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Absence of classical long-range order in an S= 1
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We study the quantum phase transition of an S = 1
2 anisotropic α (≡ Jz/Jxy) Heisenberg antiferromagnet on

a triangular lattice. We calculate the sublattice magnetization and the long-range helical order parameter and
their Binder ratios on finite systems with N � 36 sites. The N dependence of the Binder ratios reveals that the
classical 120◦ Néel state occurs for α � 0.55, whereas a critical collinear state occurs for 1/α � 0.6. This result
is at odds with a widely held belief that the ground state of a Heisenberg antiferromagnet is the 120◦ Néel state,
but it also provides a possible mechanism explaining experimentally observed spin liquids.
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Because an exotic spin state may occur as a result of low-
dimensional quantum fluctuations and geometric frustration,
the S = 1

2 quantum antiferromagnetic Heisenberg (QAFH)
model on the triangular lattice is one of the central issues in
solid-state physics. Anderson proposed a resonating-valence-
bond (RVB) state or a spin-liquid (SL) state as the ground
state (GS) [1]. Since then, many theoretical studies have
focused on identifying the GS by using different methods
such as spin-wave (SW) theory [2], variational Monte Carlo
techniques [3,4], series expansions [5,6], exact diagonaliza-
tions (ED) of finite systems [7–11], quantum Monte Carlo
techniques [12], density matrix renormalization group theory
[13], and diagrammatic Monte Carlo techniques [14]. The
GS is now widely believed to be a long-range-order (LRO)
state with the 120◦ sublattice structure (the 120◦ Néel state)
because the results of most numerical studies can be analyzed
by using this image [6, 9, 11,12]. However, experimental
developments have enabled us to synthesize model compounds
such as κ-(ET)2Cu2(CN)3 [15], EtMe3Sb[Pd(dmit)2]2 [16],
and Ba3IrTi2O9 [17]. In these compounds, no spin ordering
has been observed down at very low temperatures; several
mechanisms have been proposed to resolve this discrepancy,
such as spatial anisotropy [18,19], ring exchange [20], and
spinon interaction [21].

Before examining these mechanisms, we must first care-
fully reexamine the GS properties of the QAFH model because
the base of the 120◦ Néel GS is not yet solidly established.
In particular, even in the most widely accepted studies, the
magnitude of the sublattice magnetization (SMAG) m† is
not compatible. SW theory in finite systems [9] and the
quantum Monte Carlo technique [12] suggest m† = 0.4 ∼ 0.5
in the classical case units of m† = 1, whereas numerical series
expansions suggest either m† ∼ 0 [5] or some small value [6].
In the ED technique up to N = 36 spins, results depend on
the scaling functions, which gives either m† ∼ 0.5 [9,11] or
m† ∼ 0 [10]. The quantum Monte Carlo technique [12] does
not satisfactorily reproduce ED results for N = 12 and 36.

In the present paper, we report that the GS of the
QAFH model differs from the 120◦ Néel state. We consider
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finite systems with N (� 36) sites in the usual way, but
take a different approach. To investigate the quantum phase
transition, we consider an anisotropic model. We calculate the
SMAG and the long-range helical order (LRHO) parameter
and examine the Binder ratios of these quantities. We find
that, in concurrence with recent results, the GS is a critical
state with collinear structure in the Ising-like range and a 120◦
Néel state in the XY-like range. In contrast, the GS is a SL
state in the Heisenberg-like range. We estimate an anisotropy
threshold for the occurrence of the critical state and for the
120◦ Néel state.

We start with an anisotropic model on periodic finite lattices
described by the Hamiltonian

H = 2J
∑
〈i,j〉

[
Sx

i Sx
j + S

y

i S
y

j + αSz
i S

z
j

]
, (1)

where J > 0, α � 0, and the sum runs over all the nearest-
neighbor pairs of sites. Note that the model with α = ∞ is an
Ising model for which the GS is a critical state characterized
by a power-law decay of the spin correlation function [22]. At
the other limit, the model with α ∼ 0 is an XY-like model for
which the 120◦ Néel state is suggested to occur [10,23]. We
discuss the spin structure of the Heisenberg-like model with
α ∼ 1 by comparing the properties of this model with those
of the Ising- and XY-like models. The main issue is whether
m† �= 0 or not.

By using a power method, we calculate the GS eigenfunc-
tion |ψG〉 for two types of lattices, A and B, with N � 36
sites. Type-A lattices have N = 9, 12, 21, 27, 36, and type-B
lattices have N = 15, 18, 24, 30, 33. The shapes of the type-A
lattices were presented in Ref. [10]; for this lattice type, the
sublattices �1, �2, and �3 are equivalent. The type-B lattices
are constructed so that the 120◦ Néel structure is possible in
the classical case. The SMAG of the type-A lattices, and in
particular their N dependence, have already been studied by
several groups [9–11]. However, for these small systems, the
data strongly depend on the parity and magnitude of N . In the
present work, we add to these the data for type-B lattices.

First, we consider the SMAG. The ν component (ν =
x,y,z) of the square of the magnetization of the �l sublattice
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FIG. 1. (Color online) z and xy components of the SMAG
[〈mz

2〉N and 〈mx
2〉N (≡ 〈mxy

2 〉N/2), respectively] in the GS as functions
of α.

is defined as

mν
l = 1

(N/6)2

⎛
⎝∑

i∈�l

Sν
i

⎞
⎠

2

, (2)

and the xy component is defined as m
xy

l = mx
l + m

y

l . Figure 1
shows the xy and z components of the SMAGs 〈mμ

2 〉N (≡
1
3

∑3
l 〈mμ

l 〉N )(μ = z,xy) as functions of α, where 〈A〉N =
〈ψG|A(N )|ψG〉. For α ∼ 0, 〈mxy

2 〉N has a large value and is
only weakly dependent on size, whereas 〈mz

2〉N is small and
depends strongly on size. As α increases, 〈mxy

2 〉N gradually
decreases and 〈mz

2〉N increases, and 〈mz
2〉N = 〈mxy

2 〉N/2 at
α = 1. The reverse is true for 1/α ∼ 0. The results at α ∼ 0
and 1/α ∼ 0 seem to be compatible with the classical picture
of the GS. However, in contrast with the classical case, 〈mz

2〉N
(or 〈mxy

2 〉N ) does not abruptly increase (or decrease) as α is
increased across the Heisenberg point α = 1.

We now examine the quantum phase transition of the model
by considering the dependence of α on 〈mz

2〉N and 〈mxy

2 〉N .
The SMAG at α = 1 for N → ∞ has been estimated by
several groups [9–11] who used different scaling relations.
However, the result depends on both the units of the sublattice
magnetization and the scaling functions. Here we consider the
Binder ratios [24] of 〈mz

2〉N and 〈mxy

2 〉N which are free from
the scaling function and their units. The Binder ratios of 〈mz

2〉N
and 〈mxy

2 〉N , Bz
m(N ) and B

xy
m (N ), respectively, are defined as

Bz
m(N ) = [

3 − 〈
mz

4

〉
N

/〈
mz

2

〉2
N

]/
2, (3)

Bxy
m (N ) = [

5 − 3
〈
m

xy

4

〉
N

/〈
m

xy

2

〉2
N

]/
2, (4)

where 〈mμ

4 〉N ≡ 1
3

∑3
l 〈ψG|(mμ

l )2|ψG〉.
We first examine the GS of the Ising-like model for

1/α < 1. In Fig. 2, we plot Bz
m(N ) as functions of 1/α.

The dependence of Bz
m(N ) on N differs somewhat for N

odd or even. For N even, Bz
m(N ) at 1/α ∼ 1 decreases with

increasing N , revealing that 〈mz
2〉N vanishes as N → ∞. As

1/α decreases, Bz
m(N ) for different N increase, come together

at 1/α ∼ 0.6, and then gradually increase thereafter. This
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FIG. 2. (Color online) Binder ratios Bz
m(N ) as functions of 1/α.

The ratios for N even and odd are shown by solid and open symbols,
respectively.

result is consistent with the fact that the GS is critical at
1/α = 0 [22]. For N odd, although Bz

m(N ) are larger than
for N even, even at 1/α ∼ 0 they decrease with increasing N .
To resolve this discrepancy, we show in Fig. 3 a plot of Bz

m(N )
as a functions of 1/N . We see that, as N increases, Bz

m(N ) for
odd N approach those for even N . Thus, we conclude that the
decrease of Bz

m(N ) for small N is an abnormal finite-size effect
that comes from the difference in the ratio rz = Mz/N , with
Mz being the z component of the total-spin number [25]. The
slopes of the fitting lines of Bz

m(N ) vs 1/N shown in Fig. 3
are almost zero for 1/α � 0.6. We suggest that the GS is the
critical state for α > αz

c with 1/αz
c ∼ 0.6.

Next we examine the GS of the XY-like model for α < 1.
Figures 4 and 5 show plots of B

xy
m (N ) as functions of α and

of 1/N , respectively. We see in Fig. 5 that B
xy
m (N ) for N odd

also exhibit the abnormal finite-size effect; they take on values
larger than those for N even, and approach the N -even values
as N increases. We thus consider the dependence of B

xy
m (N ) on

N for N even. At α ∼ 0, Bxy
m (N ) increases with N . This result

is consistent with the recently reported presence of the LRO in
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FIG. 3. (Color online) Binder ratios Bz
m(N ) for different 1/α as

functions of 1/N . Ratios for N even and odd are shown by circles
and crosses, respectively. The straight lines for N even are the least-
squares fits for N � 18.
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FIG. 4. (Color online) Binder ratios Bxy
m (N ) as functions of α.

Ratios for N even and odd are shown by solid and open symbols,
respectively.

the XY model [10]. However, at α ∼ 1, Bxy
m (N ) decreases with

increasing N , which reveals that 〈mxy

2 〉N vanishes as N → ∞.
The most remarkable point is that Bxy

m (N ) for different N cross
at α ∼ 0.55 (see also Fig. 5). Thus, we suggest that a quantum
phase transition between the SL state and the LRO state occurs
at α = α

xy
c (∼ 0.55).

We now consider the helicity, which gives a complementary
view of the spin ordering (i.e., it is sensitive to the 120◦
structure). The local helicity [7] for each upright triangle at
�R is defined by

�χ ( �R) = 2√
3

(�Si × �Sj + �Sj × �Sk + �Sk × �Si). (5)

The order of i → j → k is counterclockwise. The LRHO
parameter in the ν component is defined as

χν
2 = 1

N2

⎡
⎣∑

�R∈�

χν( �R)

⎤
⎦

2

, (6)
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FIG. 5. (Color online) Binder ratios Bxy
m (N ) for different α as

functions of 1/N . Ratios for N even and odd are shown by circles
and crosses, respectively. The straight lines for N even are the least-
squares fits for N � 18.
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FIG. 6. (Color online) z and xy components of LRHO parameter
(〈χz

2 〉N and 〈χxy

2 〉N , respectively) in the GS as functions of α.

where the sum is over all upright triangles. We consider the
LRHO parameter in the xy plane, χz

2 , and in a plane orthogonal
to the xy plane (hereinafter called the yz plane), χxy

2 (= χx
2 +

χ
y

2 ). Note that χz
2 was already calculated by several authors

[7,10,23]. Here we add χ
xy

2 to examine the occurrence of
a distorted 120◦ structure in the yz plane. In the classical
case, χz

2 = 1 and χ
xy

2 = 0 for 0 � α < 1, whereas χz
2 = 0 and

χ
xy

2 � 1 for 1/α � 1 (i.e., χz
2 and χ

xy

2 suddenly exchange their
role at α = 1).

Figure 6 shows 〈χz
2 〉N and 〈χxy

2 〉N as functions of α. We
see that 〈χz

2 〉N has properties similar to those of 〈mxy

2 〉N : it
takes on a large value at α ∼ 0 and decreases with increasing
α. However, the dependence of 〈χxy

2 〉N on α differs somewhat
from that of 〈mz

2〉N ; although it increases with α, its increment
is suppressed for α > 1 (1/α < 1). In particular, it reaches
a maximum at 1/α ∼ 0.4 and then decreases. This is a
consequence of the spin state becoming collinear at the
Ising limit 1/α → 0. Note that, even for 1/α ∼ 0.4, 〈χxy

2 〉N
depends strongly on N , which reveals the absence of the xy

component LRHO in this model. That is, the critical state
for α > αz

c has a collinear spin structure along the z axis.
A remarkable point is that, like 〈mz

2〉N and 〈mxy

2 〉N , 〈χz
2 〉N

and 〈χxy

2 〉N for α < 1 are smoothly connected with those for
α > 1. This result supports the finding above that the spin
structure does not change abruptly at the Heisenberg point
α = 1.

To examine the presence of the 120◦ structure in the xy

plane, we consider the Binder ratio Bz
χ (N ) of 〈χz

2 〉N , which is
defined as

Bz
χ (N ) = (3 − 〈

χz
4

〉
N

/〈
χz

2

〉2
N

)/2. (7)

Figure 7 shows plots of Bz
χ (N ) as functions of α. We see

that Bz
χ (N ) exhibit properties quite similar to B

xy
m (N ); the

abnormal finite-size effect of Bz
χ (N ) for N odd at α ∼ 1Bz

χ (N )
is smaller as N increases, and at α ∼ 0 the reverse is true.
The most interesting point is that Bz

χ (N ) for different N even
intersect at α ∼ 0.6. This value of α ∼ 0.6 is consistent with
the critical value α

xy
c ∼ 0.55 that is estimated from B

xy
m (N ).

That is, the LRHO accompanies the LRO of the SMAG.
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FIG. 7. (Color online) Binder ratios Bz
χ as functions of α. Ratios

for N even and odd are shown by solid and open symbols, respectively.

Thus, we conclude that a quantum phase transition from the
SL state to the 120◦ Néel state occurs at α = α

xy
c ∼ 0.55.

We should note, however, that further studies are necessary to
establish the critical value of α

xy
c as well as that of αz

c .
We thus studied the GS property of the anisotropic

quantum antiferromagnetic Heisenberg (QAFH) model on
a finite triangular lattice with N � 36 sites. We find that
the GS of the model is the 120◦ Néel state for α <

α
xy
c (∼ 0.55) and is the critical collinear state for 1/α <

1/αz
c (∼ 0.6). That is, classical LRO is absent at α ∼ 1.

Although this result contrasts strongly with recent theo-
retical ideas, it is consistent with recent experiments. We
hope that our results will stimulate both theoretical and
experimental works in low-dimensional frustrated quantum
systems.

Some of the results in this research were obtained using
the supercomputing resources at Cyberscience Center, Tohoku
University.
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