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Critical Casimir forces in a magnetic system: An experimental protocol
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We numerically test an experimentally realizable method for the extraction of the critical Casimir force based
on its thermodynamic definition as the derivative of the excess free energy with respect to system size. Free energy
differences are estimated for different system sizes by integrating the order parameter along an isotherm. The
method could be developed for experiments on magnetic systems and could give access to the critical Casimir
force for any universality class. By choosing an applied field that opposes magnetic ordering at the boundaries,
the Casimir force is found to increase by an order of magnitude over zero-field results.
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I. INTRODUCTION

Confinement of a critical system on the nanoscale leads
to the critical Casimir force [1], whereby truncation of the
diverging correlation length gives a singular contribution to
the confining forces. This critical manifestation of the Casimir
force [2] has been of considerable interest over the last twenty
years [3,4]. It has become accessible to measurement through
a series of elegant experiments, probing either the forces on
a localized colloidal particle [5], or the Casimir contribution
to a work function characterizing the thickness of a thin fluid
film [6–9]. Theoretical [10–13] and numerical [14–25] studies,
however, systematically use approaches based on generalized
thermodynamic relationships between the constraining forces
and the relevant free energy. Here, evolution of the free energy
with system size yields the critical Casimir effect without
direct access to the constraining force.

The search for experimental realizations of this effect has
so far ignored magnetic systems—a surprising fact given
that they have long been considered as the paradigm for
studies of criticality (see, for example, Ref. [26]) and that
the nanoengineering of magnetic thin films is particularly
well-advanced [27]. In this paper, we numerically test a new
protocol for measurement of the magnetic Casimir force based
on the concept of generalized thermodynamic forces. This
procedure could be adapted to experiments on magnetic thin
films, or to systems as diverse as ferroelectrics, liquid crystals
or polymers and could give access to all universality classes
including quantum criticality.

We concentrate on a system with scalar order param-
eter m, conjugate external field h, volume V and free
energy �(T ,h,V ), close to a second order phase transition.
Anisotropic confinement is allowed for by setting V = ALz,
with

√
A = L‖ � Lz. We define dimensionless variables, t =

(T − Tc)/Tc, h̃ = h/kBTc, with Tc the bulk three-dimensional
critical temperature.

For a magnetic system, h is proportional to the applied
magnetic field within an Ising description. In a simple fluid
near the liquid gas critical point, h ∼ μ − μc is the chemical
potential, measured with respect to the critical value, μc while
near the demixing transition of a binary fluid, h depends on
the difference in chemical potential of the two species. Our
analysis can easily be extended to include vector fields and
order parameters, relevant for other universality classes such
as, for example, helium films near the superfluid transition.

Strictly speaking, the thermodynamics of the magnetic
system requires a fourth variable, N , the number of magnetic
elements and hence a more general free energy, �(T ,h,V,N ).
It becomes thermodynamically equivalent to the fluid systems
by fixing the magnetic moment density ρ = N

V
. In this case

volume fluctuations impose fluctuations in the number of
magnetic elements, so that one is dealing with a uniform
magnetic medium. While spontaneous fluctuations of this kind
clearly cannot exist in conventional magnetic systems [25],
the evolution of the free energy with system size can give
indirect access to the Casimir force and this is the subject of
the present paper. An alternative constraint would be to impose
N constant, so that volume fluctuations would lead to magne-
toelastic effects, as is the case in real magnets. In principle,
one could imagine magnetic experiments that directly measure
Casimir forces through magnetoelastic coupling, although the
separation of the critical and bulk contributions could be
difficult. In practice, as magnetic exchange coupling varies
rapidly with interatomic distance the critical properties are
strongly perturbed and renormalization studies predict the
transition to be driven first order by the coupling [28]. This, in
itself is an interesting field of study, but in the rest of the paper,
we neglect all magnetoelastic effects and concentrate on the
free energy which is generic to magnetic and fluid systems.
For convenience, we set the microscopic length scale σ = 1.

II. FREE ENERGY AND THE CRITICAL CASIMIR FORCE

Neglecting surface corrections, the free energy near critical-
ity takes the form �(T ,h,V ) = V kBT (ωa + ωs), where ωa/s

are the analytic and singular parts of the free energy density
[29]. The critical Casimir effect is defined in the anisotropic
confinement regime where the correlation length, ξ , lies in
the range, 1 � ξ ∼ Lz � L‖, so that ωs(t,h̃,L−1

z ). The Lz

dependence comes from the truncation of the correlation length
near criticality [29] (dependence on the finite aspect ratio
Lz/L‖ [16,25] is not considered in detail here). The free energy
can be developed to expose the contribution coming from this
truncation:

�(T ,h,V ) = V kBT
(
ωa + ω0

s + ωs − ω0
s

)
, (1)

where ωa + ω0
s (t,h̃) = ωbulk is the bulk free energy density in

which the system is taken to the thermodynamic limit, Lz →
∞, before the singular point, t = 0,h = 0 is approached, so
that ξ/Lz → 0 in all situations. The difference, V kBT (ωs −
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ω0
s )= V kBT ωex is referred to as the excess free energy between

confined and bulk geometries [3,4].
In equilibrium and in the anisotropic limit defined above,

the confining force per unit area is defined as

Fz = − 1

A

∂�

∂Lz

, (2)

so that the restriction of the critical fluctuations introduces an
anomalous term, the critical Casimir force per unit area:

fc = −kBT
∂(Lzωex)

∂Lz

= −kBT

(
ωs −ω0

s + Lz

∂ωs

∂Lz

)
. (3)

In fact, L−1
z plays an equivalent role in the criticality to

reduced temperature and field, resulting in a third singular

variable Q = ∂V (ωs−ω0
s )

∂L−1
z

, in analogy with the magnetic moment
M = V m and the entropy S. The Casimir force, fc =
kBT L−1

z (Q/V ), is the natural physical observable related to
this thermodynamics for which one finds a universal scaling
form [18]:

fc = kBT L−d
z θ

(
tL1/ν

z ,h̃L(β+γ )/ν
z

)
. (4)

Here, d is the spatial dimension and critical exponents take
their usual meaning [29].

Extremely efficient numerical algorithms already exist
for the simulation of the critical Casimir force within the
framework of lattice based spin models. These algorithms
make use of the thermodynamic relationship between force and
free energy (2), making a discrete estimate of ∂�

∂Lz
, rather than

simulating a direct force measurement. Free energy differences
have been estimated by tracking the evolution of the excess
internal energy with temperature for systems of size Lz and
Lz − 1 [15,16,19–21]. Using this method, it has been possible
to make accurate estimates of the scaling function extracted
from work function measurements on helium films near the
superfluid phase transition [15]. It has also been successfully
used to construct thermodynamic observables such as the
singular contribution to the specific heat or order parameter
[20]. However, neither the internal energy at temperature T ,
nor that at a required reference state [19] are themselves
directly accessible in experiment. In an alternate method
[30], direct access to free energy changes is achieved by
adiabatically disconnecting a single layer of spins from a
connected stack of Lz layers: the coupling to the targeted
layer and that between adjoining layers scale as λJ and
(1 − λ)J , respectively, for 0 < λ < 1. Integrating over λ, the
internal energy difference between the coupled and decoupled
system allows an estimate of δ� between systems of size
Lz and Lz − 1. The explicit calculation of the free energy at
a reference state can be avoided by subtracting results from
two pairs of length scales. The method then provides accurate
estimates for the Casimir force for different universality classes
and boundary conditions both for zero field [17], and more
recently for nonzero field [18]. Integration over the auxilary
degree of freedom can be circumvented by equating the critical
Casimir force with the anisotropic part of the generalized
internal stress tensor [14]. The latter technique has been
successfully used for varied situations, limited at present to
zero field and periodic boundaries.

Given this success of spin models in the accurate compu-
tation of the critical Casimir force in almost all situations,
it is paradoxical that no magnetic experiments exist which
attempt to measure the scaling function from estimates of free
energy differences. The reason is that the above techniques,
accurate though they may be, are not adapted to experiment.
Here we show that equivalent results can be achieved by
directly evaluating free energy changes through integration
from a reference state at high field into the critical region.
This procedure is perfectly adapted to translation into the first
experimental protocol for a magnetic system.

The difference in free energy along an isotherm, between a
reference state (T ,h0) and a final state (T ,h) is

�� = −
∫ h

h0

M(T ,h′,Lz)dh′ . (5)

Even if we choose T ∼ Tc, if |h0| is chosen to be sufficiently
large, the correlation length at the reference state will be small
so that the reference free energy will be essentially that of
the bulk �(T ,h0,Lz) = V kBT ωbulk(T ,h0). As a consequence,
�� should contain all the information of the Casimir effect
at (T ,h). A similar procedure could be developed along the
temperature axis by integrating the entropy, S(T ), although
the experimental observable is the specific heat, so that this
route would require a double integration [20]. Repeating
this procedure for systems of size Lz and Lz − δLz and
applying the extensivity principle for the free energy away
from criticality one finds

δ′�(T ,h,�) ≡ ��(Lz) − ��(Lz − δLz)

= δ�(T ,h,�) − δLz

Lz

�(T ,h0,Lz)

= δ� − δLzAkBT ωbulk, (6)

where δ� is the increment in free energy equating ap-
proximately to δLz

∂�
∂Lz

, evaluated at h and � = Lz − δLz/2.
This intuitive choice for � has been shown rigorously to
facilitate the approach to the scaling limit by minimizing the
importance of corrections to scaling terms [25]. Noncritical
surface free energy corrections cancel in the subtraction of
the contributions from the two length scales. One now repeats
the procedure for two sets of length scales centered on � and
α�. Subtracting results from the two pairs of length scales
eliminates the free energy from the reference state, �(Lz,h

0),
as well as the bulk contribution to the free energy at the point
of interest, ω0

s (t,h), providing a first estimate of the Casimir
force:

f 0
c (T ,h,�) = −[δ′�(�) − δ′�(α�)]

1

AδLz

= − [δ�(�) − δ�(α�)]
1

AδLz

≈ fc(�) − fc(α�) . (7)

Given the universal scaling form for fc [Eq. (4)] one can define
a scaling function for f 0

c ,

f 0
c (T ,h,�) = kBT �−dθ0 (ut [�],uh[�]) , (8)

where ut = t�1/ν and uh = h̃�(β+γ )/ν are the appropriate
scaling variables. The scaling function θ0(�) is related to θ
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at two different values of ut and uh by

θ0(�) = θ (�) − α−dθ (α�). (9)

Choosing α ≈ 2, the scaling function θ0 already provides a
good estimate for the functional form of θ (ut ,uh). To extract
a complete estimate for θ (�), one can apply the procedure
developed in Ref. [17] in which the approximate expression
θn(�) = θn−1(�) + α−2n−1dθn−1(α2n−1

�) is iterated from n = 1
to convergence (see Ref. [25] and Appendix D).

III. RESULTS

We have tested these ideas through Monte Carlo simu-
lation of a nearest-neighbor Ising spin system with coupling
strength J and external field h, on a cubic lattice with L‖ > Lz,
periodic boundaries in the x̂-ŷ plane and varying boundaries
along the ẑ axis. The Hamiltonian reads

H = −J
∑
〈i,j〉

sisj − h
∑

i

si , (10)

where 〈i,j 〉 denotes a sum over nearest neighbors, si =
±1, and the sum runs from i = 1,N (N = V = LzA). The
magnetic order parameter is then

m = 1

V

〈∑
i

si

〉
, (11)

where 〈X〉 is a thermal average. We have used the Wolff
algorithm, adapted to work in the presence of a symmetry-
breaking field [31] (see Appendix A). For simplicity, J = 1 in
our simulations.

In Fig. 1, we show the evolution of the magnetization
with applied field for T = Tc for Lz = 9,10,19,20 and for
periodic boundaries along ẑ (Appendix B give comments on
the choice of system sizes). Similar results are obtained for
(+,+) and (+,−) boundaries, where spins on the boundaries
are fixed in the same, or in opposite directions. The difference
in m(Lz,h), for small h is clearly visible for Lz = 9 and 10
becoming much smaller for the larger Lz. The Casimir force
comes from the integral of these differences with field, so

FIG. 1. (Color online) Magnetic order parameter vs h at T =
Tc = 4.5116J for Lz = 9 (red squares), 10 (green dotts), 19 (blue
triangles pointing up), 20 (magenta triangles pointing down), and
A = 3600 for periodic boundary conditions. (Inset) Blow-up of the
low-field region of the magnetization.

FIG. 2. (Color online) Zeroth-order scaling function θ0 vs ut =
t�1/ν for h = 0. Data from the magnetic protocol outlined in the text
(red cross), data from Ref. [17] (blue line). (a) (+,+) boundaries,
(b) (+,−). In all cases � = 9.5, δLz = 1 and α� = 19.5, while
A = 3600. The error bars were computed using a modified boot-
strap method and an estimate of the autocorrelation time (see
Appendix A).

that system sizes straddling Lz = 10 appear to offer a good
pragmatic place to start. For this length scale, the effect is
pronounced, while one is already in the scaling regime to
within a reasonable approximation. In addition, magnetic films
of this thickness can be produced with great precision so that
these parameters already correspond to the state of the art for
thin film production [27].

In Fig. 2, we compare the zeroth-order scaling function,
θ0(ut ,0) extracted using the magnetic protocol described above
with that from Ref. [17] for (a) (+,+) and (b) (+,−) boundary
conditions. In all cases, � = 9.5, δLz = 1 and α� = 19.5. At
each temperature, the value of h0 characterizing the reference
state was chosen large enough so that θ0 approached an
asymptote (see Appendix C). One can observe excellent
agreement between the two data sets for both boundary
conditions, thus confirming our protocol as a viable method of
extracting critical Casimir forces. We have also successfully
tested our protocol against the adiabatic method for periodic
boundaries. The difference in sign and amplitude of the
Casimir force between (+,+) and (+,−) boundaries has its
origin in the excess entropy of the trapped interface. This
spectacular inversion and scale change is perfectly captured by
our thermodynamic protocol. From here, the universal function
θ can be extracted by iteratively solving Eq. (9).

Arriving at a scale free function from these system sizes
also requires a delicate analysis of corrections to scaling [32].
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Having made contact with previous work for these modest
system sizes, we account for the corrections here by rescaling
the data to the universal scaling amplitude, θ (0,0) = 2� for
each set of boundaries. If this technique were developed
in magnetic thin film experiments, it is likely that initial
measurements would require scaling in the same way, as was
the case for early experimental data for helium films to remove
amplitude shifts due to uncontrolled surface roughness [7,33].
Numerical estimates given in the literature vary: �++ =
−0.376(29) and �+− = 2.71(2) [17], �++ = −0.410(7), and
�+− = 2.806(10) [21]. Here, we take values from [17], as our
method relates to this work. We return to this subject below,
where we present some initial finite size scaling results for the
critical Casimir force in finite field.

The experimental feasibility of this protocol requires the
fabrication of samples with thickness resolution better than
δLz as well as the capacity to keep the uncontrolled errors
generated by measurements on different samples at different
times below the same threshold. The chances of success
would clearly be increased if one could increase δLz above
a monolayer. With this in mind we have investigated the
measured Casimir effect for different values of δLz. The results
are shown in Fig. 3 for δLz = 1,3 and 5, for fixed � = 9.5.
Remarkably, the evolution of the estimated function, θ0, on
moving from δLz = 1 to 3 is extremely small, with a typical
difference of less than 5% as the function passes through
its minimum between ut = 1 and 2. This small evolution is
only just resolvable above the statistical error on our data,
which is approximately 1.5% in this region. Even for δLz = 5
the evolution remains less than 11% around the minimum
of the function, while in all cases, increasing δLz enhances
the measured Casimir force. In addition, as the free energy
difference δ� increases with δLz, the statistical errors are
reduced, even in the wings of the figure. The effect therefore
appears extremely robust and our results strongly suggest that
it would stand up to the technical problems encountered in
dedicated experiments on magnetic thin films.

Until recently [18,34], there has been only minimal interest
in the scaling of the critical Casimir force along the field axis.
This can be explained in part by an absence of experimental
motivation as it is difficult to probe the field variable in present

FIG. 3. (Color online) Scaling function θ0 vs ut = t�1/ν for h =
0, � = 9.5 and (+,+) boundaries. Data from the magnetic protocol
outlined in the text (red squares) for δLz = 1, Lz = 10, for δLz = 3,
Lz = 11 (green dots), for δLz = 5, Lz = 12 (blue triangles), with
A = 3600.

FIG. 4. (Color online) (a) θ (ut ,uh) for (+,+) boundaries, found
using the magnetic protocol outlined in the text for � = 9.5,
α� = 19.5, δLz = 1, and A = 3600. The field is confined to the
+ direction. The function was scaled to universal amplitude, θ (0,0) =
2�++ = −0.75. The lines projected onto the base show contours of
equal Casimir force. (b) (�eff/�)dθ++(0,(�eff/�)(γ+β)/νuh) for (+,+)
boundaries under the same conditions, with field spanning both + and
− directions. Two sets of system sizes were used: � = 9.5, α� = 19.5
(red squares) and � = 14.5, α� = 29.5 (green dots). The data sets
were rescaled to universal amplitude and width by replacing � with
�eff = � + δ�, with δ� = 2.8, as detailed in Appendix E.

setups: for the superfluid transition in 4He films [6,7], h is not
accessible, while for binary liquid films [8], experiments are
performed for fixed concentrations, rather than conjugate field.
However, experiments on thin film magnets lend themselves
naturally to critical scaling in both ut and uh. Our numerical
protocol is equally well adapted and is in fact, particularly
efficient, as all points along an isotherm contribute to θ (ut ,uh).
Our procedure therefore opens up a new direction for the study
of these forces. In Fig. 4(a), we show θ (ut ,uh) for (+,+)
boundaries, illustrating the form of the scaling function in the
half plane, h > 0. This figure requires the same computational
effort as the one-dimensional data sets shown in Fig. 2.

The scaling function shows no minimum value as a function
of field. The minimum can be found in the half-plane, h < 0,
with the field in the opposite direction to the pinned boundaries.
Remarkably, as we show in Fig. 4(b), θ plunges to values more
than an order of magnitude lower, as one crosses the line to
negative field values. This unexpectedly large amplitude [18]
comes from the competition between opposing surface and
bulk fields. At large separation, the applied field imposes two
magnetization interfaces. For smaller Lz, this frustration is
lifted and symmetry is broken in the direction of the boundary
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field resulting in a particularly large Casimir force, which could
be accessed in thin film experiments.

We show in Fig. 4(b) data for two values of �. The
collapsed data are the result of a procedure allowing the
anticipation of corrections to scaling and an extrapolation
of the measured function θ (�) to the scaling function of
the thermodynamic limit [18,25,32]. In this scheme an
effective length, �eff = � + δ�, replaces �, with δ� chosen
to collapse the data. The parameter α used in the iteration
procedure varies in consequence; αeff = α�+δ�

�+δ�
. The process

has been shown to capture corrections to scaling in a controlled
manner in the Blume-Capel model [25] but is used here in an
exploratory manner. A single value, δ� = 2.8 leads to good
data collapse and a reasonable estimate for the universal
scaling function. From the scaled data, we find �++(� =
9.5) = (�eff/�)dθ++(0,0)/2 = −0.30(3) and �++(� = 14.5) =
(�eff/�)dθ++(0,0)/2 = −0.36(7). Given that these estimates are
taken from scaling curves of considerably larger amplitude
that those in the half-plane for positive field, they appear in
acceptable agreement with previously found values [17,21].
The rescaling process and the iteration process specific to this
case are discussed in more detail in Appendixes D and E.

IV. DISCUSSION

Having established the potential of the method to con-
struct the Casimir scaling function from measurements of
the magnetic moment, we now return to confrontation with
experiment. Perhaps the most important point to address is
the scale of the magnetic field required. Most of the Casimir
signal comes from small fields, but in order to evacuate
the entire Casimir effect it was necessary to go to fields as
large as |h0|/J ∼ 0.3 (see Fig. 1). One is therefore limited
to ferromagnets with Curie temperature up to around 30 K.
Experimental systems [35] potentially cover a wide range
of universality classes and surface conditions, opening the
possibility for a rich variation in universal behavior. Our
protocol can easily be extended to cover many of these
situations. Other universality classes can easily be treated,
as can the anisotropic spin Hamiltonians often appearing in
magnetic systems. In such cases one expects crossover from
the microscopic starting point to the final universality class as
the correlation length grows. These effects could be studied in
detail and could be highly relevant for magnetic experiments.
Boundary effects could be extended to include both rough
and soft interfaces [7,33]. However, materials with a strongly
anisotropic spin Hamiltonian and hard smooth interfaces offer
the most promising starting point.

Magnetic materials show essentially perfect model mag-
netism in many instances (see, for example, Refs. [36–38]).
Candidates for the Casimir effect would be ferromagnets
and could include both metallic and insulating materials.
Promising characteristics that one might consider include: in
iron-doped palladium films both the transition temperature
and film thickness can be accurately controlled [39], while
insulating compounds Tb(OH)3 and K2CuCl4:2h20 are ex-
amples of Ising and Heisenberg ferromagnets, respectively,
with Curie temperatures in the 5-K range [35]. The metallic
RKKY material, HoRh4B4 is a perfect mean-field ferromagnet
[40], which could offer access to mean-field critical Casimir

forces for the first time. The dipolar ferromagnet, LiHoF4 is
the archetypical transverse field Ising system [41] which, if
produced as a film could provide a candidate for the study
of Casimir forces at a quantum critical point [42]. Finally,
we remark that our protocol could be extended to study
nonmagnetic systems such as ferroelectrics, liquid crystals or
simple and binary fluids, as it offers a generic method when the
field conjugate to the order parameter is a control parameter.
It could then be experimentally relevant in setups for fluid
systems if the chemical potentials could be controlled, rather
than the concentrations.
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APPENDIX A: THE MONTE CARLO STEP AND
ERROR ANALYSIS

In this appendix, we briefly describe the Monte Carlo
algorithm we used and the definition of the Monte Carlo step.
The precision of the simulation and error analysis are also
discussed.

We have used the Wolff algorithm [43] to simulate Ising
systems to reduce critical slowing down in the critical region.
A Monte Carlo step was defined by first computing the mean
size of clusters generated by the Wolff algorithm 〈C〉 at
each temperature and h = 0. One Monte Carlo step is then
composed of ALz

〈C〉 calls to the Wolff algorithm, so that, on
average, ALz spin flips are performed during each step. To
include a magnetic field in the simulation, spin clusters are
created in the same way as for the Wolff algorithm at zero
magnetic field but the clusters are no longer systematically
flipped. We chose to use the “ghost spin” method [44,45] in
which each spin of a cluster can be linked to a ghost spin of
fixed value σghost = +1 representing the magnetic field h. The
probability of coupling a spin σ belonging to the cluster to
the ghost spin is 1 − e−2βσh if σh > 0 and 0 otherwise: any
cluster linked at least once to the ghost spin is left unflipped.
Each time a spin is added to a cluster it is possible to test
whether this spin couples to the ghost spin or not. In the
case that it does the growth of the cluster is stopped to save
computational time. We simulated the Ising model on a cubic
lattice with either complete periodic boundary conditions,
or periodic boundaries in the x̂ and ŷ directions and closed
(+,+) and (+,−) boundary conditions along the ẑ direction.
The fixed boundary conditions can be considered as local
magnetic fields. For temperatures below Tc, as the absolute
value of the magnetic field |h| increases, the number of rejected
cluster flips increases dramatically, resulting in an increase of
the autocorrelation time and therefore a loss of efficiency of
the algorithm. Obtaining precise results at low temperature,
particularly for (+,−) boundary conditions [17], requires a
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particularly large computation time. The data we present in
the article were obtained using a number of Monte Carlo steps
ranging from 5 × 104 for (+,+) boundary conditions at the
higher temperatures to 7 × 107 for temperatures far below Tc in
systems with (+,−) boundary conditions where the efficiency
of the algorithm is at its lowest.

The statistical error is evaluated using a modified bootstrap
method [43]. As the presence of fixed boundary conditions
and bulk magnetic field increases the correlation time τcorr

dramatically, we interpret the bootstrap method as providing a
value for σm/

√
Nstep where σ 2

m = 〈m2〉 − 〈m〉2 is the variance
and Nstep is the number of Monte Carlo steps performed,
rather than the error itself. To compute the statistical error,
we estimated the autocorrelation time τcorr and then take the
error to be

√
2τcorrσ 2

m/Nstep [43].

APPENDIX B: CHOICE OF THE SYSTEM SIZES

In this appendix, we summarize some of the important
aspects that have to be taken into account when choosing
system sizes. We chose to study preferentially system thick-
nesses � = 9.5 and α� = 19.5 and initially take δLz = 1.
Different constraints motivate this choice: first � has to be big
enough with respect to the variation δLz so that the derivative
of the free energy with respect to the system size can be
safely approximated by the differential δ�

δLz
(as discussed in

the main text, δLz = 3 and 5 have also been studied in order
to test the robustness of the approach). Secondly, � must be
big enough to allow an approach into the three-dimensional
scaling regime. This choice is moderated by the fact that
the difference in magnetization for different system sizes
falls to zero as the scaling limit is approached, so that a
pragmatic compromise is required, both in simulation and in
any future experiment. These considerations motivated our
choice of the relatively modest system size, � = 9.5 for many
of the results presented. Thirdly, α has to be as large as
possible to have a fast convergence of the iteration process
that extracts the approximation θk from the measured θ0.
Here α = 19.5/9.5 ≈ 2.

√
A = L‖ should be chosen as big

as possible with respect to Lz in order to ensure that we stay in
the anisotropic confinement regime. In all our simulations, we
used A = 3600 enabling us to directly compare our results with
those from Ref. [17], where one can find detailled discussions
on the impact of system size and of corrections to scaling, on
the form of the universal function of the Casimir force obtained
in the Ising and XY models.

APPENDIX C: CHOICE OF h0 AND
INTEGRATION PROCEDURE

To be able to extract the free-energy by integration of the
order parameter, it is necessary to chose a suitable reference
magnetic field h0. We define here the function D(T ,h,�) that
enables us to make such a choice.

Figure 1 shows the magnetic order parameter as a function
of magnetic field for four different systems sizes Lz with
periodic boundary conditions at ut = 0. At low magnetic
field, the four curves do not superimpose showing clearly the
finite-size effect that we want to capture. At zero magnetic
field, the value of the magnetization m(h = 0) = 0 is imposed

FIG. 5. (Color online) Function D(T ,h,�) defined in Eq.(C1)
with respect to the magnetic field h. The data were obtained at
T = Tc for periodic boundary conditions and � = 9.5, α� = 19.5,
and A = 3600 (same data as in Fig. 1). The integration of D(T ,h,�)
over h gives θ0. D(T ,h,�) goes to zero as h is increased, h0 should
be chosen so that D(T ,h,�) is zero within the current precision of
the simulation, ensuring that finite size effects are suppressed by this
field.

by magnetic field reversal symmetry. At low magnetic field,
the magnetization depends on Lz but as the magnetic field is
increased the curves asymptotically merge.

Let us define the function

D(T ,h,�) = 1

AδLz

[
M

(
T ,h,α� + δLz

2

)

−M

(
T ,h,α� − δLz

2

)
− M

(
T ,h,� + δLz

2

)

+M

(
T ,h,� − δLz

2

)]
, (C1)

so that

θ0(ut ,uh) = Ld
zβ

∫ h0

h

dh′D(T ,h′,�). (C2)

Functions D and θ0 also depend on the choice of the parameters
α and δLz but we omit this dependencies in our notations for
sake of lightness. D(T ,h,�) can be used to find a suitable
reference magnetic field h0 such that D(T ,h0,�) ≈ 0. Figure 5
shows D(T ,h,�) computed with the data presented in Fig. 1.
We see that it goes to zero as h is increased, enabling us to
chose a suitable reference magnetic field h0 which suppresses
completely the finite size effect within the current precision
of the simulation. As the size of the critical region in the h

direction changes with the temperature, the reference magnetic
field also varies and h0 →

|t |→+∞
0. After choosing a suitable h0

the integration of Eq. (C2) was performed using Simpson’s
rule from h0 to h for all computed values of h.

APPENDIX D: ITERATION PROCEDURE

In Eq. (9), we show the relation between the zeroth order
scaling function θ0 and the scaling function of the Casimir
force θ itself. Extending the method of Ref. [17] to the case of
the Casimir force with a magnetic field, Eq. (9) can be solved
iteratively to extract the function θ (ut ,uh) from the measured
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quantity θ0(ut ,uh). If α is chosen greater than 1, as was the case
in our simulations, we can consider, as a first approximation
to the function θ (ut ,uh):

θ0(ut ,uh) ≈ θ (ut ,uh) . (D1)

Let us now consider the following recursion relation to higher-
order approximations of θ (ut ,uh):

θn�1(ut ,uh) = θn−1(ut ,uh) + α−2n−1dθn−1

× (
α2n−1/νut ,α

2n−1(β+γ )/νuh

)
. (D2)

Rewritting this relation as a recursion procedure for the
function θ0(ut ,uh) only, we can show that it converges toward:

θ̂ (ut ,uh) = lim
n→∞θ̂ n(ut ,uh)

=
∞∑

n=0

α−dnθ0(αn/νut ,α
n(β+γ )/νuh). (D3)

The series defining θ̂ (ut ,uh) converges because α−dn decays
exponentially with n and θ0(ut ,uh) is expected to be bounded,
having a finite maximum close to the critical point and de-
caying exponentially quickly for ut ,uh → ±∞. By injecting
the expression of function θ̂ (ut ,uh) into Eq. (9), we see that
it is indeed a solution to the equation. A finite number of
iterations therefore provides an approximation θn(ut ,uh) for
the universal scaling function θ (ut ,uh).

This iterative process converges rather quickly: for a typical
value of α = 2 in three dimensions, for n = 3, we already
have α−2n−1d ∼ 10−4, α2n−1/ν ∼ 102, α2n−1(β+γ )/ν ∼ 103. The
correction given by the fifth iteration is therefore expected
to be small given the very small value of the parameter α2n−1

and that the point (α2n−1/νut ,α
2n−1(β+γ )/νuh) reached will be far

from the critical point, except for extremely small values of
(ut ,uh). Note that using this recursion relation to obtain θ over
a given range of ut and uh values requires that the function θ0 is
measured over a much wider range, since each iteration dilutes
the chosen window. Further, the procedure requires the use of
values for θ0(ut ,uh) over the continuous range of variables,
not just the discrete set used in the Monte Calo simulation.
These values are estimated using spline interpolation of the

FIG. 6. (Color online) Evolution of the scaling function with the
iteration procedure. Function θn

++(ut ,0) of the Casimir force for n = 0
(red squares) and n = 2 (blue dots) as a function of reduced variable
ut = tL1/ν

z , computed using the proposed integration method for
(++) boundaries and � = 9.5, α� = 19.5, δLz = 1, and A = 3600.

FIG. 7. (Color online) Zeroth order scaling function θ0
++(0,uh)

for (++) boundaries obtained with two different sets of system sizes:
� = 9.5, α� = 19.5 (red squares), and � = 14.5, α� = 29.5 (green
dots). For both sets of data δLz = 1, A = 3600, and α ≈ 2.

computed values of θ0. In practice, we have chosen α ≈ 2, and
have used two iterations to obtain an estimate of θ . For n = 3,
we found that all points (α2n−1/νut ,α

2n−1(β+γ )/νuh) [except for
(ut = 0,uh = 0), of course] fall outside the range of values
of (ut ,uh) used in our Monte Carlo simulation. Hence, their
contribution could safely be considered to be negligible within
the precision of our simulation. Figure 6 presents the evolution
of θn

++(ut ,0) between n = 0 and 2, with data found using
� = 9.5, α� = 19.5, δLz = 1, and A = 3600.

In the case of finite field and +,+ boundaries, we encounter
a large amplitude Casimir force for a field in the reverse
direction, h < 0, as discussed in the main text and shown
in Fig. 7. This puts a strain on the iteration procedure in the
region where the scaling function evolves most rapidly with
field, producing a kink in the estimated function θ (0,uh) for
small, negative h. Results are shown in Fig. 8 for two system
sizes, � = 9.5 and 14.5. The kink appears less pronounced for
the larger system size, which suggests that it is an artifact of

FIG. 8. (Color online) Function θ2
++(0,uh) for (+,+) boundary

conditions and different system sizes, with field spanning both + and
− directions. The function was obtained after applying the iteration
procedure described in the text twice, that is to say to convergence
within our current precision. The corresponding functions θ0 are
displayed in Fig. 7. Data were obtained with two sets of systems sizes
� = 9.5, α� = 19.5 and � = 14.5, α� = 29.5 with (+,+) boundaries,
δLz = 1, and A = 3600.
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FIG. 9. (Color online) Zeroth order scaling function with (+,+)
boundaries for � = 9.5, α� = 19.5 (red squares) and � = 14.5, α� =
29.5 (green dots) collapsed using an effective length scale �eff =
� + δ�. Here, δ� = 2.8. This correction affects both the amplitude of
the function by a factor of (�eff/�)d and the reduced parameter uh by
a factor (�eff/�)(γ+β)/ν . For all data, δLz = 1 and A = 3600.

the procedure for small systems. More work is required to
confirm this point.

APPENDIX E: RESCALING OF θ : CHOICE OF �eff

In this appendix, we detail the rescaling procedure applied
to the function θ displayed in Fig. 4(b). Figure 7 shows θ0

++
obtained with two different sets of system sizes: one was
obtained using � = 9.5, α� = 19.5, and δLz = 1 and the other
� = 14.5, α� = 29.5, and δLz = 1. The two sets of system
sizes give significantly different results which can be attributed
in part to corrections to the scaling limit. Corrections of this
amplitude are encountered elsewhere [17,32]. They can be
accounted for by introducing a phenomenological change to
the scaling length [18]: � → �eff = � + δ�, see Fig. 9, a process
which can be justified analytically for the Blume-Capel model
[25]. To obtain a data collapse, we calculate the necessary
correction δ� so that (�eff/�)dθ0

++ is equal for the maxima
of the two sets of data. We find, δ� = 2.8 with an error of
approximately 5% considering the statistical error on the data.
This correction affects both the amplitude of the function

FIG. 10. (Color online) Recursion procedure combined with cor-
rections to scaling. (�eff/�)dθn

++(0,uh) vs (�eff/�)(γ+β)/νuh, n = 0
(red squares), n = 2 (green dots). Data are for � = 9.5, α� = 19.5,
δLz = 1, and A = 3600. Corrections to scaling that affect both the
amplitude of the function and the reduced parameter (�eff/�)(γ+β)/νuh

also affects the iteration process so that an effective αeff = α�+δ�

�+δ�
was

used.

by a factor of (�eff/�)d and the reduced parameter uh =
h̃L

(β+γ )/ν
z by a factor (�eff/�)(γ+β)/ν . We find that this single

parameter is enough to make the data collapse both in
amplitude and width, as shown in Fig. 9.

When performing iterations following Eq. (D2) on the
rescaled data one should use αeff = α�+δ�

�+δ�
rather than α.

Figure 10 shows how the approximation (�eff/�)dθn
++ evolves

from n = 0 to n = 2, the convergence point of our iteration
procedure. The function (�eff/�)dθ2

++(0,uh) of Fig. 10 obtained
using this procedure is in good agreement with that from
reference [18], without any further renormalization although
our protocol yields a bigger value of δ�. Making a best fit
between our data and that from Ref. [18], we find a value
�eff = 2.615, within 5% of our independent estimate. This
procedure was applied to both data obtained with system
sizes � = 9.5, α� = 19.5 and � = 14.5, α� = 29.5, leading
to the universal Casimir universal function of Fig. 4. The kink
seen in Fig. 8 is smoothed out in the rescaling process and
the amplitude of the collapsed curves corresponds reasonably
to that set by numerical estimates of the universal scaling
amplitude, �++ (see main text).
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