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We developed a direct method to extract the zero-field zero-temperature anisotropy energy barrier distribution
of magnetic particles in the form of a blocking-temperature distribution. The key idea is to modify measurement
procedures slightly to make nonequilibrium magnetization calculations (including the time evolution of
magnetization) easier. We applied this method to the biomagnetic molecule ferritin and successfully reproduced
field-cool magnetization by using the extracted distribution. We find that the resulting distribution is more
like an exponential type and that the distribution cannot be correlated simply to the widely known log-normal
particle-size distribution. The method also allows us to determine the values of the zero-temperature coercivity
and Bloch coefficient, which are in good agreement with those determined from other techniques.
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I. INTRODUCTION

A recent development of nanotechnology has enabled
fabrication of a lot of different types of magnetic nanoparticles
for the purpose of utilization in various fields [1] including
magnetic storage [2], magnetic resonance imaging contrast
agent [3], hyperthermal heating for cancer treatment [4], etc.
As the fabrication or synthesis technique develops, adequate
characterization of the nanoparticle system becomes of great
importance. For magnetic particles like ferritin, the anisotropy
barrier (or blocking temperature) and magnetic moment
are two key parameters which determine their magnetic
behavior. Thus, there have been many attempts to derive
the blocking-temperature distribution from experiments [5].
But, most of them, especially those techniques based on
temperature-dependent magnetization measurements, ignore
the time evolution of magnetization (relaxation effect) in the
analysis. Also, in many reports, the blocking temperature is
assumed to have a log-normal distribution following the log-
normal size distribution extracted from transmission electron
microscopy (TEM) measurements [6–11]. The “size-blocking
temperature” correlation has not been proved and its validity
should be verified with independent extraction of the blocking-
temperature distribution.

Ferritin is a biomagnetic molecule multi-existent in many
kinds of biological systems and is important for the function
of iron storage and iron toxicity reducer in living organisms
[12–14]. In ferritin, 24 units of polypeptides are woven into
a hollow sphere with an outer diameter of ∼12 nm and an
inner diameter of ∼8 nm [15]. The hollow space is filled
with a magnetic material vaguely known as ferrihydrite and
which is generally accepted to have antiferromagnetic order.
The truncated lattice at the surface (surface defects) or internal
crystalline defects (body defects) induce a magnetic moment
in the core [16,17]. Because of the regularity of the size of the
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internal hollow space, the magnetic core of ferritin has a very
narrow size distribution with a mean diameter of ∼5 nm [18].

II. NONEQUILIBRIUM MAGNETIZATION CALCULATION

To extract the blocking-temperature distribution in ferritin,
we should be equipped with the proper analytical tools. We
start with three assumptions:

(1) The particles with the same chemical composition
can be categorized uniquely in terms of the zero-field, zero-
temperature anisotropy barrier E0

B0. The anisotropy barrier
is widely adopted for the description of magnetic behavior
of magnetic particles. However, this quantity is not well
defined physically since it varies with field and/or temperature.
This motivates us to introduce a zero-field, zero-temperature
(ZFZT) anisotropy barrier, independent of temperature and
field, as a parameter for the unique categorization of the
particles. In conjunction with the knowledge of E0

B0, the
field and temperature dependence of the anisotropy barrier
completes our understanding of the experimental data which
are usually taken under finite field and at finite temperature.
Also, E0

B0 is directly related to the ZFZT blocking temperature
T 0

B0 as τM = τ0 exp(E0
B0/kBT 0

B0). In this expression, τ0 is the
characteristic time of moment flipping, kB is the Boltzmann
constant, and τM is the characteristic timescale of measure-
ment. It is noted that, according to the relation, extracting
the ZFZT blocking temperature is equivalent to extracting the
ZFZT anisotropy barrier distribution.

(2) Zero-field blocking temperature and magnetic moment
of a particle are proportional to each other. Usually, the
magnetic moment and zero-field anisotropy barrier of super-
paramagnetic particles are known to be proportional to each
other [19]. The zero-temperature coercive field HC0 is known
to be related to the zero-field energy barrier EB0 (=KV )
and the magnetic moment μ of the particle as [20–22]
HC0 = 2αEB0/μ (α is a phenomenological constant and, for
the random orientation of the anisotropy axis, it is set to be
0.48). HC0 does not depend on the temperature or the field
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or the size of the particle but is characteristic of the magnetic
material of the particle. Thus EB0 (and TB0) and μ of the
particle should be proportional to each other.

(3) The particles are noninteracting. The thick protein
shell of ferritin hinders exchange interactions between the
magnetic cores of ferritin and only the dipolar interaction is
possible [17,23] (the minimum distance between the magnetic
cores is 4 nm). Thus one can safely assume that the magnetic
cores of ferritin are noninteracting in the temperature range of
usual measurements.

One direct logical consequence of the above assumptions
is that the magnetization of an ensemble of magnetic particles
at temperature T and external field H is expressed by

M(T ,H ) =
∫ ∞

0
m

(
T 0

B0; T ,H
)
f

(
T 0

B0

)
dT 0

B0, (1)

where m(T 0
B0; T ,H ) is the magnetization of a single particle

of which the ZFZT blocking temperature is T 0
B0. f (T 0

B0) is a
distribution function of the ZFZT blocking temperature. It is
noted that m(T 0

B0; T ,H ) depends not only on T and H but
also on the previous thermomagnetic history of the ensemble.
A detailed expression for the single-particle magnetization
at the end of certain thermomagnetic processes should be
m(T 0

B0; Ti,Tf ,Hi,Hf ,�t) where Ti is the initial temperature
of the particle at the beginning of the thermomagnetic process,
Tf is the final temperature of the particle at the end of the
thermomagnetic process, Hi is the initial field at the beginning
of the thermomagnetic process, Hf is the final field at the end
of the thermomagnetic process, and �t is the time interval of
the process. Since this expression is quite lengthy, hereafter it
is simplified to m(T 0

B0; T ,H ) as introduced in Eq. (1), and a
detailed thermomagnetic history is described when needed.

The evolution of m(T 0
B0; T ,H ) under the variation of the

temperature and/or the field is described with the Bloch
equation

dm
(
T 0

B0; T ,H
)

dt
= meq

(
T 0

B0; T ,H
) − m

(
T 0

B0; T ,H
)

τ
(
T 0

B0; T ,H
) , (2)

where meq(T 0
B0; T ,H ) is the equilibrium magnetization of the

particle at T and H , and τ (T 0
B0; T ,H ) is the characteristic

relaxation time of the particle at T and H and is given in terms
of the Arrhenius law. The differential equation can be solved
numerically for given experimental conditions—temperature,
field, and thermomagnetic history. For better understanding of
the characteristics of m(T 0

B0; T ,H ), a new quantity is defined
as R(T 0

B0; T ,H ) ≡ m(T 0
B0; T ,H )/meq(T 0

B0; T ,H ). R measures
the degree of relaxation; R = 1 for complete relaxation, 0 <

R < 1 for incomplete relaxation, and R = 0 for no relaxation.
The distinction is very useful in nonequilibrium magnetization
calculations. Equilibrium magnetization of a particle above
the blocking temperature, in the superparamagnetic region,
can be described with a Langevin function. Deviation of
the measured magnetization from Langevin behavior in the
blocked region is due to the blocking effect, which is slow
relaxation rather than complete freezing of the moment. Thus,
the equilibrium magnetization of a particle can be described
with a Langevin function for all the temperature range below
the critical temperature of the internal ordering if one is to
measure “true” equilibrium magnetization with sufficiently

long measurement time;

meq
(
T 0

B0; T ,H
) = μ(T )

{
coth

[
μ(T )H

kBT

]
−

[
kBT

μ(T )H

]}
, (3)

where μ(T ) is envisaged as a spontaneous magnetic mo-
ment due to the internal ordering. The magnetic moment
is proportional to K and EB0 as discussed before. Also,
since HC0 is independent of temperature, μ and K have the
same temperature dependence, μ(T ), K(T ) ∝ (1 − BT 3/2)
[6,24,25]. Finally, μ(T ) can be written in terms of the ZFZT
blocking temperature T 0

B0 as

μ(T ) =
(

2αkBT 0
B0

HC0

)
ln

(
τM

τ0

)
(1 − BT 3/2), (4)

where B is the Bloch coefficient of the magnetic particle.
To solve Eq. (2) numerically, we also need a mathematical

expression for the characteristic relaxation time τ with explicit
dependence on T 0

B0 including the H dependence [8] as well as
the T dependence, and the expression is

τ = τ0

(
τM

τ0

)[
T 0
B0
T

(1−BT 3/2)
(

1− H
HC0

)1.5]
. (5)

III. ANALYSIS OF ZERO-FIELD-COOLED AND
FIELD-COOLED MAGNETIZATION

Zero-field-cooled (ZFC) magnetization measurement con-
sists of an initial field ramping-up step at the lowest temper-
ature Tmin and subsequent multiple temperature ramping-up
steps (see Fig. 1).

Magnetization of the first data point can be described
with the analytical expression R1(T 0

B0) = 1 − exp(−τM/τ ).
As shown in Fig. 1(b), it is a blurred step function which
can be approximated by a step function with a transition
center at T

0,c
B0,1. Next, for the evolution of m(T 0

B0; T ,H ) in
the subsequent temperature-ramping-up steps, we consider the
process where the temperature changes from TL to TH with
a constant-temperature sweeping rate and constant magnetic
field. Let us assume that the magnetization of the ensemble
of particles at TL is described by R(T 0

B0; TL,H ), which is the
blurred step function of T 0

B0. Further evolution to temperature
TH can be calculated numerically with Eq. (2). The blurred
step function is the generic feature of R(T 0

B0; TH ,H ) which we
verified with numerical calculations. The representative curves
of R(T 0

B0; TL,H ) and R(T 0
B0; TH ,H ) are shown in Fig. 1(b).

Combining all, the ith ZFC magnetization datum can be ex-

pressed as MZFC(Ti,H ) ∼= ∫ T
0,c
B0,i

0 meq(T 0
B0; Ti,H )f (T 0

B0)dT 0
B0

with a step function approximation of R(T 0
B0; Ti,H ). The

values of T
0,c
B0,i can be calculated numerically by integrating

both functions, R(T 0
B0; Ti,H ) and 1 − θ (T 0

B0 − T
0,c
B0,i). It is

noted that the values of T
0,c
B0,i depend on H , HC0, and Ti , being

quite different from Ti , the temperature of measurement.
Next, we approximate f (T 0

B0) as a piecewise linear func-
tion: f (T 0

B0) = αiT
0
B0 + βi , in the range of T

0,c
B0,i−1 < T 0

B0 <

T
0,c
B0,i (where i = 1, 2, ...). With this approximation, we can
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FIG. 1. (Color online) Magnetization evolution in ZFC process.
(a) Magnetization evolution in M-T space. (A to B) First point:
Just after the field is turned on at Tmin, the magnetization of
the particles is almost zero (point A). During the measurement,
incomplete relaxation occurs due to the slow relaxation of some
particles in the ensemble (point B). (C to D) Other points: For all
subsequent data points, the magnetization evolves from a certain
low temperature TL (point C) to a certain high temperature TH

(point D). The evolution of magnetization in the steps depends
on the temperature, the field, and the thermomagnetic history.
(b) Description of magnetization evolution in terms of R(T 0

B0; T ,H ).
Representative curves of the functions, R1(T 0

B0), R(T 0
B0; TL,H ), and

R(T 0
B0; TH ,H ) are shown. The first data point is described in terms of

R1(T 0
B0). One example of the subsequent evolution of magnetization

is described as R(T 0
B0; TL,H ) → R(T 0

B0; TH ,H ).

express the ith ZFC datum as

MZFC(Ti,H ) ∼=
i∑

n=1

∫ T
0,c
B0,n

T
0,c
B0,n−1

(
αnT

0
B0 + βn

)
meq

(
T 0

B0; Ti,H
)
dT 0

B0,

(6)

where T
0,c
B0,0 equals 0.

If there are N points in the ZFC magnetization data, f (T 0
B0)

is approximated in N piecewise linear sections. Then, there
are N equations of the form of Eq. (6), N − 1 continuity
equations αiT

0,c
B0,i + βi = αi+1T

0,c
B0,i + βi+1, and one equation

for the endpoint αNT
0,c
B0,N + βN = 0. They constitute 2N

simultaneous linear equations. By solving these equations,
the values of the 2N variables, αis and βis, i.e., f (T 0

B0),
can be determined [26]. It is noted that the ZFZT blocking-
temperature distribution is a function of HC0 and B even
though it is extracted from ZFC data.

By reproducing field-cooled (FC) data with the extracted
f (T 0

B0), one can corroborate the validity of f (T 0
B0) and can also

obtain the best values of HC0 and B at the same time. Similar
to ZFC magnetization, FC magnetization, measured in the
temperature-lowering process, is not an equilibrium quantity
even though it is very close to that of equilibrium [24].

FC magnetization can also be calculated with Eqs. (1) and
(2). The main difference is that the calculation is done without
approximation since all R(T 0

B0; T ,H ) in the FC process do not
show a blurred step-function behavior (see Fig. 2). In the ZFC
process, small anisotropy-barrier particles relax completely
to equilibrium at low temperature but big anisotropy-barrier

FIG. 2. (Color online) Magnetization evolution in FC process.
(a) Magnetization evolution in M-T space. (A to B) First point: At
the highest temperature of our FC measurement (THST), the maximum
characteristic relaxation time of the particles is short compared with
measurement time τM . Thus, all particles are in the equilibrium
state (point B). (C to D) Other points: For all the subsequent data
points, magnetization evolves from a certain high temperature TH

(point C) to a certain low temperature TL (point D). The evolution
of magnetization in steps depends on the temperature, the field,
and the thermomagnetic history. (b) Description of magnetization
evolution in terms of R(T 0

B0; T ,H ). Representative curves of the func-
tions, R(T 0

B0; THST,H ), R(T 0
B0; TH ,H ), and R(T 0

B0; TL,H ) are shown.
Magnetization evolves as R(T 0

B0; THST,H ) → R(T 0
B0; TH ,H ) →

R(T 0
B0; TL,H ) with decreasing temperature.

particles relax only at sufficiently high temperature. In the FC
process, all particles start with nonzero magnetization at high
temperature and some particles with a big anisotropy barrier
swerve from equilibrium in the temperature-lowering steps.

To begin the calculation, one should know the initial
magnetization of each particle at the highest temperature
of the FC measurement. One can estimate the maximum
characteristic relaxation time τmax of the particles at the highest
temperature from the ZFZT blocking-temperature distribution
with an Arrhenius law. If τmax � τM , all particles are in the
equilibrium state, as was the case for all of our results.

Thus, the calculated m(T 0
B0; T ,H ) is integrated with

the piecewise linear form of f (T 0
B0) to obtain the FC

magnetization;

MFC(T ,H ) ∼=
N∑

i=1

∫ T
0,c
B0,i

T
0,c
B0,i−1

(
αiT

0
B0 + βi

)
m

(
T 0

B0; T ,H
)
dT 0

B0.

(7)

IV. SAMPLE PREPARATION AND MAGNETIZATION
MEASUREMENT

Natural horse spleen ferritin dissolved in a NaCl solution
was purchased from Sigma Aldrich Chemicals, Inc. The
ferritin sample was dialyzed extensively with distilled water
to remove Na+ and Cl− ions in the water. The dialyzed sample
was then freeze dried to get samples in powder form for the
experiments.

A conventional superconducting quantum interference de-
vice (SQUID) magnetometer (Quantum Design MPMS-7)
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FIG. 3. (Color online) Fitting results of FC- and ZFC-
magnetization data. Open circles are experimental data and solid
lines are best-fit curves. Main panel shows FC magnetization and
the inset shows ZFC one. The color of the symbols and lines
designate the field strength: blue for H = 50 Oe, red for H = 200
Oe, black for H = 500 Oe. For comparison, the fitting curves with
B = 6.0 × 10−5 K−3/2 are shown as dotted lines. The distinction
between “Blocked” and “Superparamagnetic” regions is made with
Tmax [26].

was used to perform the ZFC and FC magnetization mea-
surements on natural horse spleen ferritin samples from 2
to 300 K at three different fields (50, 200, 500 Oe). The
temperature change between the measurements was set to
be linear in time with negligible temperature-stabilization
time. Non-negligible temperature stabilization time makes the
nonequilibrium numerical calculation complex and hard. By
using an internal function of the SQUID, the time elapsed
between data points was also measured for the nonequilibrium-
magnetization calculation. All data were corrected for the
paramagnetic and/or diamagnetic background.

V. EXTRACTED BLOCKING-TEMPERATURE
DISTRIBUTION AND OTHER PARAMETERS

With a given set of HC0 and B, one can extract f (T 0
B0)

from the ZFC data and calculate MFC(T ,H ). By changing
the values of HC0 and B, we could perform the calculation
iteratively to fit the FC-experiment data and could find the
best values of HC0, B and extract the correct f (T 0

B0). Beside
HC0 and B, there are two other parameters which are related
to the blocking behavior: the characteristic time of moment
flipping τ0 = 1 × 10−11 s [6,21], and τM ∼ 10 s, taken from a
single SQUID measurement.

The fitting of the FC magnetization data for three different
fields has been done with the corresponding ZFZT blocking-
temperature distributions extracted from the ZFC data of the
same fields. The results are shown in Fig. 3. As can be seen, the
agreement between the fitting curves and experimental data is
excellent. This demonstrates that our methodology success-
fully extracts the ZFZT blocking-temperature distribution and
reproduces the measured FC magnetization curves.

We also obtained the best values of HC0 = 4130 Oe and
B = 3.0 × 10−5 K−3/2. The measurements of the coercive

FIG. 4. (Color online) Extracted ZFZT anisotropy barrier, ZFZT
blocking-temperature distribution, and zero-temperature magnetic-
moment distribution. The ZFZT anisotropy barrier was calculated
from T 0

B0 with τM = τ0 exp(E0
B0/kBT 0

B0). Also, the zero-temperature
magnetic-moment distribution was calculated with Eq. (4) and the
extracted f (T 0

B0). The color of the lines designates field strength:
blue for H = 50 Oe, red for H = 200 Oe, black for H = 500 Oe.
90% of the magnetic particles have magnetic moment less than
200μB per particle (green region in the graph). Green and yellow
regions designate exponential decay behavior of deduced ZFZT
blocking-temperature distribution and zero-temperature magnetic-
moment distribution. The extra abscissa for the ZFZT anisotropy
energy barrier E0

B0 is shown underneath the abscissa of T 0
B0.

field of ferritin as a function of temperature had been reported
before [27,28]. Extrapolation of the previously reported data
to T = 0 yielded HC0 ∼ 4000 Oe which is very close to our
fitting result. By following the method described in Ref. [6],
B was estimated to be 6.0 × 10−5 K−3/2. The value is of the
same order of the magnitude as the result of FC magnetization
fitting. As is evident from Fig. 3, our value better reproduces
experimental data.

The ZFZT blocking-temperature distributions extracted
from three different experiment data sets are shown in
Fig. 4. The ZFZT blocking-temperature distribution should
be independent of the magnetic field. Indeed, the extracted
f (T 0

B0) graphs show that they are almost identical except for
the termination of the data points at high field (H = 500 Oe).
The explanation can be given as follows: what really affects
experiment is a field- and temperature-dependent blocking-
temperature distribution. At high field, the field-dependent
blocking-temperature distribution is shrunk to lower region
and the relatively high blocking-temperature region is not
probed correctly.

VI. DISCUSSION

With a log-normal size distribution of ferritin based on
TEM observations and the assumption of uniformity of
K with EB0 = KV , it is quite widely believed that the
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anisotropy-barrier (or blocking-temperature) distribution is
also of log-normal type. In contrast to the common be-
lief, our analysis reveals an exponential-decay-type ZFZT
blocking-temperature distribution. This strongly suggests that
the anisotropy constant K is not sufficiently uniform to
guarantee linearity between EB0 and V . Thus, the log-
normal particle-size distribution cannot guarantee that the
ZFZT blocking-temperature distribution is of log-normal type
and there might not be a direct correlation between size
distribution and blocking-temperature (or anisotropy-barrier)
distribution.

By integrating the ZFZT blocking-temperature distribu-
tions for three different fields, we find that the number
of particles with magnetic moment per gram ranges from
5.8 × 1016 to 8.8 × 1016. With known molecular weight of
horse spleen ferritin [29], a total number of ferritin particles
per gram are calculated as ∼9 × 1017. If we interpret this
as it is, then it means the following: Most of the ferritin
particles are magnetically inactive and only about 10% of
the particles possess a magnetic moment. One may think
the rest 90% of the particles possess magnetic moments,
but they are inactive and blocked due to large anisotropy
barrier at the temperatures of the measurements. But the
close similarity between the maximum blocking temperature
deduced directly from experimental data and that deduced
from the extracted ZFZT blocking-temperature distribution
excludes such a possibility unless there are particles with
blocking temperatures higher than the maximum temperature
of measurements (300 K). One may also think that 90% of the
particles are paramagnetic rather than superparamagnetic with
zero anisotropy barrier. But it is not in accordance with the
fact that the reproduced FC magnetization with the extracted
ZFZT blocking-temperature distribution is very close to the
experiment data. Currently, we do not have a clear explanation
of the finding but it should be checked and investigated in the
future.

By using Eq. (4) and the extracted ZFZT blocking-
temperature distribution, we calculated the distribution of the
zero-temperature magnetic moment μ(T = 0). The results
are shown in Fig. 4 with the top abscissa as the inde-
pendent parameter scale of μ(T = 0). The zero-temperature
magnetic-moment distribution shows that about 90% of
the ferritin particles have a magnetic moment less than
200μB . Considering that most of the iron ions in the ferritin
core are trivalent [30], we reach the conclusion that, for
most of the magnetic ferritin particles, the magnetically
active iron ion number does not exceed 50 per ferritin
particle.

We have thus developed a method to extract the ZFZT
blocking-temperature distribution in magnetic nanoparticle
systems with a modified magnetization measurement pro-
cedure and a nonequilibrium magnetization calculation. We
successfully applied the method to biomagnetic nanoparticle
ferritin and extracted important magnetic parameters. The
ZFZT blocking-temperature distribution in ferritin was found
to be of exponential decay type, which is in stark contrast to
the widely accepted log-normal distribution. We also found
that almost 90% of ferritin particles are magnetically inactive.
Our methodology is generic enough to be applied to the
characterization of other magnetic nanoparticles.
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APPENDIX

1. Characteristic relaxation time τ

A mathematical expression of τ , the characteristic relax-
ation time, is given in terms of an Arrhenius law as a function
of T and H asw

τ = τ0 exp

[
E(H,T )

kBT

]
, (A1)

where τ0 is the characteristic time for moment flipping,
E(H,T ) is the field- and temperature-dependent anisotropy
barrier, and kB is the Boltzmann constant. The blocking tem-
perature TB is usually defined to be the temperature at which
the characteristic relaxation time is equal to the characteristic
measurement timescale; τM = τ0 exp[E(H,T )/kBTB]. Since
the anisotropy barrier is field and temperature dependent, it is
better to define an invariant quantity ZFZT anisotropy barrier
E0

B0 for the analysis. Thus, the ZFZT anisotropy barrier E0
B0

can be similarly related to the ZFZT blocking temperature T 0
B0

as E0
B0 = [kB ln(τM/τ0)]T 0

B0 where τM is the characteristic
timescale of measurement. Using the field dependence of the
anisotropy energy barrier, [1 − (H/HC0)]1.5 (the exponent of
1.5 is used for random orientation of the anisotropy axis),
and the temperature dependence of the anisotropy barrier,
(1 − BT 3/2), the field- and temperature-dependent anisotropy
barrier is given as a function of T 0

B0 as

E(H,T ) =
[
kBT 0

B0 ln

(
τM

τ0

)]

× [1 − (H/HC0)]1.5(1 − BT 3/2). (A2)

Now, substitute Eq. (A2) into the Arrhenius law to obtain the
expression for the characteristic relaxation time τ in terms
of T 0

B0,

τ = τ0

(
τM

τ0

)(
T 0
B0
T

)(1− H
HC0

)1.5(1−BT 3/2)

. (A3)

2. Calculation of R(T 0
B0; TH,H)

At T , the magnetization of an ensemble of particles can be
expressed as

MZFC,FC(T ,H ) =
∫ ∞

0
m

(
T 0

B0; T ,H
)
f

(
T 0

B0

)
dT 0

B0

=
∫ ∞

0
R

(
T 0

B0; T ,H
)

×meq
(
T 0

B0; T ,H
)
f

(
T 0

B0

)
dT 0

B0. (A4)
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It is noted that m(T 0
B0; T ,H ) can be a nonequilibrium

quantity depending on the previous thermomagnetic history
of the ensemble. The evolution of m(T 0

B0; T ,H ) between the
data points is described with the Bloch equation.

For the numerical calculation, the linear temperature
increase between the data points was approximated with a
multiple stepwise increase of the temperature. The effective
temperature-sweeping rate was kept the same as that of the
experimental linear increase of the temperature. The usual
number of the steps in the numerical calculation was in the
range of 10 ∼ 1000.

For each “microstep” of temperature, temperature was
assumed to be constant and thus equilibrium magnetization
is also invariant in the microstep (T is the temperature of the
microstep). Then the solution of the Bloch equation for the
microstep is

mf

(
T 0

B0; T ,H
) = meq

(
T 0

B0; T ,H
) − [

meq
(
T 0

B0; T ,H
)

−mi

(
T 0

B0; T ,H
)]

exp(−�t/τ ), (A5)

where mf (T 0
B0; T ,H ) is the magnetization of the particle with

ZFZT blocking temperature T 0
B0 at the end of the microstep and

mi(T 0
B0; T ,H ) is the magnetization of the particle at the start

of the microstep. �t is the time interval of the microstep. For
the particles with specific T 0

B0, this calculation was performed
successively up to the final temperature to get m and R. Also,
the calculation can be performed for different T 0

B0 values to
obtain R as a function of T 0

B0.
Specifically in the ZFC magnetization calculations, the

calculated results for R(T 0
B0; T ,H ) showed blurred step-

function behavior. The transition centers (T 0,c
B0 ) are related to

the temperature of the measurement, T , but are not equal to
T . The position of the transition center shifts toward higher
T 0

B0 when T gets higher and/or when the time interval between
the data points gets longer and/or when the field strength gets
bigger. It is noted that, whatever are T or the time interval or
field strength, the graphs of R(T 0

B0; T ,H ) vs T 0
B0/T

0,c
B0 are the

same within the numerical calculation error.

3. Numerical calculation

We used a typical IBM PC with Windows XP operating
system (32 bit). For a given set of values of B and Hc0, the
calculation of FC data took a few minutes. The total calculation
time for fitting with iteration depends on the initial values of
the parameters and the fitting algorithm. We fit the data by
manually changing the parameter values.

4. Magnetization relaxation

The relaxation of the magnetization of nanoparticles is
known to have a ln(t) time dependence and the magnetic
viscosity S ≡ dM/d( ln(t)), the slope of the relaxation curve,
is known to be related to the blocking-temperature distribution
[5,23,31]. Even though we are interested in the temperature-
dependent magnetization measurements for extraction of the
blocking-temperature distribution and the relaxation measure-
ments have not been performed, it is also good to check
whether our model reproduces the reported ln(t) dependence

of magnetization relaxation in ferritin [31]. According to
our model, time-dependent magnetization in the relaxation
experiments can be expressed as

M(T ,H,t) =
∫ ∞

0
m

(
T 0

B0; T ,H,t
)
f

(
T 0

B0

)
dT 0

B0, (A6)

where M(T ,H,t) is the time-dependent magnetization of the
nanoparticle system at T , H , and time t , m(T 0

B0; T ,H,t) is
the time-dependent magnetization of a particle with ZFZT
blocking temperature T 0

B0 at T , H , and time t . With Eq. (A6)
and the Bloch equation (2), we performed a nonequilibrium
magnetization calculation numerically at the temperatures
and time range reported in Ref. [31] and the results are
shown in Fig. 5. Our calculation result is very similar to
that of the previous report and the magnetization is indeed
proportional to ln(t), at least in the time interval reported
in Ref. [31]. The similarity between the experimental re-
sults and the nonequilibrium-calculation results implies that
our model and methodology can explain the magnetization
relaxation data as well. But a rigorous and quantitative
check should be completed in the future by comparing with
experiment.

Furthermore, we extended our nonequilibrium calculation
of magnetization relaxation to a wider range of time and
find that the magnetization relaxation is not completely linear
with respect to ln(t), in contrast to the widely accepted
linear dependence of magnetization with respect to ln(t).
The nonlinear behavior becomes more evident at higher
temperatures. This is not so surprising considering the fact
that the relaxation eventually stops when the magnetization
reaches zero and, at that point, the viscosity S should be zero.
This fact also needs to be rigorously confirmed in future with
separate experiments.

FIG. 5. (Color online) Time-dependent magnetization relaxation
calculated with the extracted ZFZT blocking-temperature distribution
from ferritin. At t = 0, the magnetic field was changed from 5 T to
0. The magnetization relaxation curves at T = 3, 5, 6, 8, 10, and
11 K are shown. The time range, 4.5 < ln(t) < 6.8, is highlighted for
comparison with Fig. 1 in Ref. [31].
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