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Behavior near θ = π of the mass gap in the two-dimensional O(3) nonlinear sigma model
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The validity of Haldane’s conjecture entails that the mass gap of the two-dimensional O(3) nonlinear sigma
model with a θ term must tend to zero as θ approaches the value π by following a precise law. In the present
paper we extract the related critical exponents by simulating the model at imaginary θ .
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I. INTRODUCTION

The proposal of Haldane in Refs. [1–3], regarding the
absence of a gap in the spectrum of one-dimensional (1D)
(throughout the paper nD means n-dimensional) quantum
chains of half-integer spins interacting through an antiferro-
magnetic coupling, prompted a great deal of work aimed at
checking its correctness. Apart from numerical simulations
and direct analytical scrutiny on such 1D quantum chains
[4–9], an important step towards the clarification of the validity
of this proposal was achieved by demonstrating that such
chains and the 2D O(3)-invariant nonlinear sigma model
with a topological term at vacuum angle θ = π share the
same long-distance behavior; see Refs. [1,2,10,11]. Hence the
above property can also be verified by studying the 2D O(3)
nonlinear sigma model near θ = π . Although direct Monte
Carlo simulations are currently unfeasible for θ �= 0 due to
the sign problem1 [see (3) below], several tricks have been
contrived to analyze the model at nonzero θ and, particularly, at
θ = π . They are as follows: (i) in Refs. [13–15] the distribution
of the topological charge was determined at θ = 0 and then
used to reweight the partition function at θ �= 0; (ii) in Ref. [16]
the mass gap was extracted as a function of imaginary θ [with
which the sign problem disappears; see (3) below] and the
results extrapolated to real θ ; (iii) in Refs. [17,18] a similar
method was employed, measuring the expectation value of the
topological charge at imaginary θ , after which a controlled way
to perform the extrapolation allowed the authors to reduce the
uncertainties. In all cases a decisive confirmation of Haldane’s
conjecture, namely, the mass gap of the 2D O(3) nonlinear
sigma model vanishes at θ = π , was obtained.

The equivalence between 1D antiferromagnetic chains
of spins and the 2D O(3) nonlinear sigma model
with θ = π has been further investigated. It was ar-
gued in Refs. [19,20] that the critical theory for the
half-integer quantum antiferromagnetic spin chains is
the Wess-Zumino-Novikov-Witten (WZNW) model with
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1Nevertheless, an effort has recently been pursued to avoid the sign

problem by simulating the model at θ �= 0 after demonstrating the
equivalence of its continuum limit with that of the dual of the SU(2)
principal chiral model with a fixed radial part; see Ref. [12].

a topological coupling k = 1, defined in Refs. [21–23].
This model is the stable fixed point of the 2D O(3) nonlinear
sigma model with a vacuum angle θ = π . The renormalization
group considerations of Refs. [19,20] on the WZNW model
lead to the conclusion that the mass gap of the 2D O(3)
nonlinear sigma model tends to zero while approaching θ = π

from below as

m(θ ) ∝ (π − θ )εWZNW

(
log

1

π − θ

)−βWZNW

, (1)

for 0 < π − θ � 1. The WZNW predictions are εWZNW ≡ 2
3

and βWZNW ≡ 1
2 . Therefore, another type of useful check of

Haldane’s conjecture consists in finding the critical exponents
in (1) from numerical simulations of the 2D O(3) nonlinear
sigma model with a nonzero θ term. In Refs. [13–15] the
authors compared the numerical results with the theoretical
prediction for the step scaling function, finding good agree-
ment. In this paper we want to approach this issue in a different
way, attempting instead at a determination of both the critical
exponent and the exponent of the logarithmic correction, from
Monte Carlo simulations at imaginary θ using the method
of Ref. [16] together with the improvement procedure of
Refs. [17,18].2 A similar approach was used in Ref. [18],
where however the theoretical expectation for the logarithmic
term was used as an input in the analysis. As we shall see
along the present paper, a direct detection of the power of
the logarithmic correction in Eq. (1) requires an extremely
accurate control of the statistics and error bars, an endeavor
that seems to lie beyond present-day capabilities. It is however
possible to bypass this difficulty, by combining the analyses of
the mass gap and of the topological charge. The purpose of our
paper consists precisely in employing this combined analysis
to retrieve the exponents εWZNW and βWZNW in Eq. (1).

In Sec. II the 2D O(3) nonlinear sigma model with a θ

term is introduced and its main properties briefly enumerated.
In Sec. III the Monte Carlo method and related difficulties
shall be presented. In Sec. IV the basics of the extrapolation
method from imaginary to real θ will be explained, while the
difficulties related to the presence of logarithmic corrections
in Eq. (1) are attacked in Secs. V and VI. In Sec. VI also the

2As it was apparent in Ref. [16], the results of the simulations for the
mass gap alone are too noisy to allow a reasonably clear determination
of the exponents in Eq. (1).
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details of the data analysis will be spelled out. The conclusions
are listed in Sec. VII.

II. 2D O(3) NONLINEAR SIGMA MODEL

The action of the 2D O(3) nonlinear sigma model with a θ

term in the continuum is given by

S = A − iθQ, A = 1

2g

∫
d2x(∂μ

�φ(x))2,

Q =
∫

d2x Q(x),

Q(x) ≡ 1

8π
εμνεabcφ

a(x)∂μφb(x)∂νφ
c(x),

(2)

where g is the coupling constant, θ the vacuum angle, Q(x) the
topological charge density, and Q the total topological charge.
�φ(x) is a three-component unit vector that represents a classical
spin, the dynamical variable at position x. The renormalized
Q takes on integer values because it counts how many times
the spin variables wrap around the unit sphere.

This model enjoys various properties that make it an
interesting object of study in areas ranging from condensed
matter to field theory. In particular, the quantum Hall effect
can be studied by it (see, for example, Ref. [24]) and
some attributes of field theories like asymptotic freedom,
spontaneous generation of a gap, or instantonic effects are
present in the 2D O(3) nonlinear sigma model; see Ref. [25].
Specifically, the mass gap at θ = 0 has been calculated exactly
in Ref. [26]. This gap diminishes as θ increases as shown in
Refs. [20,27] until reaching zero at θ = π if (1) holds.

III. MONTE CARLO PROGRAM

We have regularized the model (2) on a square lattice with
periodic boundary conditions by the expression

SL = AL − iθQL, AL ≡ − 1

gL

∑
x,μ

�φ(x) · �φ(x + μ̂), (3)

where QL = ∑
x QL(x) is the total lattice topological charge,

QL(x) the lattice topological charge density, and gL the bare
lattice coupling constant. The standard action AL used in
Eq. (3) is the simplest one on the lattice that reproduces A

in Eq. (2) in the continuum limit.
The topological charge density has been regularized by

defining it on triangles (not on single sites). Every plaquette
of a square lattice can be cut through a diagonal into two
triangles. If we call �φ1, �φ2, and �φ3 the fields at the sites of the
three vertices (numbered counterclockwise) of one of these
triangles, then the fraction of spherical angle subtended by
these fields is QL(�) which satisfies (see Ref. [28])

exp(2πiQL(�)) = 1

ρ
(1 + �φ1 · �φ2 + �φ2 · �φ3 + �φ3 · �φ1

+ i �φ1 · ( �φ2 × �φ3)), (4)

where ρ2 ≡ 2(1 + �φ1 · �φ2)(1 + �φ2 · �φ3)(1 + �φ3 · �φ1) and
QL(�) ∈ [− 1

2 ,+ 1
2 ]. Elementary plaquettes can be cut in

two ways, but both choices lead to the same physical results
for expectation values. The sum of QL(�) over all of the

triangles yields the so-called geometric topological charge
QL, which provides integer values without requiring a
composite operator renormalization.

A configuration of spins is a set of values of �φ(x) for all
lattice points x that yields a definite number if plugged into
expression (3).3 Monte Carlo simulations permit one to collect
configurations that are distributed according to the Boltzmann
weight exp(−SL) as long as SL is real. Unfortunately, this
condition fails to hold in our problem for θ �= 0. Indeed,
the sign problem in the second term of SL is evident due
to the presence of the imaginary unit. The existence of this
problem makes the model even more appealing since similar
difficulties appear also in the lattice regularization of several
field theories like QCD at finite baryon density. To avoid it, we
have numerically simulated the action (3) at imaginary values
of θ = −iϑ (ϑ is real) and extrapolated the results to real θ .
Simulations were done using a Metropolis algorithm.

The simulations were all performed at 1/gL = 1.6 on a
square lattice of lateral size L = 180. These choices were
dictated by the need of working within a scaling window
with as little finite-size and coarse-graining effects as possible.
Specifically, as shown in Ref. [29], the size L = 180 is the one
for which the model at 1/gL = 1.6 and θ = 0 displays a ratio
L/ξ ∼ 10 (ξ is the correlation length or inverse of the gap). We
will see later that, whereas ξ increases with θ , it decreases for
increasing |ϑ |. For this reason the ratio L/ξ becomes larger at
nonzero ϑ and this fact enables us to maintain a good control
on the finite-size effects in every single simulation. All these
features were verified by explicit simulations on smaller lattice
sizes (L = 100 and L = 60) obtaining numerically the same
results within errors.

For the subsequent analysis, measurements of the topolog-
ical charge and of the mass gap are needed. Measurements of
the first observable are obtained by the procedure explained
in the text around (4) and can be read off during the very
Metropolis steps. To determine the mass gap (the inverse of
the correlation length) we computed the two-point correlation
function,

G(x1,x2) ≡ 〈�φ(0,0) · �φ(x1,x2)〉, (5)

where brackets 〈· · · 〉 indicate the average with the Boltzmann
weight and x1 and x2 are the two components of x. The precise
definition of correlation length we employed was

ξ ≡
√

χ/F − 1

2 sin π/L
, (6)

where χ is the magnetic susceptibility and F the correlation
function at the smallest nonzero lattice momentum 2π/L,

χ ≡
∑
x1,x2

G(x1,x2),

(7)

F ≡ 1

2

∑
x1,x2

(e2πix1/L + e2πix2/L)G(x1,x2).

3This definition excludes the so-called exceptional configurations,
to which a value of the topological charge cannot be assigned
unambiguously, but which constitute a set of zero measure [28].
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FIG. 1. Mass gap m, or inverse correlation length, as a function
of ϑ = iθ for 1/gL = 1.6.

Definition (6) has two advantages. On the one hand, the gap
follows from a more straightforward calculation than the one
employed in definitions based on the exponential decay of
G(x1,x2) (thus simplifying the error evaluation) and, on the
other hand, the dependence of ξ on the lattice size L is as
negligible as it is for the above-mentioned exponential decay-
based definitions; see Ref. [30] (thus offering a very robust
estimate). Errors were assessed by blocking.

We simulated the model for 75 different values of ϑ

spanning from 0 to 3.7964. For each value of ϑ , two million of
thermalized configurations were prepared. Each configuration
and the next one were separated by 100 decorrelation hits
and the norms of the fields (‖ �φ(x)‖ = 1 for all x) were
checked and reset every 20 Metropolis hits (actually, the whole
procedure turned out to be numerically very stable since the
residuals |‖ �φ‖ − 1| always remained negligibly small and in
any case well within the computer accuracy). The Marsaglia
random number generator was utilized.

The numerical results for the mass gap m = 1/ξ and the
average topological charge are shown in Figs. 1 and 2, as
functions of ϑ = iθ . Since we want to investigate the behavior
at real θ � π , we need to perform the analytic continuation of
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FIG. 2. Expectation value of the total topological charge, 〈QL〉,
as a function of ϑ = iθ for 1/gL = 1.6. Error bars are smaller than
the size of the symbols.

our numerical data, which is known to be a difficult problem.
This issue is discussed in the next section.

IV. METHOD OF SCALING TRANSFORMATIONS

The basic technique we want to use in order to understand
the critical behavior at θ = π is that of scaling transfor-
mations proposed in Ref. [31] and subsequently used in
Refs. [17,18,32,33]. This technique provides a controllable
way to perform the analytic continuation of results obtained
simulating at imaginary θ . We give here a brief description
of this approach; more details can be found in the above-
mentioned references.

Originally, the approach was proposed in order to study the
behavior of the expectation value of the topological charge for
systems with a θ term near θ = π . Instead of working with the
topological charge itself, it turns out to be more convenient to
use the quantity

y(z) = 〈QL〉
V tanh ϑ

2

≡ qϑ

tanh ϑ
2

, z = cosh
ϑ

2
, z � 1, (8)

where qϑ denotes the vacuum expectation value of QL over the
volume V for imaginary θ = −iϑ , making explicit by means
of a subscript its dependence on ϑ for future convenience.
Upon analytic continuation back to real values, ϑ → iθ , one
has

y(z) = −i
qiθ

tan θ
2

, z = cos
θ

2
, z � 1, (9)

i.e., in terms of z the analytic continuation is simply an
extrapolation from z � 1 to z � 1.4 The next step consists
in performing this extrapolation not by using directly y(z) as
a function of z, but rather by relating y(z) to yλ(z) ≡ y(e

λ
2 z),

i.e., by trying to determine the function yλ(y). The assumption
usually made is that y(z) is a monotonically increasing function
of z, and that moreover it vanishes only for z = 0 (i.e., θ = π ),
which in physical terms corresponds to the absence of phase
transitions sending the topological charge to zero in the interval
θ ∈ (0,π ). Actually, this is indeed the case for the models
where the exact solution is known. The quantity yλ is then a
monotonic function yλ(y) of y, with the property that yλ = 0
at y = 0. The expectation is that yλ(y) is a smooth function, so
that starting from the smallest values of y that can be obtained
by numerical simulations at real ϑ , one can reliably extrapolate
towards y = yλ = 0, i.e., in the region corresponding to real
θ = −iϑ . From this point of view, for asymptotically free
systems the situation gets more and more favorable as one gets
closer to the continuum limit, since topological fluctuations
become suppressed.

In the 2D O(3) nonlinear sigma model, the behavior of
the total topological charge near θ = π is related to that of
the mass gap.5 According to Haldane’s conjecture, the mass
gap vanishes as m(θ ) ∼ (π − θ )ε ∼ zε (up to logarithmic

4Notice that y(z) remains real also for z � 1.
5The well known problems that appear when taking the continuum

limit of topological observables are not relevant for the problem
at hand; see the discussion in Ref. [18] based on the results of
Refs. [34,35].
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corrections) for θ → π from below, see Eq. (1), and since
qiθ ∝ ∂m2/∂θ , one expects y ∼ (π − θ )2ε ∼ z2ε . One can
then determine the critical exponent ε of the mass gap by
extrapolating the following effective exponent,

2εq(y) ≡ 2

λ
log

yλ(y)

y
, (10)

towards y = 0, i.e., towards θ = π . One easily sees that
εq(0) = ε. In principle, the same kind of technique can be
used to study the behavior of any observable near θ = π , and
in particular one can work directly with the mass gap. Defining
mλ(z) = m(e

λ
2 z), reexpressing it as mλ(y), and defining the

effective exponent

εm(y) ≡ 2

λ
log

mλ(y)

m(y)
, (11)

one finds again that εm(0) = ε.6

Despite the successful application of the method described
above to several models [31–33], it turns out that the direct
application of Eqs. (10) and (11) to the analysis of numerical
data in the 2D O(3) nonlinear sigma model is hampered by the
presence of logarithmic corrections to the critical behavior
shown in Eq. (1); see Ref. [18]. In the next section we
briefly discuss the form of these logarithmic corrections, and
in Sec. VI we propose a method to overcome the related
difficulties.

V. CRITICAL BEHAVIOR OF THE 2D O(3) NONLINEAR
SIGMA MODEL WITH A TOPOLOGICAL TERM

The appropriate WZNW model describing the critical be-
havior of the 2D O(3) nonlinear sigma model with topological
term near θ = π has been studied in Refs. [19,20,27]. In
particular, in Ref. [20] the authors have determined the relation
between the correlation length ξ and the coupling g̃ ∼ π − θ

of the relevant perturbation near θ = π , which reads

1

g̃
∝ ξ

3
2 (log ξ )−

3
4 [1 + O(1/ log ξ )]. (12)

Instead of working out the corresponding prediction for the
critical behavior of the correlation length, we will use the
more general expression

1

g̃
= Kξa(log ξ )−bu(log ξ ), (13)

with K some constant and some function u(x) = 1 +∑∞
k=1 ukx

−k , which reduces to the results of Ref. [20] for
a = 3

2 and b = 3
4 (and with an appropriate u). The reason why

we do the calculation in this generalized setting is that we want
a general expression for a vanishing mass gap, not relying on
the details of the relevant critical model, which can be guessed
on general grounds, and which can be used in principle to
determine the critical exponents from numerical data, without
knowing in advance the values of a and b. This is different
from the approach of Refs. [13–15] where the theoretical
expectation for the critical behavior was used as an input

6We assume here that there are no phase transitions for θ ∈ (0,π )
that send the mass to zero.

of the numerical analysis. Since the theoretical prediction is
strictly valid only in the continuum limit, a shortcoming of this
approach is that it cannot be used to map the full phase diagram
of the O(3) nonlinear sigma model at θ = π as the coupling is
varied.7 On the other hand, our approach is sufficiently general
and could be applied to the study of this problem.

We now derive the critical behavior of the correlation
length. Equation (13) can be inverted by solving for ξ

iteratively. The solution has the form

log ξ = 1

a
log

1

g̃K
+ b

a
log log

1

g̃K
+ b

a
log

1

a

+
∞∑
l=1

l∑
j=0

C
j

l

(
log log 1

g̃K

)j

(
log 1

g̃K

)l
, (14)

where C
j

l are constants. For our purposes we shall use the
variable z = cos θ

2 , which behaves as z � (π − θ )/2 near π

and is therefore proportional to g̃. Subleading terms in the
expansion of z are powers in g̃ (and vice versa) and so will
be discarded, since we are considering here only logarithmic
terms, which dominate the critical behavior. We obtain

log ξ
P= 1

a
log

1

z
+ b

a
log log

1

z
+ C̄0

0

+
∞∑
l=1

l∑
j=0

C̄
j

l

(
log log 1

z

)j

(
log 1

z

)l
, (15)

where the mark P over the equals sign indicates that the
equality holds up to terms which are proportional to powers
of z, and C̄

j

l are constants. Recalling now that the mass gap is
m = 1/ξ , and exponentiating Eq. (15), we finally get

m
P= zε

(
log

1

z

)−β

exp

⎧⎨
⎩−

∞∑
l=0

l∑
j=0

C̄
j

l

(
log log 1

z

)j

(
log 1

z

)l

⎫⎬
⎭ ,

(16)
where ε = 1

a
and β = b

a
. Substituting the values appearing in

Eq. (12), one obtains the theoretical expectation for the critical
exponents, εWZNW = 2

3 and βWZNW = 1
2 .

Even though most of the coefficients in Eq. (16) are not fully
determined, as the detailed form of the function u in Eq. (13) is
largely unknown, nevertheless the coefficients C̄l

l = Cl
l , l � 1

can be determined exactly, as they do not depend on u, and
the corresponding terms can be resummed. Setting w = log 1

z
,

m0 = e−C̄0
0 , and

ū(w) = exp

⎧⎨
⎩−

∞∑
l=1

l−1∑
j=0

C̄
j

l

(log w)j

wl

⎫⎬
⎭ = 1 +O(1/w), (17)

we finally obtain

m
P= m0e

−εww−β

[
1 + β

ε

log w

w

]−β

ū(w). (18)

The critical behavior of the expectation value of the topological
charge density, qiθ , can be obtained from that of the mass

7For example, at strong coupling the system is expected to undergo
a first-order phase transition at θ = π .
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gap m. Since according to the usual renormalization-group
arguments the free energy per unit volume F is proportional to

m2, one has qiθ = −i∂F/∂θ
P∝ m ∂m/∂θ

P∝ m ∂m/∂z. More
precisely, writing m = m0e

−εww−βf (w), with f (w) = 1 +
O(log w/w), we have for y [see Eqs. (8) and (9)]

y
P= zqiθ

P∝ mz
∂m

∂z
= −m

∂m

∂w

P= m2

(
ε + β

w
− f̃ (w)

w

)
,

(19)
where f̃ (w) = wf ′(w)/f (w) = O(log w/w). We can there-
fore write

y
P= y0e

−2εww−2β

[
1 + β

ε

log w

w

]−2β

v̄(w), (20)

with some constant y0, and with v̄(w) = 1 + O(1/w). It is
now straightforward to derive expressions for the effective
exponents. They read

εm(y) = 2

λ
log

mλ

m

P= ε

(
1 + β

ε

1

w
− β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2)

= ε

(
1 + β

ε

1

w + β

ε
log w

)
+ O(1/w2), (21)

2εq(y) = 2

λ
log

yλ

y

P= 2ε

(
1 + β

ε

1

w
− β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2)

= 2ε

(
1 + β

ε

1

w + β

ε
log w

)
+ O(1/w2), (22)

where w has to be traded for y by inverting the following
relation:

1

2ε
log

y0

y
= w + β

ε
log w + O(log w/w). (23)

VI. DETERMINATION OF THE CRITICAL EXPONENTS

The presence of the logarithmic factors w−β and w−2β in
Eqs. (18) and (20) constitutes a problem for the numerical
analysis. It is well known that the presence of logarithmic
corrections can lead to a wrong estimate of a critical exponent.
In the problem at hand, the main consequences of these
corrections are the O(1/w) = O(1/ log y0

y
) terms in Eqs. (21)

and (22), which lead to rather large deviations from the value
at y = 0 even for pretty small y. Furthermore, the O(log w/w)
term in Eq. (23) results into O(log log y0

y
/(log y0

y
)2) terms in

Eqs. (21) and (22), that also give sizable contributions. On
top of that, the log w term in Eq. (23) spoils the approximate
linearity of the relation between log y0

y
and w at small w. As

a consequence, these terms make it very difficult to correctly
identify the asymptotic value as y → 0.

To overcome this problem, it is therefore convenient to
first remove the logarithmic factor, and only after perform
the analysis with the scaling transformations, as suggested
in Ref. [18]. An obvious obstacle is that in principle we

do not know the exponent β. In Ref. [18] the analysis was
performed by taking β = 1

2 , in accordance with the theoretical
expectation, and trying to determine the critical exponent by
fitting the data for the properly modified effective exponent
obtained from the topological charge. The results were in
agreement with the theoretical expectation. Here we use
another strategy that does not presume any preferred value for
β: by choosing an arbitrary β, we obtain two determinations
of the critical exponent by fitting separately the data for two
properly defined effective exponents, involving respectively
the mass gap and the topological charge, as if the current value
of β were the correct one. We then vary β, obtaining two sets
of putative critical exponents, one for each observable. The
idea is that for the correct choice of β, the two determinations
have to coincide.

To determine the mass gap critical exponent from the mass
gap data, it is therefore convenient to study the behavior of the
quantity m̄ = m(log 1

z
)β = mwβ under the rescaling z → e

λ
2 z,

or equivalently under the shift w → w − λ
2 . Analogously, to

determine the mass gap critical exponent from the topological
charge data it is convenient to consider ȳ = y(log 1

z
)2β =

yw2β . To lowest order8 we find from Eqs. (21) and (22)

2

λ
log

m̄λ

m̄

P= ε

(
1 − β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2), (24)

2

λ
log

ȳλ

ȳ

P= 2ε

(
1 − β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2). (25)

Finally, since to lowest order9 w = log(1/z) = (1/2ε) log(y0/

ȳ) + o(1), one can write down the relation between the
effective exponents and ȳ.

A possible practical definition of m̄ and ȳ is (recall that
z = cosh ϑ

2 )

m̄ ≡ m�β, ȳ ≡ y�2β, � = log

(
1 + 1

z

)
. (26)

However, to avoid distortions at large ϑ which could worsen
the quality of the numerical analysis, it is preferable to work
instead with the quantities

m̃ ≡ m

(
�z

log 2

)β

, ỹ ≡ y

(
�z

log 2

)2β

, (27)

where we have also introduced a factor log 2 to give 1 in front
of m and y at ϑ = 0. These quantities are easily seen to satisfy

2

λ
log

m̃λ

m̃
− β

P= ε

(
1 − β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2),

(28)

2

λ
log

ỹλ

ỹ
− 2β

P= 2ε

(
1 − β2

ε2

log w

w2 + β

ε
w log w

)
+ O(1/w2).

(29)

8Due to the resummation done in Eq. (18), Eqs. (24) and (25)
actually contain higher-order terms.

9Notice the absence of O(log log(y0/ȳ)) corrections, which are
present in the relation between log(y0/y) and w; see Eq. (23).
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For our purposes it is convenient to reexpress the quantities on
the left-hand side of Eqs. (28) and (29) as functions of ỹ. A
simple calculation shows that

log
ỹ0

ỹ
= 2(ε + β)w + O(log w/w), (30)

where ỹ0 = y0/(log 2)2β , which allows one to recast Eqs. (28)
and (29) as

ε̃m(ỹ) ≡ 2

λ
log

m̃λ

m̃
− β

P= ε E
(

1

2(ε + β)
log

ỹ0

ỹ

)
+ O

((
log

ỹ0

ỹ

)−2)
, (31)

2ε̃q(ỹ) ≡ 2

λ
log

ỹλ

ỹ
− 2β

P= 2ε E
(

1

2(ε + β)
log

ỹ0

ỹ

)
+ O

((
log

ỹ0

ỹ

)−2)
, (32)

where

E(x) = 1 − β2

ε2

log x

x2 + β

ε
x log x

. (33)

These expressions can be used to fit the numerical data for
small enough ỹ. Since these are low-order approximations
to the exact expressions, one is introducing a systematic
error through the truncation. We remind the reader that by
“exact” we mean here up to terms originating from powers
of z in Eq. (15), which should be negligible compared to the
logarithmic terms. We mention here that the values of ϑ at
which we performed the simulations were chosen in such a way
that corresponding pairs of z and e

λ
2 z could be constructed with

λ = 0.5, so that we did not need any interpolation to compute
ε̃m and ε̃q .

A practical way to estimate the systematic error due to
truncation on our determinations of the critical exponent is to
employ the technique of constrained fits [36]. This basically
consists in adding more and more subleading corrections to
Eqs. (31) and (32), constraining the corresponding coefficients
according to the available information. When the error on
the parameters given by the fitter settles against the increase
of the number of terms, it includes also the contribution
of the systematic error due to the truncation of the exact
expression [36]. One can show that by including higher-order
terms, Eqs. (31) and (32) become10

ε̃m
P= ε E(�) +

∞∑
k=2

k−2∑
j=0

h
(m)
jk

(log �)j

�k
, (34)

2ε̃q
P= 2ε E(�) +

∞∑
k=2

k−2∑
j=0

h
(q)
jk

(log �)j

�k
, (35)

10Notice that similar expansions for εm and εq as functions of �0 =
1
2ε

log y0
y

contain, besides a 1/�0 term, also terms proportional to

(log �0)j /�j+1
0 , which are absent in ε̃m and ε̃q .

TABLE I. Priors used in the constrained fits for ε̃q (ỹ).

Parameter Mean Standard deviation

ε 1 100
ỹ0 1.0 1.0
h

(q)
02 0.1 0.1

h
(q)
13 −0.1 0.1

h
(q)
03 0.1 0.1

h
(q)
24 0.0 0.1

h
(q)
14 0.0 0.01

h
(q)
04 0.0 0.01

where we set � ≡ 1
2(ε+β) log ỹ0

ỹ
. The constraints on the

parameters (“priors”) are needed to ensure the stability of fits
with a rather large number of parameters. The priors were
chosen to be as loose as possible while leading to fits of good
quality.

We have applied this technique to the critical exponent
measured from the expectation value of the topological charge.
In practice we assumed that the fit parameters obey a Gaussian
distribution, with mean and standard deviation as reported in
Table I. We used data up to ỹ = 0.01, and up to eight fit
parameters. The results of the fit are shown in Fig. 3.

The same kind of analysis should be performed for the
critical exponent obtained from the mass gap, i.e., one should
fix ỹ0 to the value obtained using the total topological charge
data, and fit the mass gap data including more and more terms
in the expansion to determine the systematic error. However,
the quality of the data for ε̃m is rather poor compared to the
very precise topological charge data, and very hard to improve
(we remind the reader that we made two million measurements
for each ϑ). The mass gap data show no clear structure, being
essentially constant within the statistical errors; see Fig. 4.
An attempt at including the main contribution and the first
subleading term in Eq. (34) results in fits that are very sensitive
to the choice of priors, indicating that the data are not good
enough for a sophisticated analysis like the one carried out for
the topological charge. However, if the absence of a clear
structure in the data for ε̃m indicates that the size of the
corrections to the value at ỹ = 0 is of the same order of the

q̃(0), β =0.25
β =0.25

q̃(0), β =0.50
β =0.50

q̃(0), β =0.75
β =0.75

0.3

0.4

0.5

0.6

0.7

0.8

0 0.005 0.01 0.015 0.02 0.025

q̃

ỹ

FIG. 3. (Color online) Data (points), fit (solid line), and value at
ỹ = 0 (dashed line) for the effective exponent ε̃q , for three assumed
values of β.
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-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.005 0.01 0.015 0.02 0.025

˜m

ỹ

FIG. 4. (Color online) Data for the effective exponent ε̃m (points)
and result of a fit with a constant (dashed line), assuming β = 0.5.

statistical errors, then a fit to the data with a simple constant
will result into a reasonable estimate of the critical exponent,
and the statistical fluctuations around the central value will give
a reasonable estimate of the error. We shall follow this latter
strategy to determine the critical exponent of the mass gap.

The results for the two determinations of the critical
exponent are reported in Table II. In Fig. 5 we compare the
two determinations, which clearly cross close to β = 0.5. We
take this value for β, and for the corresponding error we take

TABLE II. Results for ε̃q (0), obtained with a eight-parameter
constrained fit of ε̃q , and results for ε̃m(0) obtained with a fit of ε̃m

with a constant, for several assumed values of β.

β ε̃q (0) ε̃m(0)

0.250 0.7919+0.0028
−0.0030 0.864 ± 0.023

0.275 0.7784+0.0029
−0.0030 0.844 ± 0.023

0.300 0.7651+0.0030
−0.0031 0.825 ± 0.023

0.325 0.7520+0.0030
−0.0031 0.805 ± 0.023

0.350 0.7391+0.0031
−0.0032 0.786 ± 0.023

0.375 0.7264+0.0031
−0.0032 0.767 ± 0.023

0.400 0.7140+0.0031
−0.0032 0.747 ± 0.023

0.425 0.7037+0.0035
−0.0036 0.728 ± 0.023

0.450 0.6918+0.0035
−0.0036 0.709 ± 0.023

0.475 0.6801+0.0035
−0.0036 0.689 ± 0.023

0.500 0.6687+0.0035
−0.0036 0.670 ± 0.023

0.525 0.6574+0.0035
−0.0036 0.651 ± 0.023

0.550 0.6464+0.0035
−0.0036 0.631 ± 0.023

0.575 0.6357+0.0035
−0.0036 0.612 ± 0.023

0.600 0.6251+0.0035
−0.0036 0.592 ± 0.023

0.625 0.6156+0.0037
−0.0037 0.573 ± 0.023

0.650 0.6055+0.0037
−0.0037 0.553 ± 0.023

0.675 0.5957+0.0037
−0.0038 0.534 ± 0.023

0.700 0.5860+0.0037
−0.0038 0.515 ± 0.023

0.725 0.5766+0.0038
−0.0038 0.495 ± 0.023

0.750 0.5674+0.0038
−0.0038 0.476 ± 0.023

q̃(0)

m̃(0)

0.5

0.6

0.7

0.8

0.9

0.3 0.4 0.5 0.6 0.7

β

FIG. 5. (Color online) The two determinations ε̃q (0) and ε̃m(0) of
the mass gap critical exponent ε, as a function of the assumed value
of β.

the half-length of the interval [0.425,0.575], where the two
determinations are compatible within one standard deviation,
which results in β = 0.50(7). For the critical exponent, we
take the average of the values of ε̃m(0) and ε̃q(0) at β = 0.5,
and we quote as error the half-variation of ε̃m(0) in the range
β ∈ [0.425,0.575], which yields ε = 0.67(6). These values
are in very good agreement with the theoretical expectation
εWZNW = 2

3 and βWZNW = 1
2 for the critical exponent and the

exponent of the logarithmic correction. For completeness, we
finish by noting that had we established the value of β = 1/2
from the very beginning, as in Ref. [18], then the determination
of ε obtained from the topological charge would have read
ε̃q(0) = 0.6687+0.0035

−0.0036.

VII. CONCLUSIONS

The present paper deals with Haldane’s conjecture, which
states that the mass gap in the 2D O(3) nonlinear sigma
model with a θ term must vanish as θ approaches the value π

according to the precise law given in Eq. (1). The aim of the
work is to extract the critical exponent ε ruling the dominant,
power-law behavior of the mass gap near θ = π and also the
elusive exponent β of its logarithmic correction, without any
a priori assumption about their values.

The sign problem hindering the numerical study of the
model in the presence of a nonzero θ has been circumvented
by performing Monte Carlo simulations at imaginary values of
θ (where the Euclidean action is real and a positive Boltzmann
weight can be safely defined) and extrapolating the results to
real values of θ .

The basic technique adopted to carry out this extrapolation
is that of scaling transformations proposed in Ref. [31]. Had
we limited our analysis to the mass gap only, the target would
have been missed, even in spite of high-statistics Monte Carlo
simulations, due to the intrinsically bad signal-to-noise ratio
of this observable (this problem arose in Ref. [16]).

The breakthrough comes by the inclusion in the analysis
of a second observable, the topological charge, for which
very accurate determinations at imaginary θ can be obtained.
Indeed, when the compatibility between the extrapolations
towards θ = π of the mass gap and of the topological charge
is imposed, a determination of both the exponents ε and β gets
within reach, nicely agreeing with the theoretical prediction.
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These determinations, schematically summarized in Fig. 5,
are ε = 0.67(6) and β = 0.50(7), both in concordance with
the renormalization-group prediction of Refs. [19,20] shown
in Eq. (1), namely εWZNW = 2

3 and βWZNW = 1
2 .
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[28] B. Berg and M. Lüscher, Nucl. Phys. B 190, 412 (1981).
[29] B. Allés, G. Cella, M. Dilaver, and Y. Gündüç, Phys. Rev. D 59,
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