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We compute the Compton profile of Ni using the local density approximation of density functional theory
supplemented with electronic correlations treated at different levels. The total/magnetic Compton profiles show
not only quantitative but also qualitative significant differences depending on whether Hubbard corrections are
treated at a mean field +U or in a more sophisticated dynamic way. Our aim is to discuss the range and capability
of electronic correlations to modify the kinetic energy along specific spatial directions. The second and the fourth
order moments of the difference in the Compton profiles are discussed as a function of the strength of local
Coulomb interaction U .
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I. INTRODUCTION

The study of physical and chemical properties of transition
metals is still an extremely active experimental field and at
the same time is the subject of extensive theoretical studies.
The fascinating aspect of d-electron systems is the possible
interplay of relativistic and electron correlation effects that
has long been questioned. Ab initio methods provide the
framework in which relativity and correlations may be treated
on an equal footing. One notable example is the magnetic
anisotropy energy for Ni. Experimentally it is known that the
easy axis is along the [111] direction and the energy cost
to rotate the magnetic moment axis into the [001] direction
is about 3 μeV per atom [1]. LSDA + U calculations [2]
accounting for spin-orbit and noncollinear coupling have been
employed and shown to reproduce these values for relatively
small value of the local Coulomb interaction U = 1.9 eV and
J = 1.2 eV. Changes in the topology of the Fermi surface
were discussed in the context of magnetocrystalline anisotropy
of Ni [3]. These changes were recently addressed using the
Gutzwiller variational theory with ab initio parameters which
showed the importance of the spin-orbit coupling [4].

As a matter of fact, nickel is perhaps the most studied
electronic system. In the ordered ferromagnetic phase the
vast majority of band structure calculations within the local
density approximation to the density functional theory (DFT)
converge to a value for the magnetic moment of ≈0.62μB ,
which is a slight overestimation of the experimental data. The
orbital contribution amounts to up to 10% and the spin moment
is found to be around 0.56μB . The generalized gradient
approximation (GGA) added gradient correction to the local
density approximation, does not change upon the value of the
magnetic moment; however, it improves on the equilibrium
lattice parameter and bulk modulus. The exchange splitting
in both local spin-density approximation (LSDA)/GGA is in
the range of 0.7 to 0.75 eV [5], while experimental data
are situated between 0.3 and 0.5 eV [6–10]. The valence
band photoemission spectra of Ni shows a 3d-band width

that is about 30% narrower than the value obtained from the
LSDA calculations. It is known that LSDA cannot reproduce
the dispersionless feature at about 6 eV binding energy, the
so-called 6 eV satellite [11]. An improved description of
correlation effects for the 3d electrons via the combined
local density approximation and dynamical mean-field theory
[12–14], LSDA + DMFT, gives the width of the occupied
3d bands of Ni properly, and reproduces the exchange splitting
and the 6 eV satellite structure in the valence band [15–22].

Momentum space quantities such as the spin-dependent
electron momentum density distribution have been calculated
using various methods [23,24] mostly employing the LSDA.
In addition to that, magnetic Compton scattering can provide
a sensitive method of investigating the spin-dependent prop-
erties. For example, in Ni, it has already been shown that the
negative polarization of the s- and p-like band electrons can
be observed [23,25]. Although the total spin moment is well
reproduced by theory, the degree of negative polarization at low
momentum, where these electrons contribute, is typically un-
derestimated. This discrepancy is often regarded as being due
to the insufficient treatment of correlation present in the LSDA
exchange-correlation functional at low momentum [23]. Early
studies of electronic correlations in band structure calculations
for the Compton profiles in Li and Na (alkali metals) have been
performed by Eisenberger et al. [26] and by Lundqvist and
Lynden [27]. In the former study, the linear response theory to
the atomic potential in the random phase approximation is used
[26], while in the latter the orthogonalized-plane-wave method
for the homogeneous interacting electron gas data [27] has
been employed. Although both studies have been successful in
describing the momentum densities and the Compton profiles
they are not suitable for transition-metal systems. Later on in
the study of transition metals Bauer et al. [28–31] extensively
investigated the role of local and nonlocal DFT functionals for
the problem of electron-electron correlation effects pointing
out several inconsistencies and improving the agreement of
theoretical difference profiles with the experimental data. We
have studied recently within the framework of LSDA + DMFT
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the directional Compton profile J (pz) for both Fe and Ni
[32,33]. The second moment of the Compton profile difference
allowed one to quantify the momentum space anisotropy of
the electronic correlations of Fe and Ni. The changes in the
shape and magnitude of the anisotropy have been discussed
as a function of the strength of the Coulomb interaction U .
According to our results Ni has a larger momentum space
anisotropy of the second moment of the total Compton profile
in comparison with Fe [33].

The aim of this paper is twofold. First, we perform a com-
parison of the computed magnetic Compton profiles at a mean-
field (LSDA + U ) level and beyond within the framework
of dynamical mean-field theory (LSDA + DMFT). Secondly,
we extend our previous work on computing moments of
directional Compton profiles [33] and analyze corrections to
the kinetic energy. In particular, we compute the magnitude
of the fourth moment that is proportional to relativistic kinetic
energy corrections that arises from the variation of electron
mass with velocity. We discuss therefore the extent to which
electronic correlations can influence the relativistic correction
to the kinetic energy.

In the following sections we analyze the magnetic Compton
(Sec. II A) and the difference profiles (Secs. II B and II C).
Section III analyses the effects of electronic correlations upon
the kinetic energy of bonded electrons. We conclude the
present paper in Sec. IV.

II. MAGNETIC AND TOTAL COMPTON PROFILES IN
THE PRESENCE OF ELECTRONIC CORRELATIONS

We performed the electronic structure calculations us-
ing the spin-polarized relativistic Korringa-Kohn-Rostoker
(KKR) method in the atomic sphere approximation [34].
The exchange-correlation potentials parametrized by Vosko,
Wilk, and Nusair [35] were used for the LSDA calculations.
For integration over the Brillouin zone the special points
method has been used [36]. Additional calculations have
been performed with the many-body effects described by
means of DMFT [12–14] using the relativistic version of
the so-called spin-polarized T -matrix fluctuation exchange
approximation [37,38] impurity solver. This method was first
proposed by Bickers and Scalapino [39] in the context of lattice
models and it describes the interaction of quasiparticles with
collective modes. In practice it is a perturbative expansion
of the self-energy in powers of U with a resummation
of a certain class of diagrams such as ring diagrams and
ladder diagrams and therefore is reliable when the strength
of interaction U is smaller than the bandwidth. In the case
of Ni, for the values of the Coulomb parameters considered
the conditions for applicability are therefore accomplished.
In addition, this impurity solver which is fully rotational
invariant in the multiorbital version is fast since it only involves
matrix operations such as inversions and multiplications. The
perturbation theory can be performed self-consistently, in
terms of the fully dressed Green’s function G or non-self-
consistently using G0. In the initial LDA + DMFT imple-
mentations [16,17] the expansion in G0 was used; however,
when the interaction is small with respect to the bandwidth
no essential difference exists between the non-self-consistent
and self-consistent cases [40,41]. More accurate impurity

solvers based on variants of quantum Monte Carlo such as
Hyrsch-Fye/continuous time hybridization expansion [15,42]
or exact diagonalization [43] have also been used in computing
physical properties of nickel. While these numerically exact
treatments were used without charge self-consistency, in the
present LSDA + DMFT scheme for correlated systems based
on the KKR approach [17,44,45] charge and self-energy
self-consistency is straightforwardly implemented. Further,
as correlation is added only to the “d orbitals” the Green’s
function is projected into a localized basis set having this
specific l character. Within the KKR implementation of the
multiple-scattering problem the projectors are computed when
solving the single-site Dirac equation [17,45].

The realistic multiorbital interaction is included via an on-
site term in the form 1

2

∑
i{m,σ } Umm′m′′m′′′c

†
imσ c

†
im′σ ′cim′′′σ ′cim′′σ .

Here, cimσ /c
†
imσ destroys/creates an electron with spin σ on

orbital m on site i. The Coulomb matrix elements Umm′m′′m′′′

are expressed in the usual way [46] in terms of three Kanamori
parameters U , U ′, and J . Since the static part of the correlation
effects is already included in the LSDA, “double-counted”
terms must be subtracted. In the present work the around mean-
field double-counting scheme has been used; for additional
details we refer to Ref. [47] discussing different double-
counting schemes. Despite the recent developments allowing
one to compute the dynamic electron-electron interaction
matrix elements exactly [48], we consider in the present
work the values of U and J as parameters for the sake of
convenience in our discussions. It was shown that the static
limit of the screened energy-dependent Coulomb interaction
leads to a U parameter in the energy range of 1 and 3 eV for
all 3d transition metals. As the J parameter is not affected by
screening it can be calculated directly within the LSDA and is
approximately the same for all 3d elements, i.e., J ≈ 0.9 eV.
In our calculations we used values for the Coulomb parameter
in the range of U = 2.0–3.0 eV and the Hund exchange
interaction J = 0.9 eV.

The KKR Green function formalism allows one to compute
Compton profiles JK(pz) and magnetic Compton profiles
Jmag,K(pz) (MCPs) in a straightforward way [49–51]. In the
case of a magnetic sample, the spin resolved momentum
densities are computed within the framework of LSDA and
LSDA + DMFT approaches using the Green’s functions in
momentum space, as follows:

nms
( �p) = − 1

π
Im

∫ EF

−∞
GLSDA(+DMFT)

ms
( �p, �p,E)dE,

where ms =↑ (↓). The total electron [n↑( �p) + n↓( �p)] and
spin [n↑( �p) − n↓( �p)] momentum densities projected onto
the direction K defined by the scattering vector, allows
one to define the (magnetic) Compton profile as a double
integral in the momentum plane perpendicular to the scattering
momentum �pz||K:

J
LSDA(+DMFT)
K (pz) =

∫ ∫
[n↑( �p) + n↓( �p)]dpxdpy,

J
LSDA(+DMFT)
mag,K (pz) =

∫ ∫
[n↑( �p) − n↓( �p)]dpxdpy.

A useful quantity in our analysis is the difference of Compton
profiles taken along the same momentum space direction with
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FIG. 1. (Color online) Compton profiles of Ni along the principal
directions [001], [110], and [111]. The left column compares the
LSDA + U/DMFT results for U = 2.0 eV. In the right column
the results for U = 2.3 eV are presented. For both calculations
J = 0.9 eV and T = 400 K have been used. The computed profiles
LSDA + U (blue dashed) and LSDA + DMFT (red solid) are plotted
in comparison to the experimental spectra (black dotted). Data were
taken from Dixon et al. [24].

or without including electronic correlations:

�JK(pz) = J
+U/DMFT
K (pz) − J LSDA

K (pz). (1)

In our further analysis the anisotropies of the Compton profile

�JK,K′ (p) = JK(pz) − JK′ (pz) (2)

are also studied using different local exchange-correlation
potentials: the “pure” LSDA and the supplemented LSDA + U

and LSDA + DMFT ones. The electron momentum densi-
ties are usually calculated for the principal directions K =
[001], [110], and [111] using a rectangular grid of 200 points in
each direction. The maximum value of the momentum in each
direction is 8 a.u. The resultant magnetic-Compton (Comp-
ton) profiles were normalized to their respective calculated
magnetic spin moments (number of valence electrons).

A. Magnetic Compton profiles

The computed magnetic Compton profiles are shown in
Fig. 1 along the principal directions [001], [110], and [111].
The profiles seen in the left/right columns of Fig. 1 have
been obtained using the values of U = 2/2.3 eV for the
Coulomb and J = 0.9 eV for the exchange parameters and the
temperature of 400 K. The calculated spin moment for LSDA is
0.61μB , while both LSDA(+U/DMFT) results give 0.59μB .
The theoretical MCPs have been convoluted with experimental
momentum resolution [24] and all the areas are normalized at

the corresponding spin moments. Our LSDA results [33] are in
agreement with the previous published results, obtained with
LMTO [24] or the FLAPW-LSDA [23,52].

The most obvious feature for all principal directions is a
significant discrepancy between experiment and theory for
pz < 2 a.u. (see Fig. 1). We notice the large dips of the profiles
along the [110] and [111] directions near pz = 0 a.u., which
were ascribed partially to the s- and p-like electrons, but also to
a pronounced drop in the contribution from the fifth band [24].

The results of computations for the average Coulomb
parameter U = 2.0 eV are shown in the left column of
Fig. 1. Along the [001] direction and around pz = 0 a.u.
all LSDA + U/LSDA + DMFT results seem to get close
to the experimental data. Most significant differences are
in the momentum range of 1 a.u. < pz < 2 a.u., where also
the maximum of the profile is located. Along the [110]
direction, both LSDA + U and LSDA + DMFT give similar
results, overestimating the first maximum at around 0.5 eV,
show a minimum at around 1 eV, instead of a maximum
seen in the experiment, and underestimate the experimental
results in several regions above 2 a.u. Along the [111]
direction, the maximum at pz = 0 a.u. is overestimated by
all computations: The slight improvement of DMFT is not
really significant; LSDA + U get very close to the maximum
at around 2 a.u. Overall dynamic correlations do not really
significantly improve the agreement with the experimental
data.

For a slightly larger value of U = 2.3 eV the LSDA + U

results start to depart more from the experimental data,
while contrarily, the DMFT results improve the agreement
significantly. Along the [001] direction in the entire low
momentum region pz < 2 a.u. LSDA + U overestimates the
spectrum; however, for larger values of the momentum it
captures the profile quite well. On the other hand, DMFT
improves the momentum dependence below pz < 2 a.u.;
however, it overestimates for values of the momentum in the
range of 2–4 a.u. The largest difference between the “+U” and
“+DMFT” corrections are seen along the [110] direction. This
direction corresponds to the shortest bond in the fcc structure.
Here DMFT captures the peaks at around 0.5 a.u. and the main
peak at 2 a.u., and continues very closely to the experimental
data in the complete range of the computed momenta. Along
the [111] direction DMFT gets closer to the maximum at
pz = 0 a.u. than LSDA + U . For pz > 0 a.u., the dip at 0.5 a.u.
is captured better within DMFT, while for higher momenta
both the LSDA + U and LSDA + DMFT approaches follow
essentially the same behavior.

Although both static and dynamic corrections to the MCP
spectra are rather similar, we observe a clear tendency of
LSDA + U to overestimate the experimental data while
LSDA + DMFT correct some discrepancies. The following
section presents the results for the difference in total Compton
profiles with respect to the LSDA results, where distinctions
because of static and dynamic corrections became more
apparent.

B. Directional differences of Compton profiles

Figure 2 shows the total Compton profile differences
computed according to Eq. (1) along the [001] direction. The
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FIG. 2. (Color online) Computed difference Compton profiles
�JK(pz) of Ni along the [001] direction for the values U = 2.0 eV
(black dashed) and U = 2.3 eV (red solid).

upper/lower part represents the DMFT/LSDA + U spectra
after subtraction of LSDA results. One can easily recognize
common features in comparing the LSDA + U with LSDA +
DMFT spectra. The Brillouin zone boundary along the [001]
direction is represented by the X(1/2,0,1/2)-high symmetry
point. The zone boundary is marked with the first dashed line
and corresponds to the value of kF = 0.95 a.u. The second
dashed line is situated at 2kF and is plotted to facilitate
the comparison between the spectra. As one can see the
LSDA + U spectra is sharper, since the DMFT self-energy
contributes in smoothing out the spectra; however, the peaks
remain in the same positions. No additional broadening of
the spectra has been applied. As a consequence of dynamic
correlations within the first Brillouin zone, the �J[001] has
positive weight, contrary to the LSDA + U results. We observe
the umklapp features identified in the MCP spectra of Ni
[001] in several studies (at ∼1.2, 1.7, 2.7, and 3.7 a.u.)
[24,52–54] appearing in the �J[001] as sharp deeps. For the
region with 1.9 < pz < 3.8 a.u. (third and fourth Brillouin
zones), electronic correlations produce negative difference
weights. A similar observation can be made for the different
values of U .

Along the [110] direction (see Fig. 3) the Brillouin zone is
intercepted at the K-point with the coordinate 3π/2a(1,1,0) in
the Cartesian representation. Similarly to the [001] direction,
the position of the main peaks of the spectra are the same
in the LSDA + U/DMFT calculations. The umklapp features
identified in the MCP spectra by several studies at ∼2.0, 3.3,
and 4.6 a.u. [24,52–54] correspond to sharper peaks in the
�J[110] spectra. Again in LSDA + DMFT the spectra have
an overall positive weight, due to correlation-induced lifetime
effects determined by the imaginary part of the self-energy.
Also, umklapp features are more visible in LSDA + U as no
additional broadening is present.
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FIG. 3. (Color online) Computed difference Compton profiles
�JK(pz) of Ni along the [110] direction for the values U = 2.0 eV
(black dashed) and U = 2.3 eV (red solid).

The same analysis can be performed upon the spectra in the
[111] direction (see Fig. 4). For momenta pz < kF within the
first Brillouin zone, �J[111] computed with DMFT/+U have
a negative contribution, while for the second and third zones
the LSDA + DMFT difference spectra have weights with
alternating sign. The �J[111] spectra are essentially negative
only within the first zone and from pz > 1 a.u. the LSDA + U

spectra is positive.
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FIG. 4. (Color online) Computed difference Compton profiles
�JK(pz) of Ni along the [111] direction for the values U = 2.0 eV
(black dashed) and U = 2.3 eV (red solid).
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The general tendency in both LSDA + U and LSDA +
DMFT is that for larger U , maxima and minima are slightly
stretched out, while the modulations remain the same. This
is expected as the modulation of the Compton profile is
connected to the topology of the Fermi surface. As was previ-
ously demonstrated, cuts of the momentum density remain
unchanged with inclusion of correlation effects [55]. The
overall change in the shape of the Compton spectra comparing
DMFT versus LSDA/LSDA + U reflects the presence of the
imaginary part of the dynamic local self-energy.

The comparison between the Compton spectra taken for
different U values, along the same direction K allows one
to discuss the strength of local correlation effects. In the
same time comparing spectra obtained for a fixed U value
along different K, K′ directions may reveal possible nonlocal
correlation effects. Although DMFT supplements the DFT-
LDA part by a complex local and dynamic self-energy �(z),
the charge self-consistency of LDA + DMFT achieves indirect
nonlocal effects. In the next section we analyze the differences
between pairs of directional profiles also known as Compton
profile anisotropies.

C. Compton profile anisotropies and nonlocality

Comparisons between theoretical and experimental ampli-
tudes of the Compton profile anisotropies for Ni have already
been performed [56–58]. The computed anisotropy profiles
J[110] − J[001] and J[111] − J[001] are shown in Fig. 5 that, in
contrast with earlier work, reveal the role of correlation effects.
In the upper panel the LSDA results are presented, while in the
middle and lower panels the spectra obtained using LSDA + U

and DMFT are seen. A very similar behavior, independent of
the various levels of sophistication to include the Coulomb
interaction, is visible.
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FIG. 5. (Color online) Theoretical Compton profile anisotropies
of Ni. Panel (a) The anisotropy computed within LSDA. Panels
(b) and (c) show the LSDA + U and LSDA + DMFT results for
U = 2.3 eV, J = 0.9 eV, and T = 400 K. Comparison with the
experimental anisotropy is presented in panel (c).
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FIG. 6. (Color online) Theoretical Compton profile anisotropies
of Ni in comparison with the experimental measurements.
LSDA/LSDA + U results, panels (a)/(b) over-/underestimate the
anisotropy data. DMFT results are in good agreement with the
experimental spectra in the range 0 < pz < 0.2 a.u. LSDA + U

and LSDA + DMFT parameters are U = 2.3 eV, J = 0.9 eV, and
T = 400 K.

In panel (c) we compare the anisotropy spectra with the
corresponding experimental data of Anastassopoulos et al.
[58]. There is a rather satisfying agreement between the theory
and experiment, in particular, for the difference J[110] − J[001]

(Fig. 5, red lines) where the theoretical calculation follows
most of the maxima and minima seen in the experiment. Here
again no broadening has been used for the computed data.
On the other hand, for J[111] − J[001] (Fig. 5, green lines)
differences may be seen not only in the amplitude of the
oscillation but also in the position of the minima/maxima.
In Fig. 6 we show the comparison on a reduced momentum
regime 0 < pz < 1 a.u. In Fig. 6(a), the LSDA results are seen
to overestimate in the range 0 < pz < 0.2 a.u. the experimental
spectra plotted with dashed lines. In the same momentum range
the LSDA + U results underestimate the experimental data as
seen in Fig. 6(b). Figure 6(c) shows the LSDA + DMFT results
and one can see that the dynamic correlations capture at best
the behavior of anisotropy of the Compton profile in the region
around the zero momentum pz < 0.2 a.u.

Previous analysis attributed the discrepancies to the non-
local correlation effects [58,59], although no quantitative evi-
dence has been presented. One possible alternative explanation
for the results seen in Fig. 6 is that the density functional
exchange-correlation potentials misplace the position of d

bands (orbitals). This agrees with the observation that LSDA
overestimates the exchange splitting. Including static correc-
tions using LSDA + U the exchange splitting is enhanced
and therefore this does not correct upon the position of the
d bands, and equally does not improve on the anisotropy
spectra. On the contrary, LSDA + DMFT is known to improve
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on the exchange splitting as a consequence of a Fermi-liquid
type of self-energy. We equally see in Fig. 6(c), although in
a narrow momentum region 0 < pz < 0.2 a.u., an excellent
agreement with the experimental anisotropies. As anisotropies
in the Compton profile measure differences JK − JK′ they
indicate nonlocal effects, therefore Fig. 6(c) shows that local
dynamic correlations may capture nonlocality in a very narrow
region around zero momentum as a consequence of full change
self-consistency of LSDA + DMFT. In addition our results
show that a description of the nonlocal correlation effects is
needed for further improvement on the amplitudes of Compton
profile anisotropies for larger momenta.

III. KINETIC ENERGY CORRECTIONS FROM
RELATIVISTIC AND ELECTRONIC CORRELATIONS

The relativistic generalization of the Schrödinger theory
of quantum mechanics to describe particles with spin 1/2
was achieved using the Dirac equation (see, for example,
[60]). The construction of Dirac equations uses symmetry
arguments and energy considerations, and it starts from the
general Hamiltonian:

H = c

i
α∇ + 1

2
(β − I ) + V (r), (3)

where α and β are standard Dirac matrices and V (r) represents
a one-particle effective potential. In the spirit of the nonrela-
tivistic DFT the effective potential consists of the Hartree term,
an exchange correlation, and a spin-dependent part [61,62]:
V (r) = VH (r) + Vxc(r) + βσzB(r). Rigorous four-component
relativistic many-electron calculations are hardly tractable
in the spirit of four-component Dirac relativistic quantum
mechanics [63]. It is important to note that many applications
consider relativistic effects at the one-component level, which
is frequently called the scalar relativistic approach [64],
which usually assume that corrections of higher order than
1/c2 can be neglected for chemical accuracy. Furthermore
it is assumed that the effect of the spin-orbit coupling
on the form of the orbitals may be neglected, allowing a
partition of the Hamiltonian into a spin-independent and a
spin-dependent part. The latter part is then only used in
the final stage of the calculation to couple to the correlated
many-electron problem. The analysis of components of the
spin-orbit coupling was performed decoupling the longitudinal
and transversal contributions [61], allowing one to identify the
source of the most important spin-orbit-induced phenomena in
solids.

There are a few methods available to quantitatively assess
the interplay between correlation and relativistic effects.
Within the framework of DFT the recently developed LSDA +
DMFT scheme demonstrates a clear potential in this direction.
LSDA + DMFT has been systematically applied to d- and
f -electron systems with various DMFT solvers [41]. From a
pragmatic point of view perturbative solvers of DMFT written
in adapted basis sets to include spin-orbit effects [38] are
efficient tools for realistic multiatom/orbital calculations. This
means that we in fact capture the interplay between relativistic
and correlation effects at a more economical level of the theory:
From the correlations point of view a perturbative solver is
considered, while for the relativistic part the four-component

formulation was replaced by a two-component formulation.
For a single particle in an effective potential Veff , the most
common transformation of the Dirac Hamiltonian [Eq. (3)]
into the two-component formulation H2comp = UH4compU

† is
expressed as a unitary transformation [64], followed by a
Taylor expansion in the fine-structure constant ∝1/c2 and
produce the following terms:

H BP =
(

mc2 + Veff + p2

2m

)
− p4

8m3c2
− 1

8m2c2
(p2Veff)

+ �

4m2c2
σ (∇Veff × �p) + · · · . (4)

The first terms in parentheses in Eq. (4) represent the usual
nonrelativistic Hamiltonian, then the second one is the so-
called mass-velocity term, the third is called the Darwin
term, and the fourth operator describes the spin-orbit coupling
(interaction). It can be analytically proved that the scalar
mass-velocity and Darwin terms are unbounded from below.
The resulting Breit-Pauli Hamiltonian (H BP), also known as
the first order relativistic Hamiltonian, contains terms that
are highly singular and variationally instable. Therefore this
operator is suitable to be used in the low order perturbation
theory.

Moments of the differences of the Compton profiles

The measured Compton profile, or the momentum dis-
tribution, enable one, in principle, to obtain averages 〈pn〉
directly from the experiment. On the computational side,
the momentum space formulation allows one to obtain the
Compton profiles within the LSDA [65] and LSDA + DMFT
[32,33] for many systems. Furthermore, additional information
can be gained by taking moments of the difference between the
correlated and noncorrelated Compton profiles along different
K directions: pz ‖ K,

〈pn〉K =
∫ ∞

0
pn

z

[
J

+U/DMFT
K (pz) − J LSDA

K (pz)
]
dpz.

Recently we have computed the second moments 〈p2〉 [33]
along specific directions in Fe and Ni and discussed the effect
of electronic correlations upon the kinetic energy per bonds.
Aside from the kinetic energy 〈p2〉, it is possible to also obtain
relativistic energy corrections in the form of 〈p4〉. In the present
work we are interested in estimating the relativistic corrections
to the kinetic energy that arise from the variation of electron
mass with velocity, and how it may vary as a function of the
local Coulomb interaction.

The second and the forth moments of the difference in
the total Compton profiles, along the bond directions, would
provide some specific terms from the expansion (4). Namely,
we are going to evaluate the so-called free particle relativistic
kinetic energy (H0) in terms of the second moments and
its relativistic correction as the fourth moment, along the
bond directions of Ni. In order to compare the magnitude
of second and fourth order moments one has to introduce
a dimensionless quantity pr = p/mc. In this reduced vari-
able H0 = mc2[(1/2)p2

r − (1/8)p4
r + · · · ] and the relevant
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TABLE I. Expectation values 〈pn
r 〉 along different directions

computed within LSDA + U .

LSDA + U

U [001] [110] [111]
n (eV) (10−6) (10−6) (10−6)

2 2.0 1.06 2.65 6.37
2.3 −2.12 0.53 5.84

4 2.0 −4.20×10−3 −1.18×10−3 4.26×10−3

2.3 −6.29×10−3 −4.46×10−3 2.43×10−3

expectation values has the expression

〈H0〉K =
∫

H0�J
+U/DMFT
K (pz)dpz; (pz ‖ K)

≈ mc2

[
1

2

〈
p2

r

〉
K − 1

8

〈
p4

r

〉
K

]
. (5)

In the momentum space representation such integrals can
be directly computed. We performed calculations for the
second and fourth moments for different values of U and
different levels of electronic correlations. The LSDA + U

results are given in Table I. One can clearly see that the
second and fourth order moments differ significantly along
different directions. For U = 2 eV all second moments are
positive for all directions, while for larger U = 2.3 eV
along [001] the second moment is negative. In the reduced
representation p/mc the magnitude of these moments is of
order 10−6. The fourth order moments are three orders of
magnitude smaller than the second order moments, and are
negative along the [001] and [110] directions. Along the [111]
direction the fourth order moment remains positive for all
U values. Note that moments decrease in magnitude as the
distance is increasing: The largest moments are obtained for
the nearest-neighbor distances, which are the shortest bonds.
For Ni, this corresponds to the [110] direction. Directional
averaging over all second order moments provides the kinetic
energy, while a similar average over the fourth order moments
provides the relativistic corrections to the kinetic energy.

The moments computed in LSDA + DMFT are given in
Table II. Contrary to the LSDA + U , using DMFT produces
a Compton profile having negative second moments along all
directions and for all studied values of U = 2 and 2.3 eV.

Note the qualitative difference between the LSDA + U and
LSDA + DMFT second moments: While the former mean-
field (LSDA + U ) approach produces second moments with

TABLE II. Expectation values 〈pn
r 〉 along different directions

computed within LSDA + DMFT.

LSDA + DMFT

U [001] [110] [111]
n (eV) (10−6) (10−6) (10−6)

2 2.0 −7.43 −6.90 −4.78
2.3 −11.15 −8.50 −6.37

4 2.0 8.75×10−3 −5.92×10−3 −3.69×10−3

2.3 −1.12×10−3 −7.62×10−3 −6.38×10−3

2 2.1 2.2 2.3
U(eV)

-6

-5

-4

-3

-2

-1

0

<(
p/

m
c)

4 > K
(*

10
9 )

LSDA+U
LSDA+DMFT

FIG. 7. (Color online) Averaged fourth (second, in inset) order
moments of the difference Compton profiles computed within
DMFT (red solid) and LSDA + U (black dashed), for the Coulomb
parameters U = 2 eV/2.3 eV, J = 0.9 eV, and T = 400 K.

different signs depending on the directions, within the latter
dynamic (LSDA + DMFT) approach correction is always
negative. Similarly to our previous results [33] we see that the
positive difference at low momentum region 0 < pz < 2 a.u.
is completely overruled by the negative weights at higher
momenta, which leads to the overall negative values for the
correction obtained in DMFT. In LSDA + U a negative second
moment is obtained along [001] and positive for the other two
directions. The positive second moment is obtained as the
Compton profile computed in the mean-field (LSDA + U )
approach always is larger than the corresponding LSDA
profile, for any value of the moment pz. In order to discuss
correction to the kinetic energies, we computed the weighted
sum of the nearest neighbors, i.e., six times the contribution
along [001], 12 times the contribution along [110], and eight
times the contribution along [111] divided by the total number
of neighbors (26). Figure 7 summarizes the computed results.
The inset shows the directional average of the second moment
which is positive in LSDA + U and negative in DMFT, whilet
the corrections to the kinetic energy are negative in both
+U/DMFT calculations.

IV. DISCUSSIONS AND CONCLUSION

The influence of electronic correlations on the Compton
profiles of Ni has been discussed within the framework of
DFT comparing the results of mean-field LSDA + U and
beyond mean-field LSDA + DMFT. According to our results,
the mean-field decoupling of the interaction (+U ) slightly
overestimates the MCP spectra, while dynamic correlations
improve the agreement with experiment. To reveal differences
between the LSDA + U and LSDA + DMFT approaches
we studied the directional differences, i.e., differences of
Compton profiles with respect to the LSDA spectra. Overall
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the difference spectra follow a similar momentum dependence
with visible deviations in the low momentum region. A
qualitative difference is evidenced in this region: Within the
mean-field approach (+U ) negative differences are seen while
in the dynamic case, the opposite result is obtained. In other
words, the mean-field LSDA + U Compton spectra have a
smaller weight in the low energy region than the corresponding
LSDA + DMFT Compton spectra. According to our recent
picture of momentum redistribution because of interaction [33]
we conclude that in LSDA + U the weight of the Compton
profile is shifted towards the higher momentum region. This is
in agreement with the naive picture of the effects of LSDA + U

on the spectral weight distribution shifting weights towards
higher energies. In the Compton scattering language, photons
would scatter accordingly on moving electrons situated in
higher energy bands, although this does not mean that the
electrons are moving faster, explaining the fact that there are
no dramatic changes in the Compton spectra (differences of the
order of ±0.02) shown in Figs. 2–4. Contrary to the LSDA + U

results, in the DMFT calculations the Fermi-liquid type of
self-energy determines the spectral weight transfer towards
the low energy region, and accordingly the spectra of photons
scattering on the renormalized electronic structure would be
redistributed towards low momenta. Similar conclusions have
been reached in our previous studies [32,33].

In the analysis of the Compton profile anisotropies we found
that the LSDA + DMFT results describe well the momentum
region of 0 < pz < 0.2 a.u. which is a consequence of the
presence of a local and dynamic self-energy that properly
locates the position of Ni d bands, as seen in various
calculations. The limited momentum range is due to the
inherent DMFT approximation that the self-energy neglect
spatial fluctuations.

In order to assess the capability of electronic correlations
to influence the kinetic energy along specific directions we

have computed the second and the fourth order moments
of the Compton spectra considering the reduced momentum
pr = p/mc. Although the fourth order moments are signif-
icantly smaller, 〈p4

r 〉 ∝ 10−3〈p2
r 〉, an overall non-negligible

contribution is obtained [see Eq. (5)]. Within LSDA + U the
second moment has a positive sign, which is in agreement with
the description of the momentum redistribution towards higher
momenta descried above, except for the [001] direction. The
overall energy correction is still positive in LSDA + U as seen
in the inset of Fig. 7. Negative second moments are obtained
along all directions in DMFT and produce a negative kinetic
energy contribution. The relativistic corrections to the kinetic
energy are both negative and we see that dynamic correlations
(LSDA + DMFT) generate larger relativistic corrections to the
one-particle kinetic energy in comparison to their mean field
(LSDA + U ) counterpart.

As an overall conclusion in the range of the studied
values of U qualitative and quantitative differences are
seen in the Compton profiles depending on whether the
LSDA is supplemented with static or dynamic many-body
effects. An important message is that relativistic effects and
electronic correlations may have a nontrivial interplay and
dynamic correlations determine larger relativistic corrections
in the electronic structure of solids. Further investigations are
necessary for a quantitative assessment of such effects.
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Solids, edited by H. Dreyssé (Springer, Berlin, 2000), Vol. 535,
p. 191.

[63] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 118, 351 (1928).
[64] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29

(1950).
[65] M. J. Cooper, Rep. Prog. Phys. 48, 415 (1985).

184426-9

http://dx.doi.org/10.1103/PhysRevB.85.205109
http://dx.doi.org/10.1103/PhysRevB.85.205109
http://dx.doi.org/10.1103/PhysRevB.85.205109
http://dx.doi.org/10.1103/PhysRevB.85.205109
http://dx.doi.org/10.1103/PhysRevB.42.4431
http://dx.doi.org/10.1103/PhysRevB.42.4431
http://dx.doi.org/10.1103/PhysRevB.42.4431
http://dx.doi.org/10.1103/PhysRevB.42.4431
http://dx.doi.org/10.1088/0953-8984/10/12/014
http://dx.doi.org/10.1088/0953-8984/10/12/014
http://dx.doi.org/10.1088/0953-8984/10/12/014
http://dx.doi.org/10.1088/0953-8984/10/12/014
http://dx.doi.org/10.1088/0953-8984/2/14/028
http://dx.doi.org/10.1088/0953-8984/2/14/028
http://dx.doi.org/10.1088/0953-8984/2/14/028
http://dx.doi.org/10.1088/0953-8984/2/14/028
http://dx.doi.org/10.1103/PhysRevB.6.3671
http://dx.doi.org/10.1103/PhysRevB.6.3671
http://dx.doi.org/10.1103/PhysRevB.6.3671
http://dx.doi.org/10.1103/PhysRevB.6.3671
http://dx.doi.org/10.1103/PhysRevB.4.3360
http://dx.doi.org/10.1103/PhysRevB.4.3360
http://dx.doi.org/10.1103/PhysRevB.4.3360
http://dx.doi.org/10.1103/PhysRevB.4.3360
http://dx.doi.org/10.1007/BF01507944
http://dx.doi.org/10.1007/BF01507944
http://dx.doi.org/10.1007/BF01507944
http://dx.doi.org/10.1007/BF01507944
http://dx.doi.org/10.1103/PhysRevB.30.1010
http://dx.doi.org/10.1103/PhysRevB.30.1010
http://dx.doi.org/10.1103/PhysRevB.30.1010
http://dx.doi.org/10.1103/PhysRevB.30.1010
http://dx.doi.org/10.1103/PhysRevLett.52.2061
http://dx.doi.org/10.1103/PhysRevLett.52.2061
http://dx.doi.org/10.1103/PhysRevLett.52.2061
http://dx.doi.org/10.1103/PhysRevLett.52.2061
http://dx.doi.org/10.1103/PhysRevB.31.681
http://dx.doi.org/10.1103/PhysRevB.31.681
http://dx.doi.org/10.1103/PhysRevB.31.681
http://dx.doi.org/10.1103/PhysRevB.31.681
http://dx.doi.org/10.1103/PhysRevB.85.085109
http://dx.doi.org/10.1103/PhysRevB.85.085109
http://dx.doi.org/10.1103/PhysRevB.85.085109
http://dx.doi.org/10.1103/PhysRevB.85.085109
http://dx.doi.org/10.1103/PhysRevB.89.094425
http://dx.doi.org/10.1103/PhysRevB.89.094425
http://dx.doi.org/10.1103/PhysRevB.89.094425
http://dx.doi.org/10.1103/PhysRevB.89.094425
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1140/epjb/e2002-00352-1
http://dx.doi.org/10.1140/epjb/e2002-00352-1
http://dx.doi.org/10.1140/epjb/e2002-00352-1
http://dx.doi.org/10.1140/epjb/e2002-00352-1
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1103/PhysRevB.72.115106
http://dx.doi.org/10.1016/0003-4916(89)90359-X
http://dx.doi.org/10.1016/0003-4916(89)90359-X
http://dx.doi.org/10.1016/0003-4916(89)90359-X
http://dx.doi.org/10.1016/0003-4916(89)90359-X
http://dx.doi.org/10.1088/0953-8984/17/1/007
http://dx.doi.org/10.1088/0953-8984/17/1/007
http://dx.doi.org/10.1088/0953-8984/17/1/007
http://dx.doi.org/10.1088/0953-8984/17/1/007
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/PhysRevB.87.125138
http://dx.doi.org/10.1103/PhysRevB.87.125138
http://dx.doi.org/10.1103/PhysRevB.87.125138
http://dx.doi.org/10.1103/PhysRevB.87.125138
http://dx.doi.org/10.1103/PhysRevB.85.235136
http://dx.doi.org/10.1103/PhysRevB.85.235136
http://dx.doi.org/10.1103/PhysRevB.85.235136
http://dx.doi.org/10.1103/PhysRevB.85.235136
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1103/PhysRevB.79.115111
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1088/0953-8984/23/25/253201
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevB.67.153106
http://dx.doi.org/10.1103/PhysRevB.67.153106
http://dx.doi.org/10.1103/PhysRevB.67.153106
http://dx.doi.org/10.1103/PhysRevB.67.153106
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1088/0305-4608/14/11/014
http://dx.doi.org/10.1088/0305-4608/14/11/014
http://dx.doi.org/10.1088/0305-4608/14/11/014
http://dx.doi.org/10.1088/0305-4608/14/11/014
http://dx.doi.org/10.1103/PhysRevB.73.094411
http://dx.doi.org/10.1103/PhysRevB.73.094411
http://dx.doi.org/10.1103/PhysRevB.73.094411
http://dx.doi.org/10.1103/PhysRevB.73.094411
http://dx.doi.org/10.1103/PhysRevB.62.16435
http://dx.doi.org/10.1103/PhysRevB.62.16435
http://dx.doi.org/10.1103/PhysRevB.62.16435
http://dx.doi.org/10.1103/PhysRevB.62.16435
http://dx.doi.org/10.1016/j.jpcs.2004.08.023
http://dx.doi.org/10.1016/j.jpcs.2004.08.023
http://dx.doi.org/10.1016/j.jpcs.2004.08.023
http://dx.doi.org/10.1016/j.jpcs.2004.08.023
http://dx.doi.org/10.1143/JPSJ.72.599
http://dx.doi.org/10.1143/JPSJ.72.599
http://dx.doi.org/10.1143/JPSJ.72.599
http://dx.doi.org/10.1143/JPSJ.72.599
http://dx.doi.org/10.1103/PhysRev.140.A227
http://dx.doi.org/10.1103/PhysRev.140.A227
http://dx.doi.org/10.1103/PhysRev.140.A227
http://dx.doi.org/10.1103/PhysRev.140.A227
http://dx.doi.org/10.1103/PhysRevB.9.3242
http://dx.doi.org/10.1103/PhysRevB.9.3242
http://dx.doi.org/10.1103/PhysRevB.9.3242
http://dx.doi.org/10.1103/PhysRevB.9.3242
http://dx.doi.org/10.1103/PhysRevB.11.2417
http://dx.doi.org/10.1103/PhysRevB.11.2417
http://dx.doi.org/10.1103/PhysRevB.11.2417
http://dx.doi.org/10.1103/PhysRevB.11.2417
http://dx.doi.org/10.1088/0953-8984/3/9/007
http://dx.doi.org/10.1088/0953-8984/3/9/007
http://dx.doi.org/10.1088/0953-8984/3/9/007
http://dx.doi.org/10.1088/0953-8984/3/9/007
http://dx.doi.org/10.1088/0305-4608/17/5/011
http://dx.doi.org/10.1088/0305-4608/17/5/011
http://dx.doi.org/10.1088/0305-4608/17/5/011
http://dx.doi.org/10.1088/0305-4608/17/5/011
http://dx.doi.org/10.1103/PhysRevB.56.9454
http://dx.doi.org/10.1103/PhysRevB.56.9454
http://dx.doi.org/10.1103/PhysRevB.56.9454
http://dx.doi.org/10.1103/PhysRevB.56.9454
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1098/rspa.1928.0056
http://dx.doi.org/10.1103/PhysRev.78.29
http://dx.doi.org/10.1103/PhysRev.78.29
http://dx.doi.org/10.1103/PhysRev.78.29
http://dx.doi.org/10.1103/PhysRev.78.29
http://dx.doi.org/10.1088/0034-4885/48/4/001
http://dx.doi.org/10.1088/0034-4885/48/4/001
http://dx.doi.org/10.1088/0034-4885/48/4/001
http://dx.doi.org/10.1088/0034-4885/48/4/001



