5Tc, from fitting the LSCO Nernst
data, and Eq. (6), that σs > σn for T < 2Tc, in contradiction
to experiments. To avoid such a contradiction within our
model, we must therefore assume that μ is much larger
than the Bardeen-Stephen value, thereby reducing σs while
not affecting Mz and αyx . A similar conclusion regarding
μ was reached based on THz time-domain spectroscopy
in LSCO [40]. The above discussion further indicates that
understanding the vortex core in the cuprates may call for
physics beyond standard BCS theory.
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APPENDIX A: DEBYE-HÜCKEL APPROXIMATION
IN EQUILIBRIUM

At high temperatures, it is possible to study the vortex
Hamiltonian within the Debye-Hückel approximation. This
approximation is best formulated using a variational mean-
field approach in which the density matrix is factored into a
product of local probabilities, ρr, of the local vorticity nr =
0,±1,

ρ =
∏

r

ρr(nr), (A1)

with the effect that the entropy is given by

S = −Trρ ln ρ = −
∑

r

∑
nr

ρr(nr) ln ρr(nr). (A2)

In addition, one approximates the average Hamiltonian by

〈H 〉 ≈ 1

2
ρs

∫
d2r

(
〈∇θ〉 − 2e

�c
A

)2

+ εc

∑
r

〈|nr|〉 , (A3)
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while ignoring the contribution coming from fluctuations in
∇θ ,

〈Hfluc〉 = 1

2
ρs

∫
d2r[〈(∇θ )2〉 − 〈∇θ〉2]. (A4)

The average phase gradient 〈∇θ〉 is given by

〈∇θ (r)〉 = ∇θ +
∑

r′
〈nr′ 〉 ẑ × (r − r′)

(r − r′)2
, (A5)

where ∇θ is the uniform part of ∇θ (r), which does not rise
from vortices, and 〈nr〉 = ∑

nr
ρr(nr)nr.

The density matrix, ρr(nr), itself is determined by minimiz-
ing the free energy F = 〈H 〉 − T S, subject to the constraint∑

nr
ρr(nr) = 1. This amounts to solving

∂F

∂ρr(nr)
= ϕ(r)nr + εc|nr| + T ln ρr(nr) = α, (A6)

where

ϕ(r) = ρs

∫
d2r ′

[
〈∇′θ (r′)〉 − 2e

�c
A(r′)

]
· ẑ × (r′ − r)

(r′ − r)2
.

(A7)

As a result, we find

ρr(nr) = 1

zr
e−βεc |nr|−βϕ(r)nr , (A8)

with β = 1/T (kB = 1 is used throughout), and

zr = 1 + e−βεc 2 cosh βϕ(r). (A9)

For small e−βεc this yields

〈|nr|〉 ≈ e−βεc 2 cosh βϕ(r) (A10)

and

〈nr〉 ≈ −e−βεc 2 sinh βϕ(r). (A11)

Eliminating ϕ gives

〈|nr|〉 =
√

4e−2βεc + 〈nr〉2, (A12)

which, after dividing through by r2
0 , results in Eq. (6).

APPENDIX B: VORTEX DYNAMICS

1. Mean-field Fokker-Planck equation

To formulate the dynamics of the vortices in our model,
we assume that the number of vortices is the same as in
equilibrium, and that their vorticity is fixed. The events of
vortex-antivortex creation and annihilation are important for
nonlinear response at Tc, but they have a negligible effect on
linear response and are therefore ignored. Thus, it is possible
to formulate vortex dynamics using a Fokker-Planck equation
for the positions of all vortices, {ri}, each with a given vorticity
{ni = ±1}:
∂P ({ri},t)

∂t
= μ

∑
i

[∇i · [P ({ri},t)∇iH ] + T ∇2
i P ({ri},t)

]
,

(B1)

where μ is the vortex mobility and ∇i is the gradient with
respect to ri . This is a complicated equation to solve, but
it can be treated approximately, in a manner similar to the
Debye-Hückel approximation in equilibrium, by factoring the
probability density into a product of single vortex probabilities,

P ({ri},t) =
∏

i

Pi(ri ,t). (B2)

Integrating the left side of Eq. (B1) over the positions of all
vortices aside from the position of the ith gives

∏
j �=i

∫
d2rj

∂P ({ri})
∂t

=
∏
j �=i

∫
d2rj

∑
k

∏
l �=k

Pl(rl ,t)
∂Pk(rk,t)

∂t

= Pi(ri ,t)
∑
k �=i

∏
j �=i,k

( ∫
d2rjPj (rj ,t)

)∫
d2rk

∂Pk(rk)

∂t
+ ∂Pi(ri ,t)

∂t

∏
j �=i

(∫
d2rjPj (rj ,t)

)

= ∂Pi(ri ,t)

∂t
, (B3)

where we demand that the single vortex probabilities are normalized,∫
d2rjPj (rj ,t) = 1. (B4)

Performing the same integral on the right side of the Fokker-Planck equation gives

∂Pi(ri ,t)

∂t
=

∏
j �=i

∫
d2rjμ

∑
k

∇k · [P ({rk},t)∇kH ({rk}) + T ∇kP ({rk})]

= Pi(ri ,t)μ
∑
k �=i

∫
d2rk∇k · [Pk(rk,t) 〈∇kH 〉ik + T ∇kPk(rk)] + μ∇i · [Pi(ri ,t) 〈∇iH 〉i + T ∇iPi(ri)], (B5)
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where

〈∇iH 〉i =
∏
j �=i

(∫
d2rjPj (rj ,t)

)
∇iH (B6)

and

〈∇kH 〉ik =
∏
j �=i,k

(∫
d2rjPj (ri ,t)

)
∇kH. (B7)

〈∇kH 〉ik is similar to 〈∇kH 〉k except for an interaction term
Hik between vortex k and vortex i:

〈∇kH 〉ik = 〈∇kH 〉k − 〈∇kHik〉k + ∇kHik. (B8)

Substituting Eq. (B8) into Eq. (B5), we find that the single-
vortex Fokker-Planck equation is

∂Pi(ri)

∂t
= μ∇i · [Pi(ri ,t) 〈∇iH 〉i + T ∇iPi(ri)], (B9)

provided that∑
k �=i

∫
d2rk∇k · [Pk(rk,t)(∇kHik − 〈∇kHik〉k)] = 0.

(B10)

This can be shown to be the case on our strip, where there is
translational invariance in the y direction.

2. Derivation of the vorticity current

Various average quantities can be calculated using the
single-vortex probability density

Pi(r,t) = 〈δ(r − ri(t))〉 . (B11)

Specifically, the vorticity can be written as

∂xu(x,t) = n(x,t)

=
∑

i

〈niδ(r − ri(t))〉

=
∑

i

niPi(x,t), (B12)

and the free vortex density is

nf (x,t) =
∑

i

〈δ(r − ri(t))〉 =
∑

i

Pi(x,t), (B13)

where we have used the translation invariance in the y

direction.
Furthermore, the probability current density,

Ji(r,t) = 〈δ(r − ri(t))ṙi(t)〉 , (B14)

can be related to Pi(r,t) by interpreting the single-vortex
Fokker-Planck equation (B9) as a probability conservation
condition, from which it is evident that

Ji(ri ,t) = −μPi(ri ,t) 〈∇iH 〉i − μT ∇iPi(ri ,t). (B15)

This can be used to calculate the vorticity current density

J v
x (x,t) =

∑
i

〈niδ(r − ri(t))ẋi〉

=
∑

i

niJi,x(x,t), (B16)

which is of particular interest to us. Ignoring the same
fluctuation term in 〈H 〉 as in Eq. (A3), we find

∂ 〈H 〉i
∂xi

= ∂

∂xi

δ 〈H 〉
δPi(ri)

≈ niρs

∂

∂xi

∫
d2r ′[1 + ψ(x ′)]

[
〈∇θ (r′)〉 − 2e

�c
A(r′)

]
· ẑ × (r′ − ri)

(r′ − ri)2
+ εc

∂

∂xi

ψ(ri)

= niρs

∂

∂xi

∫
dx ′ 2π [1 + ψ(x ′)][u(x ′) − a(x ′)]

∫
dy ′ x ′ − xi

(x ′ − xi)2 + (y ′ − yi)2
+ εc

∂

∂xi

ψ(xi)

= niρs

∂

∂xi

∫
dx ′ 2π [1 + ψ(x ′)][u(x ′) − a(x ′)] π sgn(x ′ − xi) + εc

∂

∂xi

ψ(xi)

= −ni4π2ρs[1 + ψ(xi)][u(xi) − a(xi)] + εc

∂

∂xi

ψ(xi). (B17)

Therefore, the vorticity current density is

J v
x (x,t) =

∑
i

niJi,x(x,t)

=
∑

i

ni

[
−μPi(xi,t)

∂ 〈H 〉i
∂xi

− μT
∂Pi(xi,t)

∂xi

]
xi=x

=
∑

i

ni

[
μPi(xi,t)ni4π2ρs[1 + ψ(xi)][u(xi) − a(xi)] − μPi(xi,t)εc

∂

∂xi

ψ(xi) − μT
∂Pi(xi,t)

∂xi

]
xi=x

=
∑

i

[4π2ρsμPi(x,t)[1 + ψ(x)][u(x) − a(x)] − μεc∂xψ(x)niPi(x,t) − μT ni∂xPi(x,t)], (B18)
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which, with the help of Eqs. (B12) and (B13), finally gives
Eq. (5).

APPENDIX C: DYNAMICAL EQUATION FOR U

To study the linear response of the system to weak, time-
dependent, perturbing fields E and ∇ψ , we must obtain the
dynamics of the field u(x,t). Using the definition of u, we
obtain

∂u

∂t
= 1

2π

〈∑
i

ẋi

∂

∂xi

∂yθ

〉
, (C1)

whose integral over y,∫
dy

∂u

∂t
= 1

2π

〈∑
i

ẋi

∂

∂xi

∫
dy ∂yθ

〉

= 1

2π

〈∑
i

ẋi

∂

∂xi

niπ sgn(x − xi)

〉

= −
〈∑

i

ẋiniδ(x − xi)

〉

= −
∫

dy J v
x , (C2)

implies, by translational invariance along y, Eq. (11).
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