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Evidence against a mean-field description of short-range spin glasses revealed
through thermal boundary conditions
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A theoretical description of the low-temperature phase of short-range spin glasses has remained elusive for
decades. In particular, it is unclear if theories that assert a single pair of pure states, or theories that are based
on infinitely many pure states—such as replica symmetry breaking—best describe realistic short-range systems.
To resolve this controversy, the three-dimensional Edwards-Anderson Ising spin glass in thermal boundary
conditions is studied numerically using population annealing Monte Carlo. In thermal boundary conditions all
eight combinations of periodic vs antiperiodic boundary conditions in the three spatial directions appear in
the ensemble with their respective Boltzmann weights, thus minimizing finite-size corrections due to domain
walls. From the relative weighting of the eight boundary conditions for each disorder instance a sample stiffness
is defined, and its typical value is shown to grow with system size according to a stiffness exponent. An
extrapolation to the large-system-size limit is in agreement with a description that supports the droplet picture
and other theories that assert a single pair of pure states. The results are, however, incompatible with the mean-field
replica symmetry breaking picture, thus highlighting the need to go beyond mean-field descriptions to accurately
describe short-range spin-glass systems.
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I. INTRODUCTION

A plethora of problems across disciplines and, in particular,
a wide variety of optimization problems map onto spin-glass-
like Hamiltonians [1–6]. As such, despite the fact that only
a selected class of disordered magnets, such as LiHoF4 or
AuxFe1−x show this intriguing state of matter, spin glasses
have been of great importance across multiple fields including
condensed matter physics, evolutionary biology, neuroscience,
and computer science. Most recently spin glasses have played
a pivotal role in the development of new computing prototypes
based on quantum bits in both a theoretical, as well as device-
centered role. For example, the stability of topologically pro-
tected quantum computing proposals [7–9] against different
error sources—recently implemented experimentally [10]—
heavily relies on spin-glass physics [11–13]. Similarly, the
native benchmark problem currently used to gain a deeper
understanding of state-of-the-art quantum annealing machines
is based on a spin-glass Hamiltonian [14–17]. Given this recent
renaissance of spin glasses to benchmark novel algorithms, as
well as to develop cutting-edge computing paradigms, it is
unsettling that no consensus exists as to whether mean-field
theory, also known as replica symmetry breaking theory
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(RSB) [2,3,18–21], accurately describes the low-temperature
phase of these systems.

Spin-glass models are well understood in the mean-field
regime where infinite-range interactions dominate. However,
in finite space dimensions spin glasses are still poorly under-
stood and have been the subject of a long-standing controversy.
In this paper we seek to help resolve this controversy.
Using numerical methods, we study the low-temperature
phase of the three-dimensional (3D) Edwards-Anderson (EA)
spin glass [22]. In so doing, we introduce two methods
that promise to be useful in the study of other disordered
systems—thermal boundary conditions and sample stiffness
extrapolation.

The controversy concerning the EA model is between
two competing classes of theories as to the nature of the
low-temperature phase. One proposal, championed by Parisi
and collaborators [2,3,18–21,23], is that finite-dimensional
EA spin glasses behave like the mean-field Ising spin glass,
known as the Sherrington-Kirkpatrick (SK) model [24]. Parisi
analytically studied the SK model [18–20] and found that the
low-temperature phase is characterized by an unusual form of
symmetry breaking called replica symmetry breaking (RSB).
This RSB solution of the SK model predicts that there is an
infinity of pure thermodynamic states and that the overlap
distribution of these pure states is not self-averaging. Many
features of Parisi’s RSB solution of the SK model have now
been verified by rigorous mathematical methods [25]. The
mean-field or RSB picture for finite-dimensional EA spin
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glasses asserts that the qualitative features of the SK model
also hold for finite-dimensional models so that, in particular,
there are infinitely many pure states in the thermodynamic
limit.

In contrast to the RSB picture, the main competing class
of theories for the three-dimensional EA model assume that
the low-temperature phase consists simply of a single pair
of pure states related by the spin-reversal symmetry of the
Hamiltonian. The earliest and most widely accepted of these
theories is the “droplet picture” developed by McMillan [26],
Bray and Moore [27], and Fisher and Huse [28–30]. The
droplet picture asserts that the low lying excitations of the
pure states are compact droplets with energies that scale as a
power of the size of the droplet. By contrast, the low lying
excitations in the RSB picture are space filling objects.

Several features of the original RSB picture for finite-
dimensional EA models have been mathematically ruled out
in a series of papers by Newman and Stein [31–35]. These
authors provide two alternative theories for finite-dimensional
EA models, both of which have infinitely many pure states.
The first is a nonstandard RSB picture, similar to the original
RSB picture but with a self-averaging thermodynamic limit.
Newman and Stein give heuristic arguments against the
nonstandard RSB picture but do not rule it out. On the other
hand, the nonstandard RSB picture is promoted as a viable
theory for finite-dimensional EA models in Ref. [36]. The
second is the “chaotic pairs” picture. Here there are infinitely
many pure states but they are organized in such a way that
in each finite volume only a single pair of states related by a
global spin flip is seen.

In the following we refer to all pictures that display a single
pair of pure states in each large finite volume as two-state
pictures. Therefore, the droplet and chaotic pair pictures are
both two-state pictures within this definition. Note that for the
droplet model it is the same pair of states in every volume
while for chaotic pairs a different pair of states is manifest in
each volume.

Parallel to these analytical efforts, many computational
studies have been aimed at distinguishing between the two
classes of theories (see, for example, Refs. [37–45]). Unfortu-
nately, computational methods have been difficult to apply to
spin glasses. The fundamental questions concern the limit of
large system sizes, however, attempts to extrapolate to large
sizes have not been conclusive because the range of sizes
accessible to simulations at low temperatures is quite small
and, for fixed size, the variance between samples for many
observables is quite large. Thus, a straightforward extrapola-
tion to large sizes based on mean values of observables can be
misleading. Computational studies have yielded a confusing
mixture of results: Some point to the RSB picture, some to
a two-state picture, and some to a mixed scenario, known
as the the “trivial nontrivial” (TNT) picture described in
Refs. [38,42,46]. Recently, there have been efforts to analyze
statistics other than simple disorder averages [44,47–51] but
these methods have not been definitive either and so the
controversy continues.

Here we introduce two related innovations to more effec-
tively extrapolate from small system sizes to the large system-
size limit. First, we employ thermal boundary conditions
instead of the usual periodic boundary conditions. In d

space dimensions, thermal boundary conditions allow the 2d

combinations of periodic or antiperiodic boundary conditions
each to appear with the correct Boltzmann weights. The idea
is to let the system choose boundary conditions that minimize
the presence of domain walls and thus finite-size effects.
Second, based on thermal boundary conditions, we define a
spin stiffness measure for each sample. We show, as expected
for a low-temperature phase, that the sample stiffness becomes
large as the system size becomes large. We then study the
behavior of the system in the limit of large sample stiffness
and relate the system’s behavior for large sample stiffness to
the large system-size limit. During this process we also obtain
new measurements of the spin stiffness exponent at nonzero
temperatures. These generic techniques promise to be of
broad utility in understanding disordered systems in statistical
mechanics, not just the EA spin-glass model. Furthermore,
using this approach we conclude that a two-state picture best
describes the low-temperature phase of the three-dimensional
Edwards-Anderson Ising spin glass.

The paper is structured as follows. In Sec. II we introduce
the studied model, as well as thermal boundary conditions.
Section III describes the implementation of population anneal-
ing Monte Carlo used in this study, followed by the measured
quantities in Sec. IV. Results are presented in Sec. V, followed
by a discussion in Sec. VI and concluding remarks.

II. THE EDWARDS-ANDERSON MODEL IN THERMAL
BOUNDARY CONDITIONS

A. Edwards-Anderson model

We study the three-dimensional Edwards-Anderson Ising
spin-glass model [22]. The model is defined by the Hamilto-
nian,

H = −
∑
〈i,j〉

JijSiSj , (1)

where Si ∈ {±1} are Ising spins and the sum is over nearest
neighbors on a cubic lattice of linear size L. The random
couplings Jij are chosen from a Gaussian distribution with
zero mean and unit variance. A set of couplings J = {Jij }
defines a disorder realization or “sample.”

B. Thermal boundary conditions

Most Monte Carlo simulations of spin systems are per-
formed with periodic boundary conditions (PBC) because it
is often assumed that periodic boundary conditions yield the
mildest finite-size correction. Free boundary conditions are
sometimes also employed [39] as are antiperiodic boundary
conditions in one direction for the purpose of measuring
spin stiffness. In this work we consider thermal boundary
conditions (TBC). Thermal boundary conditions include the
set of all 2d choices of periodic or antiperiodic boundary
conditions in d spatial dimensions. This means that for three
space dimensions (d = 3) we have eight possible choices. For
example, one of the eight elements in the set of boundary
conditions is “periodic in the x direction and antiperiodic
in the y and z directions.” For each boundary condition ζ ,
there is a free energy Fζ and the probability distribution
for spin states in TBC is the weighted mixture of the eight
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boundary conditions with weights e−βFζ . An equivalent way
to describe thermal boundary conditions is to say that the
eight boundary conditions are annealed so that each spin
configuration together with a boundary condition appears with
its proper Boltzmann weight.

The motivation for using thermal boundary conditions for
spin glasses can be explained by considering two simpler
examples—the ferromagnetic and antiferromagnetic Ising
models on a square lattice with lattice size L an odd number.
For the ferromagnetic Ising model periodic boundary condi-
tions in all directions are natural and appropriate because they
do not induce domain walls in the ordered phase. However,
for the antiferromagnetic Ising model, periodic boundary con-
ditions will induce domain walls and the observables for finite
systems will have strong finite-size corrections. The natural
boundary conditions for the antiferromagnet with L odd are
antiperiodic in all directions. Now, suppose we are asked to
simulate an Ising model but we are not told whether it is a
ferromagnet or antiferromagnet. If we use thermal boundary
conditions then we will automatically choose the natural
boundary conditions independent of which model we have
been given, namely periodic in all directions if the system is a
ferromagnet and antiperiodic in all directions if the system is
an antiferromagnet. The other boundary conditions will induce
domain walls and therefore have higher free energies. The
difference in free energy between thermal boundary conditions
and any of the domain-wall-inducing boundary conditions
scales as Lθ where θ is the spin stiffness exponent. For the
Ising model (either ferromagnetic or antiferromagnetic) in the
low-temperature phase, θ = d − 1 � 0, and, even for modest
system sizes, thermal boundary conditions are essentially the
same as the single natural boundary condition because all
unfavorable choices are suppressed.

While one can a priori determine the optimal boundary
conditions for simple systems such as ferromagnets and
antiferromagnets, the same is not true for spin glasses. For
a given sample, a single boundary condition such as PBC
may induce domain walls and induce large finite-size effects.
The motivation for using thermal boundary conditions is
thus the same as for the simple (anti)ferromagnetic example
discussed above. Because we do not know which of the eight
periodic/antiperiodic boundary conditions fits the sample best,
we simply let the system choose by minimizing the free energy.

At zero temperature, thermal boundary conditions corre-
spond to selecting from among the 2d boundary conditions
those with the lowest energy ground states. These boundary
conditions have been employed with exact algorithms for
finding ground states of two-dimensional spin glasses [52,53].
Thomas and Middleton [53] call thermal boundary conditions
“extended” boundary conditions and argue, as we do, that these
boundary conditions minimize finite-size effects. Similar ideas
but using periodic and antiperiodic boundary conditions in a
single direction are discussed in [54–57].

For the mathematical statistical physicist the difficulties
produced by spurious domain walls are avoided by using
“windows:” Consider a very large system of linear size L

and a large window inside this system of linear size � such
that 1 � � � L. Then any domain walls induced by the
“bad” boundary conditions will almost surely lie outside the
window and observables measured within the window will

not be influenced by the domain wall. By collecting data
only inside the window the results are then independent of
the boundary conditions. Unfortunately, the computational
statistical physicist does not have the luxury of collecting
equilibrated data in this way for spin glasses where attainable
system sizes deep within the low-temperature phase do not
exceed, for example, L ≈ 10 in three space dimensions.

Thermal boundary conditions may also be used to measure
the spin stiffness exponent θ by comparing the free energy of
TBC with other boundary conditions. For example, for spin
glasses it is sufficient to compare the free energy for TBC
with that for PBC. This approach is expected to yield the same
exponent but a different prefactor for the spin stiffness as
compared to the standard method of taking the absolute value
of the free energy difference between periodic and antiperiodic
boundary conditions.

III. METHODS

We use population annealing Monte Carlo [58–60] to sim-
ulate the EA model. The most common method for large-scale
spin-glass simulations is parallel tempering Monte Carlo [61],
however, parallel tempering Monte Carlo is not well suited
to thermal boundary conditions and is not easily used to
measure free energies. In contrast, population annealing is
able to simulate TBC and accurately measure free energies in
a straightforward way.

Population annealing is related to simulated annealing
where the temperature of the system is lowered in a stepwise
fashion following a predefined annealing schedule. In each
annealing step a Markov chain Monte Carlo algorithm is
applied to the system at the current temperature in the
schedule. In population annealing a large population of replicas
of the system are simultaneously annealed from high to
low temperature. However, simulated annealing is designed
for finding only ground states and it does not correctly
sample equilibrium states at the temperatures traversed during
the annealing schedule. Population annealing corrects this
deficiency by adding a resampling step that ensures that the
population of replicas at every temperature is a Gibbs ensemble
at that temperature. Population annealing is an example of a
sequential Monte Carlo algorithm [62] and it converges to
the correct equilibrium distribution as the population size
increases. It is thus well suited to parallel computation and
our implementation uses OpenMP.

The algorithm works as follows. Let R0 be the initial size
of the population of replicas of the system. In our imple-
mentation of population annealing, each replica is initialized
independently at infinite temperature T (β = 1/T = 0). Each
replica has the same set of couplings. For thermal boundary
conditions, 1/8 of the replicas are assigned to each of the
eight boundary conditions. The temperature of the population
is now cooled from β = 0 in a sequence of steps to a target
temperature β0. The annealing step from β to β ′ (β ′ > β)
consists of two stages: The first stage is resampling and the
second stage is the application of the Metropolis algorithm at
inverse temperature β ′. In the resampling step, some replicas
are eliminated and others are duplicated. For TBC, when a
replica is copied, its boundary condition is copied with it.
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TABLE I. Parameters of the numerical simulations for different
system sizes L and periodic (PBC), as well as thermal (TBC)
boundary conditions. R0 represents the number of replicas, 1/β0 is the
lowest temperature simulated, NT the number of temperatures used
in the annealing schedule, NS the number of sweeps per temperature,
and M the number of samples. MPBC is the number of hard samples for
periodic boundary conditions and MTBC the number of hard samples
for thermal boundary conditions.

L R0PBC R0TBC 1/β0 NT NS M MPBC MTBC

4 5 104 5 104 0.200 101 10 4941 0 0
6 2 105 2 105 0.200 101 10 4959 0 0
8 5 105 5 105 0.200 201 10 5099 5 33
10 106 2 106 0.200 301 10 4945 286 291
12 106 3 106 0.333 301 10 5000 533 386

The resampling step works as follows. Suppose we have
R̃β replicas that represent an equilibrium ensemble at inverse
temperature β and we want to lower the temperature to β ′ > β.
The ratio of the statistical weight at β to β ′ for replica j , with
energy Ej is exp[−(β ′ − β)Ej ]. In principle this factor should
represent how many copies to make of the system. However,
this ratio is typically larger than unity. In order to keep the
population size roughly fixed we need to normalize the ratio.
First compute normalized weights τj (β,β ′) whose sum over
the ensemble is R0,

τj (β,β ′) =
(

R0

R̃β

)
exp[−(β ′ − β)Ej ]

Q(β,β ′)
, (2)

where Q is the normalization given by

Q(β,β ′) =
∑R̃β

j=1 exp[−(β ′ − β)Ej ]

R̃β

. (3)

The new population at temperature β ′ is obtained by differ-
ential reproduction. The number of copies nj of replica j is
either the floor (greatest integer less than) �τj	 or ceiling 
τj�
with probabilities 
τj� − τj and τj − �τj	, respectively. Note
that this choice ensures that the expectation of nj is τj . It also
minimizes the variance of nj among all integer probability
distributions with this expectation. (Note that it is possible to
have nj = 0 for replica j .) In our implementation, the size
of the population at each temperature R̃β is variable but stays
close to the target value R0. In the next stage of the annealing
step, every member of the new population is subject to NS

sweeps of the Metropolis algorithm at inverse temperature
β ′. Our implementation of population annealing follows a
schedule of NT inverse temperatures β that are evenly spaced
between β = 0 and β0. The system sizes and temperatures in
the simulations, together with the parameters of the population
annealing simulations are shown in Table I. The definition of
hard samples is given below. Note that although the number
of sweeps per temperature NS is small, the total number of
sweeps, R0NSNT , is large and comparable to the number
of sweeps performed in parallel tempering simulations. In
population annealing, equilibration results from large values
of R0 and is guaranteed in the limit R0 → ∞ for fixed NS

and NT .

The free energy can be estimated [59] from the normaliza-
tion factors Q(β,β ′) defined in Eq. (2) according to

−βkF̃ (βk) =
k+1∑

�=NT −1

ln Q(β�,β�−1) + ln �, (4)

where � is the number of configurations of the system so that
for N Ising spins, � = 2N for PBC and � = 2(N+d) for TBC
in d dimensions.

Because population annealing has not been used before
for large-scale simulations in statistical physics, we did a
careful comparison to data previously obtained using parallel
tempering [44,63]. We measured observables for the same set
of samples studied in Refs. [44,63], comprising approximately
5000 samples for each system size L with periodic bound-
ary conditions. We found no statistical difference between
population annealing and parallel tempering for any disorder
averaged observable (see Sec. V B for a comparison of
one observable). A detailed comparison between population
annealing and parallel tempering will be presented in a
subsequent publication [64].

The convergence to equilibrium of population annealing
for each sample can be quantified using the family entropy.
Define family i as the set of replicas at some low temperature
that are descended from replica i at the highest temperature. In
practice most families are empty sets. Let ηi be the fraction of
the population in family i, i.e., the fraction of the population
at the low temperature that is descended from replica i in the
initial, high-temperature population. Then the family entropy
Sf is given by

Sf = −
∑

i

ηi log ηi. (5)

The exponential of Sf is an effective number of families. For
example, if there are k surviving families all of the same
size then ηi = 1/k for each surviving family and eSf = k.
In practice, the family sizes are exponentially distributed.

Since each family has an independent history during the
simulation, e−Sf /2 is a conservative measure of statistical
errors. As discussed in Ref. [64], e−Sf is a reasonable measure
of systematic errors. In our simulations, we require that
e−Sf < 0.01 for every disorder sample. For hard samples that
do not meet this requirement with the standard population size
given in Table I we increased the population size until this
equilibration criterion was met. The numbers of hard samples
MPBC and MTBC for periodic and thermal boundary conditions,
respectively, are given in Table I. Most hard samples were
equilibrated using five runs with R0 = 3 × 106, which were
then combined using weighted averaging [59] for a total
population of 1.5 × 107. For the hardest samples of size
L = 10 and 12, population sizes up to 108 were required to
meet the equilibration criterion.

IV. MEASURED QUANTITIES

A. Free energy, ground-state energy, and spin stiffness

Using Eq. (4) we measure the free energies, F TBC
J and

F PBC
J , for each sample J in thermal (TBC) and periodic

(PBC) boundary conditions, respectively. We also measure
the ground-state energies ETBC

J and EPBC
J for each sample in
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both TBC and PBC, respectively. We compute the ground-state
energy by taking the minimum energy in the population at the
lowest temperature (T = 0.2 � Tc). We report on a careful
study of the ground-state calculation in a separate paper [65].
There we show that the average ground-state energy agrees
with other methods, that multiple runs always yield the same
ground state, and that for a small number of the hardest samples
we find agreement with exact branch and bound methods.

The traditional measure of spin stiffness is the difference
between the free energy, or at zero temperature, the ground-
state energy of two different boundary conditions—usually
periodic and antiperiodic in a single direction with periodic
boundary conditions in all other directions. For spin glasses,
this quantity may be of either sign and the absolute value
must be taken before performing the disorder average. Here
we consider the free energy (ground-state energy) difference
between thermal boundary conditions and periodic boundary
conditions. This quantity is nonnegative because periodic
boundary conditions are contained in the TBC ensemble of
boundary conditions so no absolute value needs to be taken. We
refer to 	F as the disorder average free energy (ground-state
energy) difference between TBC and PBC. The scaling of 	F

with system size L defines the stiffness exponent θ ,

	F ∼ Lθ . (6)

We measure θ at T = 0, 0.2, and 0.42 by fitting to this equation.
The free energy for each boundary condition in the TBC

ensemble can be measured using an analog of Eq. (4) by
partitioning Q into its eight boundary condition components
but we did not collect data to do this measurement. Instead, we
estimate the ratio of the free energy of the dominant boundary
condition to the free energy of all the other boundary conditions
combined. Let fJ be the fraction of the population in the
boundary condition with the largest population in sample J .
The quantity λJ ,

λJ = log
fJ

(1 − fJ )
, (7)

is an estimator of the free-energy difference (times −β)
between the dominant boundary condition and all other
boundary conditions in sample J . Note that λJ is a measure
of the stiffness of sample J . If only one boundary condition
dominates the ensemble of boundary conditions it means that
inserting a domain wall is very costly and the sample is stiff
while if λJ is small, the domain walls induced by changing
boundary conditions have little cost and the sample is not stiff.
Note that, in principle, all boundary conditions could have
equal weight so λ � − log 7.

B. Order parameter distribution

The order parameter for spin glasses is obtained from the
spin overlap, q defined by

q = 1

N

∑
i

S
(1)
i S

(2)
i , (8)

where the superscripts “(1)” and “(2)” indicate two statisti-
cally independent spin configurations chosen from the Gibbs
distribution. Let PJ (q) be the overlap distribution for sample
J and let P (q) be the disorder average of the overlap

distribution. In population annealing, the pairs of independent
spin configurations used in Eq. (8) are chosen randomly from
the population of replicas with the restriction that the two
replicas are from different families. This ensures that the spin
configurations are independent.

Two-state pictures make very different predictions from the
RSB picture for PJ (q) for the low-temperature phase of the EA
model in the infinite-volume limit. If there is a single pair of
pure states then PJ (q) consists of two δ functions at ±qEA and,
of course, P (q) after disorder averaging is the same. Here qEA

is the Edwards-Anderson order parameter. In the RSB picture,
PJ (q) consists of a countable infinity of δ functions of varying
weights densely filling the range between ±qEA while P (q)
is a smooth function between ±qEA with delta functions at
±qEA. Thus, one can, in principle, distinguish between the
two classes of pictures by examining P (q) near the origin (and
thus away from qEA). A measure of the weight near the origin
of the overlap distribution is IJ (q),

IJ (q) =
∫ +q0

−q0

dqPJ (q). (9)

We refer to the disorder average of IJ (q) as I (q). The
choice q0 = 0.2 has been used in many past studies [38,44] to
distinguish the RSB and two-state pictures and, in this work,
we investigate the statistics of IJ (q0 = 0.2). In the following,
we use the symbols IJ and IL as abbreviations for IJ (0.2) and
its disorder average I (0.2) for size L, respectively.

V. RESULTS

In this section, we present results for the spin stiffness
(V A), the order parameter distribution near zero IJ (V B),
and the correlation of IJ and λJ (V C). The main result of
this section is that λJ increases with system size and that stiff
samples have small values of IJ .

A. Spin stiffness

Figure 1 shows the free-energy difference or, for T = 0,
ground-state energy difference 	F between TBC and PBC
for temperatures T = 0, 0.2, and 0.42 as a function of system

0.5

0.55

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

lo
g

1
0

<
|Δ

F
|>

log10 L

T = 0
T = 0.2
T = 0.42

FIG. 1. (Color online) Free-energy change 	F vs system size
L for T = 0, 0.2, and 0.42. The straight lines are fits of the form
	F ∼ aLθ .
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TABLE II. Estimates of the stiffness exponents θ and θλ for
different temperatures T .

T 0 0.2 0.42

θ 0.197(17) 0.189(17) 0.169(12)
θλ – 0.290(30) 0.268(20)

size L. The straight lines are best fits to the functional form
	F ∼ aLθ . The fits for θ are shown in Table II. The result
θ (T = 0) = 0.197 ± 0.017 is in reasonable agreement though
at the low end of previous measurements of θ carried out at
zero temperature [37,66–68]. Note that the stiffness exponent
has not previously been measured at nonzero temperature. We
see that θ decreases as temperature increases. Presumably,
this is a finite-size effect because θ is expected to have a single
asymptotic value throughout the low-temperature phase [30].

Next consider the sample stiffness measure λJ , defined
in Eq. (7). Let GL(λ) be the cumulative distribution function
for λ. The left panel of Fig. 2 is a log plot of 1 − GL(λ),
the complementary cumulative distribution function, for λ

at T = 0.42, and sizes 4 through 12. The nearly straight
line behavior of log(1 − GL(λ)) is indicative of a nearly
exponential tail and suggests a data collapse if λ is scaled
by a characteristic λchar(L) given by the slope of the line.
Since the tail is not perfectly straight, we instead define
λchar(L) in terms of medianlike quantities. If the distribu-
tion were exactly exponential then 1 − G(λ) = e−λ/λchar and
1 − G(λchar log b) = 1/b for any b. If the distribution is not
perfectly exponential, λchar depends on b so there is some
ambiguity in the definition. We choose b such that λchar is
obtained from the tail of the distribution but not so far into the
tail that the statistics are poor. For T = 0.2 we choose b = 2 so
λchar is defined as the median divided by log 2. For T = 0.42
we choose b = 10 to ensure that λchar is obtained from the
tail of the distribution. The right panels of Figs. 2 and 3 show
1 − GL(λ/λchar(L)) for T = 0.42 and T = 0.2, respectively,
and reveal that all of the cumulative distributions collapse onto
the same curve when scaled by λchar(L).

Figure 4 shows λchar(L) vs log L for T = 0.2 and T = 0.42.
Since λchar(L) is a stiffness measure, we can extract a new
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FIG. 2. (Color online) (Left panel) Linear-log plot of 1 − GL(λ)
(the complementary cumulative distribution function) vs λ for sizes
L = 4 through 12 at T = 0.42. (Right panel) 1 − GL(λ/λchar(L)) vs
λ/λchar(L).
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FIG. 3. (Color online) (Left panel) Linear-log plot of 1 − GL(λ)
(the complementary cumulative distribution function) vs λ for sizes
L = 4 through 10 at T = 0.2. (Right panel) 1 − GL(λ/λchar(L)) vs
λ/λchar(L).

stiffness exponent θλ from a fit to the form,

λchar(L) ∼ aLθλ . (10)

The values of θλ, given in Table II, are larger than θ obtained
from the average free energy difference but close to the value,
0.27, found in Ref. [67] using aspect ratio scaling. Presumably,
the asymptotic values of θ and θλ are the same. We prefer the
larger value, θλ because it is obtained from the tail of the
stiffness distribution so we believe it reflects the large-
size behavior more accurately than the average free energy
difference that defines θ . Aspect ratio scaling is an independent
way to minimize finite-size effects and it is interesting that
these two approaches yield the same answer within error bars.

It seems clear that λchar(L) → ∞ as L → ∞. At least on
a coarse scale, the full distribution GL(λ) also scales with
λchar(L). A closer look at G near the head of the distribution
for T = 0.42 shows that the data collapse is not perfect
and there are significant finite-size corrections near λ = 0.
Figure 5 shows 1 − GL(λ/λchar(L)) vs λ in the region near
λ = 0 for T = 0.42. Note that curves do not collapse perfectly
and that 1 − GL(λ/λchar(L)) appears to be increasing with
L. Figure 6 is the same plot for T = 0.2. Because GL(0) is
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0
λ
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log10 L

T = 0.42
T = 0.2

FIG. 4. (Color online) Log-log plot of λchar(L) vs L for T = 0.2
and T = 0.42. The straight lines represent fits of the form λchar(L) ∼
aLθλ .
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FIG. 5. (Color online) (Left panel) 1 − GL(λ) vs λ for system
sizes L = 4 through 12 at T = 0.42 in the region near λ = 0.
(Right panel) 1 − GL(λ/λchar(L)) vs λ/λchar(L). Note that 1 − GL(0)
increases slowly with L.

so small for T = 0.2, the error bars are too large to discern
whether there is a trend with L. A reasonable hypothesis is that
there is an asymptotic L → ∞ scaling function G∞(z) where
z = λ/λchar such that GL(λ) → G∞(λ/λchar(L)). The straight
line behavior of log(1 − G∞(z)) for large z and increasing
trend with L for small z suggests that G∞(0) = 0 and G∞(z)
is exponential for z � 1. In more physical terms, if G∞(z)
exists and is zero for z → 0+, it means that a single boundary
condition dominates the TBC ensemble almost surely, i.e., the
dominant boundary condition almost always has a much lower
free energy than the other seven boundary conditions. A more
complicated possibility is that G∞(0+) > 0. The consequences
of these possibilities for the RSB vs two-state pictures are
discussed in Sec. VI.

It is noteworthy that for the system sizes accessible
to simulations, λchar(L) is sufficiently small that the TBC
ensemble contains a mixture of several competing boundary
conditions for a substantial fraction of samples. The disorder
average IL is dominated by these samples and is therefore
not characteristic of the large-L behavior when λchar(L) is
expected to be large. In what follows we circumvent this
difficulty by extrapolating first in λ and then in L, making
use of the fact our data contain a relatively large dynamic
range in λ.
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FIG. 6. (Color online) (Left panel) 1 − GL(λ) vs λ for system
sizes L = 4 through 10 at T = 0.2 in the region near λ = 0. (Right
panel) 1 − GL(λ/λchar(L)) vs λ/λchar(L).
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FIG. 7. (Color online) IL vs L for PBC and TBC at temperature
T = 0.42 (left panel) and T = 0.2 (right panel). The data seem
independent of system size, suggesting an RSB interpretation of the
data.

B. Order parameter near q = 0

Figure 7 shows IL, the disorder average of the integrated
order parameter distribution with |q| < 0.2, as a function of
size L for temperatures T = 0.2 and 0.42, as well as for both
PBC and TBC. For both boundary conditions, IL is, within
error bars, independent of system size. The results for PBC
are identical to those obtained using parallel tempering Monte
Carlo [38,44]. In fact, in Fig. 8 we show a scatter plot of
IJ computed both with population annealing and parallel
tempering Monte Carlo. The data are strongly correlated and
both methods yield the same results within statistical errors.

The constancy of IL has been taken as strong evidence
for the RSB picture because the two-state picture predicts IL

should decrease as L−θ . However, in what follows we argue
that in TBC ultimately IL → 0 for very large L. On first glance

1

10−9

10−6

10−3

110−9 10−6 10−3

I P
T

IPA

L = 10

FIG. 8. Log-log scatter plot of IJ for PBC for each sample at
temperature T = 0.20 and L = 10 computed with parallel tempering
Monte Carlo (PT, vertical axis) and population annealing Monte Carlo
(PA, horizontal line). The data show both methods yield the same
result for each sample within statistical errors.
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FIG. 9. (Color online) Scatter plots showing all disorder realiza-
tions for all system sizes at T = 0.42 (left panel) and T = 0.2 (right
panel). Each point represents a sample J located at x coordinate λJ
and y coordinate IJ . Red diamonds represent L = 4, blue crosses
L = 6, green squares L = 8, purple triangles L = 10, and orange
plus symbols L = 12.

the results for TBC are surprising since ITBC
L is larger by more

than a factor of two than I PBC
L . The explanation is that for

many samples the TBC ensemble contains several boundary
conditions with significant weight and the overlap between
spin configurations with different boundary conditions will
tend to have small values of q due to the existence of a relative
domain wall. We shall return to this important point in Sec. VI.

C. Order parameter near q = 0 vs spin stiffness

Figure 9 is a scatter plot showing many of the disorder
samples at T = 0.42 (left panel) and T = 0.2 (right panel)
for all the sizes studied using TBC. Each point on the plot
represents a sample J . The x coordinate of the point is λJ =
log[fJ /(1 − fJ )] and the y coordinate is IJ . Figure 10 is the
same as Fig. 9 but with each system size on a separate plot for
T = 0.2. The qualitative features of the plots are the same for
each size although, as described above, the distribution of λ’s
shifts to larger values for larger L. These figures together with
the behavior of the λ distribution constitute the main results
of our paper and motivate our conclusion that IJ → 0 almost
surely as L → ∞ in thermal boundary conditions.

Samples J for which IJ or 1 − fJ are exactly zero within
the precision of the simulations are not shown on these log-log
plots since log IJ = −∞ or λJ = ∞. The fractions of such
samples are given in Table III. Note that actual values of IJ
or 1 − fJ are are never exactly zero for finite systems; zeros
correspond to values smaller than can be represented by the
finite population sizes used in the simulations. It is important
to note that the trends shown in Fig. 9 continue to hold for the
large values of λ that are omitted from this figure. Including all
sizes, there are 216 samples with 1 − fJ = 0 for T = 0.42 and
2996 such samples for T = 0.2. Of these, only seven samples
for T = 0.42 and 38 for T = 0.2 are measured to have nonzero
values of IJ . The average value of I for only those samples
with 1 − fJ = 0 are 2.5 × 10−8 and 10−4 for T = 0.42 and
T = 0.2, respectively.

A striking feature of Figs. 9 and 10 is that there is a bounding
curve that becomes a straight line for large λ with most samples
lying below that curve. Why are there two classes of samples,

1

10−6

10−3

I

10−6

10−3

λ

0 4 8 12 0 4 8 12

FIG. 10. (Color online) Same as Fig. 9 but for each system size in
a separate panel and T = 0.2. Again, red diamonds represent L = 4,
blue crosses L = 6, green squares L = 8, and purple triangles
L = 10.

with most samples below the curve and a few above it? We
speculate that the samples below the curve have nonzero values
of IJ as a result of the overlap between spin configurations with
different boundary conditions. The contribution to the overlap
between different boundary conditions in the TBC ensemble
cannot exceed 2f (1 − f ) in the limit f → 1, so that if this
is the primary mechanism producing small overlaps in sample
J then log IJ < (−λJ + log 2). The straight lines in Fig. 9
are defined by log I = (−λ + log 2). Thus, for most samples,
we believe that the primary contribution to IJ comes from the
overlap between different boundary conditions. For the rare
samples above the bounding curve, the primary contribution
to IJ must come from small overlaps within the dominant
boundary condition.

A second important feature of Figs. 9 and 10 is that the rare
samples above the bounding curve have IJ roughly uniformly
distributed on a logarithmic scale between the bounding curve
and 1. On a linear scale this means that for large λ almost
all of these samples have small values of IJ . Let ρ(x|y) be
the conditional probability density for x = IJ conditioned on
y = λJ . If this distribution is exactly log uniform above the
bounding line then the part of the distribution above the line
would take the form,

ρ(x|y) = 1 − w(y)

xy
for x > 2 exp(−y), (11)

where w(y) is the fraction samples below the bounding line.
Figure 11 shows histograms of IJ values of the samples
of all sizes that lie above the bounding line for the two
temperatures. The position α along the horizontal axis is the
scaled logarithmic distance between the bounding line and one.
That is, αJ = − log IJ /[λ − log(2)] so that zero corresponds
to large values, IJ ≈ 1 while one corresponds to IJ on the
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FIG. 11. (Color online) Histogram N (α) for αJ = log(IJ )/
[−λJ + log(2)] for T = 0.42 (left panel) and T = 0.2 (right panel).
α = 1 corresponds to the small values of I at the bounding line.

bounding line. For T = 0.2 the distribution is indeed relatively
uniform on a logarithmic scale while for T = 0.42 it is skewed
to a small value of I .

VI. DISCUSSION

Three salient features of the data are apparent from
Figs. 4, 9, and 11.

(I) Typical values of the sample stiffness λJ increase with
system sizes L, as described by λchar(L).

(II) Most samples have IJ less than a bounding curve
described by 2e−λ for large λ.

(III) Samples with IJ above the bounding curve have
IJ distributed more or less uniformly in log I between the
bounding curve and one.

We conjecture that these features hold for arbitrarily large L

and all temperatures in the low-temperature phase. Assuming
the above statements are asymptotically correct, we can draw
some strong conclusions about how IL behaves for sufficiently
large L that λchar(L) � 1. Note that these system sizes are far
larger than are accessible in our simulations but, given the
large dynamic range in λ we can extrapolate to these sizes by
first extrapolating in λ. For large L, λJ is nearly always large

according to statement (I). Furthermore, due to statements (II)
and (III), IJ is almost always small when λJ is large. Thus,
IJ is nearly always small when L is large. This conclusion is
the main result of our analysis. It is consistent with two-state
pictures but not consistent with the RSB picture.

In addition to being consistent with our data, these con-
jectures are quite plausible. Statement (I) asserts that λJ is a
measure of sample stiffness and that in the low-temperature
phase, almost all samples become stiff for large system sizes.
As discussed above, statement (II) asserts that in TBC large
values of IJ arise mostly from the overlap between two differ-
ent boundary conditions. Statement (III) asserts that the free-
energy cost of a large excitation in the dominant boundary con-
dition is more or less uniformly distributed between λ/β and 0.

We can make the arguments more quantitative using a
simple model of how the disorder average IL will behave for
large L. Let ρ(x|y) be the conditional probability density for
IJ = x conditioned on λJ = y. Based on statements (II) and
(III) we propose the form,

ρ(x|y) = w(y)δ[x,2 exp(−y)]

+ 1 − w(y)

xy
θ [x − 2 exp(−y)], (12)

where w(y) is the fraction of samples at fixed λ below the
bounding curve, and θ (x) and δ(x,y) are the Heaviside function
and the δ function, respectively. The first term conservatively
places all the samples below the bounding curve on the
curve itself. The second term represents the samples above
the bounding curve with the conservative assumption that
the distribution of IJ above the curve is uniform on a log scale
as in Eq. (11). For purposes of the following calculation we
assume that w is a constant independent of y but the qualitative
conclusions do not depend on this assumption. Finally, we
assume that the distribution of λ obeys a size independent
form G∞(z) for the scaled variable z = λ/λchar(L). Note that
we have assumed that the dependence of IL on L is entirely
through λchar(L) and that the conditional probability ρ(x|y)
is independent of L. These assumptions yield an explicit
expression for IL as a function of λchar(L),

IL = 1

λchar(L)

∫ ∞

0
dG∞(z)

∫ ∞

0
dxxρ(x|zλchar(L)). (13)

Plugging in the ansatz of Eq. (12) and an exponential form for
the scaled λ distribution, 1 − G∞(z) = e−z, yields a somewhat

TABLE III. Fraction of samples with IJ = 0 and fJ = 1 for different sizes, temperatures, and boundary conditions.

PBC

System size L 4 6 8 10 12
Fraction IJ = 0 (T = 0.42) 0.21 0.19 0.16 0.16 0.19
Fraction of IJ = 0 (T = 0.2) 0.60 0.57 0.55 0.54 –
Fraction of fJ = 1 (T = 0.42) – – – – –
Fraction of fJ = 1 (T = 0.2) – – – – –

TBC
System size L 4 6 8 10 12
Fraction IJ = 0 (T = 0.42) 0.05 0.04 0.03 0.03 0.03
Fraction of IJ = 0 (T = 0.2) 0.35 0.33 0.30 0.28 –
Fraction of fJ = 1 (T = 0.42) 0.009 0.009 0.008 0.008 0.010
Fraction of fJ = 1 (T = 0.2) 0.15 0.16 0.15 0.15 –
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complex expression involving exponential integrals whose
asymptotic large λ behavior is

IL ∼ 1

λchar(L)
[2w + (1 − w) log(λchar(L))]. (14)

Using Eq. (10) and assuming that asymptotically θλ = θ , we
recover the prediction of the two-state picture that IL ∼ L−θ ,
however, with a logarithmic correction that arises from the
assumption of a log-uniform distribution for IJ .

While the above assumptions lead to an explicit asymptotic
expression for IL as a function L, this expression should not
be taken too seriously. However, the qualitative conclusion
that IJ → 0 for almost all samples as L → ∞ is robust and
depends only on the asymptotic validity of statements (I)–(III)
above.

Given that λchar(L) is increasing with L and that I decreases
with increasing λ, why is IL nearly constant for the sizes
studied in our TBC simulations of the 3D EA model? We
believe this conundrum can be explained, at least in part, by the
fact that the main contribution to IL comes from samples with
small values of λ. For T = 0.2, more than half the contribution
to IL comes from samples with λ < 1 and more than 80% from
λ < 2, and these fractions are even higher for T = 0.42. The
head of the λ distribution has very little dependence on L, as
can be seen in Figs. 2 and 3. Furthermore, the bounding curves
in Fig. 9 are nearly flat in the small λ region. Thus several
effects come into play in keeping IL nearly independent of L.
First, the main contribution to IL is from samples with small
stiffness. Second, the fraction of samples with small stiffness
decreases by only a small amount for the sizes studied and,
finally, I does not depend much on λ for small λ. One would
have to go to much larger sizes before IL would decrease
according to the predicted asymptotic power law L−θ .

In the foregoing, we have assumed that GL(0) → 0 as
L → ∞ or, equivalently, if G∞(z) exists, G∞(0+) = 0. We
now consider the consequences of an alternate assumption
that λchar(L) → ∞ and G∞(z) exists but G∞(0+) > 0. This
possibility cannot be ruled out by the data although if it
holds, it appears that G∞(0+) is quite small. In physical
terms G∞(0+) > 0 means that even for very large sizes,
a fraction G∞(0+) of samples has a mixed ensemble of
boundary conditions in TBC while the remaining samples have
only a single boundary condition in the TBC ensemble. This
scenario would imply that the 3D EA model in TBC is divided
into two classes of disorder realizations, one of which, with
weight (1 − G∞(0+)), has IL = 0 and the other, with weight
G∞(0+), has IL > 0. This possibility seems unlikely but is not
contradicted by the data. It has no straightforward explanation
in either two-state or RSB pictures.

Our hypothesis is that thermal boundary conditions and
periodic boundary conditions have the same behavior in
the limit of large system sizes. We use thermal boundary
conditions as a tool to improve the extrapolation to large
system sizes from the very small system sizes accessible in
simulations. It is known that coupling dependent boundary
conditions are not equivalent to periodic boundary conditions
and are not suitable for understanding properties of the spin
glass phase because they could be used to select a single pure
state even if coupling independent boundary conditions admit
many pure states. The status of thermal boundary conditions

with regard to coupling dependence is not clear. On the
one hand, the TBC ensemble contains different mixtures of
boundary conditions for different choices of couplings. On
the other hand, the particular mixture of the eight boundary
conditions is chosen by the system itself and is not imposed
externally. As discussed in Sec. II B, our intuition is that TBC
minimizes finite-size effects rather than introducing spurious
physics but this question requires further investigation. In
any case, we have provided compelling evidence that the 3D
EA model in thermal boundary conditions is best described
by a picture with a single pair of pure states in each
finite volume.

VII. SUMMARY

We have introduced two techniques with the aim of extrap-
olating to the large system-size behavior of finite-dimensional
spin glasses at low temperature. First, we use thermal boundary
conditions to minimize the effect of domain walls induced by
boundary conditions. Second, we use a natural measure of
sample stiffness defined within thermal boundary conditions
and extrapolate to large values of the sample stiffness. By
noting that the sample stiffness increases with system size
we then obtain an extrapolation in system size. The dynamic
range in sample stiffness in the data is sufficiently large that
a qualitative extrapolation is readily apparent. The conclusion
is that nearly all large samples will have essentially no weight
in the overlap distribution near zero overlap. The analysis also
explains why this qualitative behavior cannot be seen using a
direct extrapolation in system size for the small sizes studied.
Our conclusions are consistent with two-state pictures but are
inconsistent with the mean-field, replica symmetry-breaking
picture.

Our results hold for thermal boundary conditions. We
believe that thermal boundary conditions are equivalent to
other coupling independent boundary conditions so that our
conclusions about the infinite volume limit also apply to
the more familiar periodic boundary conditions. However,
it is important to investigate the equivalence of thermal and
periodic boundary conditions.

Our numerical simulations used population annealing.
This Monte Carlo algorithm has not been used before for
large-scale studies in statistical physics. We found that it is
an effective computational tool with several advantages over
parallel tempering, the standard computational method in the
field. We believe that population annealing will be useful for
other hard problems in statistical physics and related fields.
Similarly, thermal boundary conditions and extrapolating in
sample stiffness are general methods that should be useful in
studying other finite-dimensional disordered systems.
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