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Quantum memory effects in disordered systems and their relation to 1/ f noise
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We propose that memory effects in the conductivity of metallic systems can be produced by the same two-level
systems that are responsible for the 1/f noise. Memory effects are extremely long-lived responses of the
conductivity to changes in external parameters such as density or magnetic field. Using quantum transport theory,
we derive a universal relationship between the memory effect and the 1/f noise. Finally, we propose a magnetic
memory effect, where the magnetoresistance is sensitive to the history of the applied magnetic field.
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I. INTRODUCTION

There are several phenomena in electronic systems that
occur on extremely long-time scales. One well-known example
is the 1/f noise [1], where the power spectrum of the
conductivity noise shows power-law scaling in a range of
frequencies from 1×105 to 1×10−6 Hz.

Another such phenomenon is the conductivity memory
effect [2–4], where after a sudden change of the electron
density the conductivity will jump above its equilibrium value,
as illustrated in Fig. 1. The conductivity will relax to its
equilibrium value very slowly, without any visible time scale.
Anomalies at the old Fermi level (see Fig. 7) may remain
detectable up to a day later.

In the case of 1/f noise in conductors, it has been
proposed [5–7] that these scales come from two-level sys-
tems [8–10] (TLS) with a broad spectrum of tunneling times.
The prototypical example of a TLS is an impurity tunneling
between a close pair of host sites. The reaction of the electrons
to this motion naturally reproduces the 1/f noise.

In this paper, we show that this mechanism by necessity
produces a conductivity memory effect. The effect is, in a
sense, the inverse of the 1/f noise, as it derives from the
reaction of the TLSs to the mesoscopic fluctuations of the
electron density. As a mesoscopic phenomenon, it is sensitive
to magnetic fields and a change in the magnetic field produces
qualitatively similar behavior to a change in electron density.
Moreover, we derive a “memory magnetoresistance,” where
the magnetoresistance depends on the history of the magnetic
field.

Since the 1/f noise and memory effect derive from the
same interaction, we can derive a “universal” relationship
between the noise and the memory effect, independent of the
microscopic details of the TLSs. This relationship depends
only on the phase coherence length, as measured by the
magnetoresistance.

The plan of the paper is as follows. In Sec. II, we give a
qualitative discussion of the model and the results. In Sec. III,
we give a quantitative derivation of these results using the
standard quantum theory of metals. We also analyze the effect
of magnetic fields and derive the memory magnetoresistance
effect. A derivation of the properties of the TLS is given in

*lemonik@phys.columbia.edu
†aleiner@phys.columbia.edu

Appendix A. In Appendix B, we discuss an experimental
protocol for detecting the memory effect. In Appendix C, we
discuss the relationship between the charging properties of thin
films and the underlying energy scales.

II. QUALITATIVE DISCUSSION AND RESULTS

The purpose of this section is to review known facts about
the 1/f noise and to make a connection to the proposed
memory effect.

A. 1/ f noise and mesoscopic corrections

It has been known for over 50 years that the conductivity
noise in metals has strange behavior in the low-frequency
limit [1]. Consider a sample of linear dimension L with a
fixed voltage applied such that a mean current I is produced.
If the fluctuations of the current around the mean δI (t) are
measured, it is found that

δI (t)δI (t ′) = I 2L−dF(t − t ′), (2.1)

where . . . denotes the time average. The factor of L−d takes
into account the central limit theorem so that the function
F does not depend on the sample geometry. The Fourier
transform of F was found to behave as∫

dt F(t)eiωt ∼ 1

|ω| (2.2)

at low frequencies ω = 2πf . This behavior persists in some
samples from frequencies of a khZ to an inverse day. The basic
problem is a mismatch of scales. The typical elastic scattering
times are of the order of picoseconds. The inelastic scattering
(either the dephasing or the energy relaxation time) may exceed
the elastic scattering by several orders of magnitude. But, even
these are never larger than a microsecond. How can there be
behavior on times of an inverse day? What scale can be the
cutoff for the 1/f behavior?

A resolution of this problem has two components. The
first component is the two-level system [8–10] (TLS). There
are many possible microscopic mechanisms that produce
appropriate TLSs. As our final results should be independent of
the microscopic details, we will work with a particularly simple
model. This is a heavy but mobile atom with two equilibrium
positions r1 and r2. Under the action of inelastic scattering by
electrons and phonons, the atom can switch its position.

The probabilistic description of the TLS is the following:
P

eq
1,2 are the probability for the TLS to be in the states 1 and 2,
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FIG. 1. (Color online) Figure showing the response of the con-
ductivity to a change in the density ne. The behavior is qualitatively
similar for a change in magnetic field. The density is changed by
δne at t = 0 and returned to its original value at t = th. The graph
plots conductivity vs time for several different choices of th, but the
same δne. There is a jump in the conductivity δσ1 when the chemical
potential is first changed and a second jump δσ2 at t = th. The time
scale is in arbitrary units. Figures offset slightly for clarity. The scale
σ∗ is defined in Eq. (2.26). A positive σ2 only appears when th >

√
ti tf

when 50% of the TLS are relaxed.

respectively. These are dictated by the Gibbs distribution. The
motion between these states is characterized by P (t,r|t ′s), the
conditional probability to be in state r at time t provided that
it was in state s at time t ′. A particular TLS is governed by a
single relaxation time τ12:

P (t,r|t ′,r) = P eq
r + (

1 − P eq
r

)
e−|t−t ′ |/τ12 . (2.3)

The TLS’s transitions necessarily involve tunneling. There-
fore, the relaxation time τ12 must be of the form

1

τ12
∝ exp

(
−|�r1 − r2|

a

)
, (2.4)

where a is a constant on the order of the lattice constant. As-
suming that the positions r1,2 are homogeneously distributed
we find that the probability distribution of the relaxation times
is

dτ12P(τ12) ∼ dτ12

τ12
. (2.5)

Averaging Eq. (2.3) over the tunneling time of the TLS with
the distribution (2.5) gives∫

dτ12P(τ12)e−t/τ12 ∝ ln(tf /t)

ln(tf /ti)
= K(t), (2.6)

valid when ti < t < tf . The lower cutoff ti is given by some
microscopic scale and the upper cutoff tf is larger than ti by
many orders of magnitude in reasonable models. The function
K(t) therefore shows 1/f behavior over the extremely large
range of scales that is characteristic of F(t). If there were a
mechanism that would translate the motion of a TLS into an
observable transport coefficient of electrons, we could write
K(t) ∝ F(t) and claim the phenomena explained.

FIG. 2. An illustration of semiclassical paths in the “interference”
contribution to the probability to propagate from point A to point B.
The crossed circles represent static impurities and the reversed arrow
indicates the complex conjugate of the amplitude.

Such a translation is in fact subtle. Naively, the conductivity
is determined by the Drude formula

σD = e2νv2
F τtr , (2.7)

where ν is the density of states, vF the Fermi velocity, and the
transport time τtr is given by

1

τtr

= vF Nimps, (2.8)

where Nimp is the density of impurities and s is the scattering
cross section. Given that shifting an impurity does not change
its scattering cross section [11], it would seem that the motion
of the impurity has no effect on the conductivity at all.

It was realized in Refs. [5,7] that the theory of mesoscopic
conductance fluctuations [12–14] resolves this issue. To
illustrate this resolution, let us recall the justification for the
Drude equation. The Fermi wavelength λF is much smaller
than the mean-free path between impurities 	imp, so we may
consider the electrons as wavepackets following semiclassical
trajectories. Consider the probability WAB for an electron to
propagate from point A to point B. Because the electrons can
scatter off an impurity to any direction, there are many paths
connecting the two points. Quantum mechanically, we assign
to each path i the amplitudeAi , sum the amplitudes, and square
the result. This gives

WAB =
∑

i

|Ai |2 +
∑
i �=j

A∗
i Aj . (2.9)

The first term is a classical sum of probabilities which leads
to the diffusion equation and the Drude formula. The second
“interference term,” illustrated in Fig. 2, is neglected in the
Drude equation. The usual justification is that the interference
depends on the relative phase of two paths

φij ∼ (Li − Lj )pF /�, (2.10)

where Li is the length of the ith trajectory and pF is the Fermi
momentum. But, this phase fluctuates wildly since pF Li 	 �.
Thus, one may think, incorrectly, that the interference correc-
tion is a sum of terms with random signs and may be neglected.
The remaining terms are purely classical and so any correction
to the conductance G would take the form

δG
?∼ 1

N

∑
i

(|Ai |2 + δgi), (2.11)
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where N is the number of paths and δgi is a correction to the
classical probability. This leads to a variance

〈�G2〉 ?∼ 〈
δg2

i

〉 1

N2
N ∝ 1

N
.

Thus, according to this logic, the correction to the conductivity
decays with N . Since N grows with the size of the system, this
leads one to think that all corrections must decay with the size
of the system.

However, the neglect of the interference term above is
careless since there are pairs of paths whose phases are fixed
by symmetry, such as a path and its time reverse. These will not
have canceling phases and therefore they contribute to WAB .
Let us estimate the correction δσ to the Drude formula that the
interference term produces. We may think of it as a random
quantity and calculate its variance. The true conductivity
σ = σdr + δσ is proportional to WAB so

�G ∝ 1

N2

∑
ijkl

A∗
i AjA∗

kAl . (2.12)

There are two sets of paths that give a nonvanishing
contribution to Eq. (2.12). The “diffuson” term where path
i = l and j = k and the “cooperon” term where path k is the
time reverse of path i and likewise for j and l. These are
illustrated in Fig. 3. Substituting these paths into Eq. (2.12)
gives a contribution ∼(

∑
i |Mi |)2 ∼ N2, not N as in the

classical estimate [Eq. (2.11)]. This means that the correct
expression for �G is independent of the system size. It follows
that this correction is describing processes that occur on linear

FIG. 3. Examples of an interference contribution to the variance
of the conductivity. The crossed circles represent static impurities.
(a) The pair of paths 1 and 2 contribute to the classical probability
probability to propagate. Because the two paths are different they
have a random phase, which means the sum over all paths is self-
canceling. But, combined with the paths 3 and 4, the diagram makes
a nonvanishing contribution to the variance of the conductivity. (b) A
cooperon contribution, where the path 3 is the time reverse of path 1
and likewise for 4 and 2.

scales larger than all microscopic lengths and therefore must
be universal and independent of material parameters. The only
possible expression is

〈�G2〉 ∼
(

e2

�

)2

. (2.13)

There are two mechanisms that violate the universality of
Eq. (2.13): dephasing by inelastic processes characterized by
the the inelastic time τφ (see Refs. [15–17] for a detailed
discussion of τφ in mesoscopic fluctuations) and temperature
averaging due the dependence of the phases Ai on the electron
energy εi :

Ai(ε1)Aj (ε2) ∝ exp[i(ε1 − ε2)Li/vF ]. (2.14)

The dephasing restores the central limit theorem in the sense
that the system can now be separated into uncorrelated
subsystems of size 	φ ≡ √

Dτφ . Here, D = v2
F τtr is the elec-

tron diffusion constant. The temperature averaging similarly
means that contributions from energy differences larger than
ε1 − ε2 ∼ �/τφ are independent. This results in

〈�G2〉 ∼
(

e2

�

)2(
	φ

L

)4−d(
�

T τφ

)
, (2.15)

where d is the dimensionality of the sample.
While δG is not directly observable, this correction

manifests as the universal conductance fluctuations. If an
adjustment is made to the system (a change in chemical
potential, thermal cycling, magnetic field, etc.), the phases in
the interference term will be changed and so the interference
will be randomized, leading to fluctuations in the conductivity.
These fluctuations are universal in the sense that they do not
depend on physics at the scale 	imp or λF , but on much longer
scales such as the system size or phase coherence length.

Returning to the TLS, we now understand how the motions
of the impurities may affect the conductivity. Consider a path
involving the scattering on a mobile impurity (TLS) as in
Fig. 4. The geometric length of the paths differs depending
on the location of the impurity. Therefore, the accumulated
phase φi of the trajectory depends on the state of the TLS. We
write φi = pF Li + αr where r = 1,2 is the state of the TLS.
The numbers α1,2 are effectively random since they depend
on the orientation of the electron path and the displacement
�r12 between the two sites of the mobile impurity. Thus, the
contribution of the path i to the fluctuation of the conductance

FIG. 4. Figure showing the change in the geometric length of a
path because of a shift in mobile impurity from position �r1 to �r2. The
crossed circles represent static impurities and the solid dot shows two
possible positions of a TLS.
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becomes dependent on the state of the TLS,

�Gi,r ∼ cos(kF Li + αr ). (2.16)

Substituting such paths into Eq. (2.12), we can calculate the
contribution to the conductance fluctuation for paths passing
through the TLS. In the limit that α1 − α2 	 1 the sign of
�Gi,r is random and the terms where r �= s do not contribute.
Therefore [see Eq. (2.3)],

�Gi(t)�Gi(t
′) ∝

∑
r

P eq
r P (r,t |r,t ′)

∝ P
eq
1 P

eq
2 e−t/τ12 . (2.17)

The correlation function of the conductances is determined by
the impurity dynamics. The summation over different TLSs
leads to the correction of Eq. (2.15):

〈〈�G(t)�G(t ′)〉〉

∼
(

e2

�

)2(
	φ

L

)4−d(
�

T τφ

)(
τφ

τ∗

)
K(t − t ′), (2.18)

where 〈〈. . .〉〉 indicates an average over the positions and
tunneling rates of the TLS.

The time τ∗ is the elastic scattering time of an electron from
a mobile impurity and the factor τφ/τ∗  1 is the fraction
of paths that encounter a mobile impurity before the phase
coherence is destroyed. This factor can also be understood as
follows. The scattering time τ∗ is approximately the density of
states ν over the density of the TLSs ρ∗. This gives us(

τφ

τ∗

)
=

(
ρ∗	d

φ

g(	φ)

)
, (2.19)

where g(	φ) = νD	d−2
φ is the conductance at the scale 	φ in

units of e2/�. The phase coherence splits the system into cells
of volume 	d

φ each with ρ∗	d
φ impurities. Therefore, to produce

a change in the conductance of order e2/� in a sample of linear
size 	φ , one must move a number of impurities equal to g(	φ).

We can compare Eqs. (2.1) and (2.18) by using the facts
that on applying a voltage V , the current I = G(L)V and the
fluctuations δI = δGV . Further, the conductances at scales L

and 	φ are related by G(L) = e2

�
g(	φ)( 	φ

L
)2−d . We thus obtain

a relationship between the functions F(t) and K(t):

F(t)

K(t)
∝ 	d

φ

g(	φ)2

(
�

T τ∗

)
. (2.20)

Equation (2.20) describes the mechanism of quantum interfer-
ence that translates the microscopic motion of the TLSs into
an observable noise. We will show now that this interference
inevitably leads to the memory effect, not previously studied
in the literature.

B. Memory effect

Memory effects are the slow responses of, say, the conduc-
tivity σ (ne,B) to sudden changes of the electron density ne

or the applied magnetic field B, as illustrated in Fig. 1. After
the change, the conductivity δσ (t) is usually larger than its
equilibrium value σf (ne + δn,B + δB) and approaches this
equilibrium value very slowly, without any visible time scale.
Moreover, if after some time th, ne, and B are returned to their

FIG. 5. Semiclassical paths demonstrating the memory effect.
The impurity in the TLS is represented by a solid dot and the
crossed circles represent static impurities. (a) A multiple scattering
contribution to the scattering rate of the TLS with a random phase.
(b) A contribution to the energy in the semiclassical picture. (c) An
interference contribution to the covariance of the scattering rate and
the energy.

starting value, σ will jump again (the value and even the sign
of the jump depending on th) and then return to the starting
value σ (ne,B) during a time of the order of th.

We give here a qualitative explanation of this behavior using
the concepts introduced in Sec. II A. The rigorous derivation
of these results is relegated to Sec. III E.

As before, consider the interference contribution to the
conductivity from two trajectories shown in Fig. 5(a). The con-
tribution to the conductivity �σi from this path corresponds to
an enhancement of the scattering rate 1/τtr , and so the effect
can be estimated as

�σi

σ
∼ −Vimp

∑
r=1,2

cos(kF Li + αr )Pr, (2.21)

where Pr is the probability for the TLS to be in state r and
the coefficient Vimp is the average of the impurity-electron
potential, which gives the scattering amplitude in the first Born
approximation. Because the phase of the cosine is random, one
might expect Eq. (2.21) to vanish on averaging. However, this
neglects the possibility that the phase is correlated with Pr and
is therefore incorrect. Let us see how this correlation arises.

The equilibrium probability P
eq
r for a TLS is given by

the Gibbs distribution P
eq
r ∝ exp(−Er/T ), where T is the

temperature and Er is the energy of the r state. Because
the mobile impurity interacts with the electrons, this energy
will depend on the density of electrons ρ(r) near the mobile
impurity. The density of electrons itself fluctuates throughout
the metal because of the Friedel oscillations [18] of the
randomly placed impurities. The role of Friedel oscillations
in the interaction correction to the conductivity is discussed
in Refs. [19,20]. Such a fluctuation of the energy δEr will
produce a fluctuation in the occupation probability δPr :

δP1 − δP2 = −δE1 − δE2

T
P

eq
1 P

eq
2 . (2.22)
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Assuming that these density fluctuations are small, we may
write that the fluctuation of the energy δEr is proportional to
the fluctuation of the density δρr . In the semiclassical picture,
the density of electrons at the site r is given by all loops that
pass through the site as in Fig. 5(b), so the path i gives a
contribution

δE(i)
r ∼ Vimpδρ

(i)
r ∼ Vimp

∫
dε nF(ε)Ci,r (ε), (2.23)

where

Ci,r (ε) ≡ cos[(kF + ε/vF )Li + αr ], (2.24)

and nF (ε) ≡ [1 + exp(ε/T )]−1 is the Fermi distribution func-
tion. Crucially, the energy shift is determined by the same po-
tential Vimp that defines the scattering amplitude in Eq. (2.21).
Substituting Eqs. (2.22) and (2.23) into Eq. (2.21) and keeping
only the nonoscillating terms we obtain

�σi

σD

∼ −V 2
imp

T

∫
dε nF(ε) cos

(
ε

vF

Li

)
P

eq
1 P

eq
2 . (2.25)

It is important to note that only the quantity V 2
imp appears

in Eq. (2.25) and this is of definite sign. Therefore, the sign
of Eq. (2.25) is fixed regardless of whether the interaction is
repulsive or attractive.

The next step is the summation of Eq. (2.25) over all the dif-
fusive paths that involve the scattering off of the mobile impu-
rities. This is precisely the sum [Eq. (2.12)] we have discussed
in Sec. II A, where we found that the change in the conductance
is given by the inverse conductance on the scale 	φ . The
only difference is that, because of the integral over ε in
Eq. (2.25), the phase coherence will already be destroyed
for paths longer than �vF /T . This corresponds to a diffusive
length LT = √

�D/T  	φ (see Ref. [17]). Calling the total
correction to the conductivity σ∗, we obtain that

σ∗
σD

≈ − 1

g(LT )

1

T τ ∗ . (2.26)

Equation (2.26) is a quantum correction to the conductivity
with a singular dependence on temperature. Similar effects
were discussed in Ref. [21] in relation to zero-bias anomalies
in point contacts.

Due to the small factor 1/(T τ∗) this correction is not
observable in bulk systems in comparison with the interaction
correction [22]. It is only the memory effect that makes the
correction (2.26) observable.

Let us at time t = 0 suddenly change the electron den-
sity so that kF → k′

F , or apply a magnetic field B. The
electrons equilibrate instantly compared to the time scales
we are interested in, so we should change in Eqs. (2.21)
and (2.24)

Ci,r (ε) → C̃i,r (ε) ≡ cos

(
2π

�i

�0

)
cos

[(
k′
F + ε

vF

)
Li + αr

]
,

(2.27)

where �i is the flux enclosed by the diffusive path and �0 =
hc/e is the flux quantum. However, the occupation probability
of a TLS does not immediately follow the change in density
because it relaxes only on the long-time scale τ12. Therefore,

we should write for the occupation probability

�Pr (t) = −e−t/τ12

T

∫
dε nF (ε)Ci,r (ε)

− 1 − e−t/τ12

T

∫
dε nF(ε)C̃i,r (ε). (2.28)

Then, Eq. (2.21) yields

�σi(t)

σ
∼ −

∑
r=1,2

P1P2

∫
dε nF (ε)

[
e−t/τ12

T
Ci,r (ε)C̃i,r (0)

− 1 − e−t/τ12

T
C̃i,r (ε)C̃i,r (0)

]
. (2.29)

Once again, keeping only the terms which do not oscillate on
the scale of 1/kF we obtain instead of Eq. (2.26)

�σi(t)

σ

= −P1P2

T

∫
dε

{
e−t/τ12 cos

[(
k′
F − kF + ε

vF

)
Li

]
cos

2π�i

�0

+ (1 − e−t/τ12 ) cos
ε

vF

cos2 2π�i

�0

}
. (2.30)

Equation (2.30) is the key for the qualitative understanding
of the memory effect. The first term characterizes the slow
decay of the system’s memory of the initial interference
pattern. The second term characterizes the slow approach of the
conductivity to the new equilibrium. The term cos2(2π�i/�0)
describes the suppression of the constructive interference
between time-reversed paths by the magnetic field. The same
suppression by magnetic field appears in the 1/f noise [23,24]
and is evidence of the importance of mesoscopic physics in
the system.

Equation (2.30) has several immediate applications. Let
us consider the change in conductivity immediately after a
change in the density.1 Summing over all the trajectories and
all the TLSs in Eq. (2.30), we obtain the total correction to the
conductivity

δσ(B,k′
F ,t = 0)

σD

= − 1

g(LT )

1

T τ∗
S

(
vF |kF − k′

F |
T

,
LT

LB

)
,

(2.31)

where LB ≡ √
�c/(eB) is the magnetic length and the function

S(x,y) counts the fraction of diffusive paths whose interfer-
ence is not destroyed due to changes in kF or B. It has the
asymptotic limits

S(0,0) = 1; S(x → ∞,y) = S(x,y → ∞) = 0. (2.32)

The explicit form of S is given in Eq. (3.29). The dependence
of the conductivity on the density is shown in Fig. 6. It can be
seen as a fingerprint of the electron density that is stored in the
TLSs.

The time dependence of the conductivity is even more
dramatic. Taking Eq. (2.30) and summing over all the diffusive

1Note the interaction correction does not produce any singular
density dependence because the self-consistent potential created by
the electron-electron interactions equilibrates almost instantaneously.
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FIG. 6. (Color online) Graph of the zero-bias anomaly in the
conductivity. The conductivity and chemical potential are measured
from the resting values. The curves are obtained by numerical
integration of Eq. (3.35).

paths and all the TLSs with the distribution function from
Eq. (2.6) we obtain

δσ (B,k′
F ; t)

σD

= − 1

g(LT )

�

T τ∗

{
K(t)S

(
vF |kF − k′

F |
T

;
LT

LB

)

+ 1

2
[K(0) − K(t)]

[
1 + S

(
0,

√
2
LT

LB

)]}
. (2.33)

This dependence has two anomalies, one at the old Fermi level
and the second at the new Fermi level. The ratio between the
amplitude of these anomalies characterizes the fraction of the
TLS that have adjusted to the new electron density. The form
of the density dependence is shown on Fig. 7.

The function K is precisely the function given in Eq. (2.6)
which determines the correlations of the 1/f noise [see
Eqs. (2.1) and (2.20)]. Moreover, the unknown factor �/(T τ∗)
is removed if the memory effect is expressed in terms of
the measurable correlation function of the 1/f noise from

FIG. 7. (Color online) Graph showing the relaxation in a thin film
of the conductivity singularity from the old Fermi level μi to the new
Fermi level μf . The curves are labeled by the fraction K of TLS that
have relaxed to the new equilibrium.

FIG. 8. (Color online) Plot of the magnetic memory effect. The
curves plot the difference between σ (0), the conductivity of a
sample equilibrated in zero field, and σ (∞), the conductivity after the
sample has equilibrated in a transverse field with magnetic length LB0 .
The curves are shown for different choices of the resting magnetic
length LB0 and plotted in terms of the LB , the magnetic field length
when the conductivity is measured. They are obtained by numerical
evaluation of Eq. (3.32).

Eq. (2.6):

δσ (B,k′
F ; t)

σD

= − 1

Vq

{
F(t)S

(
vF |kF − k′

F |
T

;
LT

LB

)

+ 1

2
[F(0) − F(t)]

[
1 + S

(
0,

√
2
LT

LB

)]}
,

(2.34)

where Vq is the effective volume of the subsystem which
contributes to the memory effect and is defined by

1

Vq

≡ g(	φ)2

	d
φg(LT )

≈ νT (τφT )2−d . (2.35)

The time τφ can be extracted from the usual weak localization
magnetoresistance measurement.

The closest relative of the density memory effect discussed
above is the magnetic field memory effect. Let us keep the
density fixed and switch the magnetic field at t = 0 from B = 0
to B0. Then, at some later time t we briefly shift the magnetic
field to a third value B and measure the resistance. Repeating
the arguments starting from Eq. (2.30) we find the that the
time-dependent part2 of the resistance is

δσ (B,k′
F ; t)

σD

= − 1

Vq

{
F(t)S

(
0;

LT

LB

)
+ 1

2
[F(0) − F(t)]

×
[
S

(
0,

LT

LB+

)
+ S

(
0,

LT

LB−

)]}
,

LB± ≡
√

�c

e|B0 ± B| . (2.36)

2There is also a contribution from the anomalous magnetoresistance,
but this does not depend on time.
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At large value of the magnetic field (2LT � LB) the magne-
toresistance shows a distinct two-dip structure, shown in Fig. 8.
Note that the magnetoresistance is always symmetric. This is
because the electrons are always in quasiequilibrium and so
Onsager’s relation applies.

There is a different way to probe the same memory physics,
by performing a cyclic perturbation of the system. We can at
t = 0 turn on a magnetic field or change the density and wait
for a time th. We then switch off the magnetic field or return
the density to its previous value. We may then measure the
conductivity σ (t) at time t > th, when the system has the
parameters as at t < 0 but still retains a memory of the period
0 < t < th. This protocol corresponds to the correction of the
energy levels of the TLS only during the finite time th. We
obtain instead of Eq. (2.21) at t > th

δPr (t) =
∫

dε nF (ε)[C̃i,r (ε) − Ci,r (ε)]

×(e−t/τ12 − e−(t−th)/τ12 ). (2.37)

Repeating the previous derivation, we obtain a correction to
the conductivity

δσ (t)

σD

= F(t) − F(t − th)

Vq

[
1−S

(
vF |kF − k′

F |
T

,
LT

LB

)]
.

(2.38)

Equation (2.38) describes the relaxation dynamics of the con-
ductivity. This protocol has the advantage of being insensitive
to the fastest time of scale of the TLS dynamics [it does not
contain F(0)]. It is also noninvasive in that it does not require
sweeps of the parameters which may affect the evolution of the
system. However, the measurement of �σ (t) and the jumps
in conductivity can still be used to extract the function S.
Therefore, the consistency of the different protocols would be
an important test of this framework.

We conclude this section by noting that the theory devel-
oped here can predict the change in conductivity from any
history of the density or magnetic field, by application of
Eq. (3.29). It therefore constitutes a complete description of
the memory phenomenon.

III. DIAGRAMMATICS FOR ELECTRONS AND TLS

In this section, we will introduce the diagrammatic tech-
nique for disordered metals with TLSs and perform a rigorous
derivation of the results discussed in Sec. II. The model is
defined in Secs. III A and III B. Sections III C and III D rederive
the known results for the mesoscopic fluctuations and the
1/f noise in order to harmonize the notation and allow an
easy comparison with the memory effect. The quantitative
derivation of the memory effect is performed in Sec. III E.

We make several simplifying assumptions, but they do
not appear crucial to the results: (i) all dependence on the
electron-electron and electron-phonon interactions appears
only through the phase coherence length 	φ , (ii) we work
to leading order in g(	φ)−1, (iii) we work to leading order in
T τφ/�  1, (iv) the calculation is perturbative in the density of
the TLS, and (v) we neglect spin-orbit coupling and magnetic
impurities. We revisit the last assumption in the Conclusion.
We set � = c = 1 in all intermediate formulas.

A. Model

The total Hamiltonian for our system is

Ĥ = Ĥmetal + ĤTLS + Ĥel-TLS. (3.1)

The metallic system is described by the Hamiltonian

Ĥmetal =
∫

dd�r ψ†(�r)[ε(−i �∇ − e �A) + U (�r)]ψ(�r). (3.2)

Here, ψ† is the electron creation operator, ε(p) is the electron
spectrum, �A is the vector gauge potential, U (r) is a random
scalar field representing static disorder, and we suppress
throughout spin indices. We take the simplest model of a local
Gaussian disorder with correlation function

〈〈U (�r)U (�r ′)〉〉 = 1

2πντ
δ(d)(�r − �r ′). (3.3)

Here, ν is the electron density of states per spin at the Fermi
level and τ is the scattering rate. The double angular brackets
〈〈. . .〉〉 throughout this text mean average over both the static
impurities and all others kinds of disorder.

The Hamiltonian for the TLSs,

ĤTLS =
NTLS∑
i=1

ĥi , (3.4)

is a sum of Hamiltonians for each of the NTLS 	 1 two-level
systems

ĥi = �m

[
xiσ̂

i
z + e−ri σ̂ i

x

]
. (3.5)

The σ̂ i
x,y,z are the usual Pauli matrices, commuting for different

TLSs. The parameters xi are independent random variables
uniformly distributed 0 � xi � 1, and ri are independent
random variables uniformly distributed 0 � ri � R, where
the large-distance cutoff R 	 1 characterizes the lowest
frequency at which the 1/f noise is observed. The energy
�m is the maximal level splitting of a TLS.

The motion of the TLSs produces an additional potential
for the electrons V(�r; {σ̂i}NTLS

i=1 ), which depends on the state of
the TLSs, σi ,

Ĥel-TLS =
∫

dd�r V
(�r; {σ̂i}NTLS

i=1

)
ψ†(�r)ψ(�r). (3.6)

As the static potential is already disordered, the potential of the
TLSs can be modeled as a random function with zero mean,
no correlation with the static potential U , and that has variance
given by 〈〈

V
(�r; {σ̂i}NTLS

i=1

) ⊗ V
(�r ′; {σ̂i}NTLS

i=1

)〉〉
= γ

2πντ
δ(d)(�r − �r ′)

NTLS∑
i=1

σ̂ i
z ⊗ σ̂ i

z , (3.7)

where γ  1 describes the ratio of scattering off of the mobile
impurities to the elastic scattering. Equation (3.7) states that the
random potential becomes decorrelated when a TLS changes,
i.e., when σz changes sign. Any residual self-correlation may
be included in the static potential U . Otherwise, no restrictions
are placed on the potential V . It is important to emphasize that
averaging here is performed only over the spatial locations
of the TLS and that the average over the parameters of the
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(a)

(b)

(c)

(d)

(e)

FIG. 9. The definition of the diagrammatic elements: (a) bare
electron Green’s function, (b) static impurity, (c) dressed electron
Green’s function, (d) and (e) the resummation for the cooperon
and diffuson pole. The external fermion lines are amputated and
the functions D and C are defined in Eqs. (3.11b) and (3.11a),
respectively.

TLS (xi and ri) should be performed in the final answer. The
resulting diagrammatics are summarized in Fig. 9.

B. Fluctuation-dissipation theorem for dilute TLS

By using the fluctuation-dissipation theorem we may relate
the noise and the quantum memory effects without any appeal
to the microscopic details of the TLS. For dilute TLS (meaning
that the average number of TLS per coherent volume 	d

φ

is much less than one), the dynamics of the different TLS
are independent. The fluctuations are expressed in the exact
Keldysh Green’s function

FK(t1 − t2) = 1

2NTLS

NTLS∑
i=0

〈
σ̂ i

z (t1)σ̂ i
z (t2) + σ̂ i

z (t2)σ̂ i
z (t1)

〉
. (3.8)

Here, σ̂ i
z (t) is the operator defined in Eq. (3.5) in the Heisen-

berg representation and the quantum mechanical expectation
〈. . .〉 is performed over the equilibrium density matrix of the
electron system. The response of the TLS to the change in its
environment, such as perturbations of the electrons, is encoded
in the retarded Green’s function

FR(t1 − t2) = i

2NTLS

NTLS∑
i=0

〈[
σ̂ i

z (t1),σ̂ i
z (t2)

]〉
θ (t1 − t2), (3.9)

where θ (t) is the step function. Note that we remove a
factor of i from Eq. (3.8) so that both FK and FR are real
functions.

Further microscopic calculation is relegated to Appendix A.
For our purposes it is sufficient to use the fluctuation
dissipation theorem. From the fact that all time scales are

much longer than �/T , we may write

FR(t) = θ (t)

T

∂FK (t)

∂t
. (3.10)

Therefore, everything may be expressed in terms of FK (t).

C. Mesoscopic conductance fluctuations

The properties of the conductance fluctuations are well
studied. We reproduce the results in this section in order
to establish the notation and the building blocks of the dia-
grammatic technique. The diagrams for the impurity-averaged
Green’s functions 〈〈GR,A〉〉 and the average of their product
〈〈GRGA〉〉 are shown in Fig. 9. Because we are averaging
measurements made at well-separated times we can attach
a definite time to each electron line. The most interesting part
of the long-range dynamics is encoded in the diffuson and
cooperon propagators D and C [see Figs. 9(d) and 9(e)]. These
are the solutions of the “classical” equations{

iη + [
i∇r1 + ( �A(t1,r1) + �A(t2,r1))

]2 + τ−1
φ

}
× C(η,r1,r2; t1,t2) = δ(d)(r1 − r2) (3.11a)

and {
iη + [

i∇r1 + ( �A(t1,r1) − �A(t2,r1))
]2 + τ−1

φ

}
× D(η,r1,r2; t1,t2) = δ(d)(r1 − r2), (3.11b)

where η ≡ ε1 − ε2 is the difference of the energy of the two
electron lines. The constant τφ is the phase coherence time,
which captures the effect of the interacting processes not
explicitly included in our model, such as phonons. The gauge
is fixed with A0 = 0 so that C(r,r; t1,t2) is invariant under the
residual, time-independent gauge transformations.

In the absence of a magnetic field, there is no dependence on
the times t1 and t2 and the Fourier transform of the propagators
is given by

C(η, �Q) = D(η, �Q) = (−iη + DQ2 + τ−1
φ

)−1
. (3.12)

The nonequilibrium distribution of the electronic system
due to a finite current is expressed by the Keldysh Green’s
function GK shown in Fig. 10(b) or equivalently by the electron
distribution function n(ε, �p). The average current, shown in
Fig. 10(d), reproduces the usual Drude formula.

In addition to affecting the long-range correlations as
encoded in the diffuson and cooperon, the disorder also affects
the short-range correlations of operators. This is encoded in
the Hikami box subdiagrams shown in Fig. 11.

The mesoscopic fluctuations originate in the dependence of
GK on the disorder. The variance is calculated diagrammati-
cally in Fig. 12. In the limit T τφ 	 1, calculation yields

〈〈δjα(r,t1)δjβ(r ′,t2)〉〉

= (πν)−2
∫

dε1dε2

(
∂fF

∂ε1

)(
∂fF

∂ε2

) {
|C(ε1 − ε2,r,r

′)|2

×jα(r,t2)jβ(r ′,t1) + δ(d)(r − r ′)δαβ
∑

γ

∫
dr ′′

×[|D(ε1 − ε2,r,r
′′)|2jγ (r ′′,t1)jγ (r ′′,t2)]

}
. (3.13)
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FIG. 10. The definition of the diagrammatic elements: (a) current
operator, (b) Keldysh Green’s function, (c) electron distribution
function, (d) expectation of the current operator. The factor of
2 comes from the spin summation. The Fermi function fF (ε) ≡
[1 + exp(ε/T )]−1. Note the factor of −i in the definition (c) of the
average current.

We now simplify Eq. (3.13), working in d < 2 and
analytically continuing to higher dimensions. Using the fact
η ≡ ε1 − ε2 is of the order of τφ whereas ε1,2 ∼ T , we may
take one of the integrals over ε. Further, the function C(r,r ′)
falls off exponentially for |r − r ′| 	 	φ . Assuming that j (r) is
smooth on the scale 	φ , we can remove j (r) from any integral
over position. Lastly, using the fact that∫

dr dr ′
∫ ∞

−∞
dη|C(η,r,r ′)|2 = π

∫
dr C(0; r,r), (3.14)

we obtain

〈〈δjα(r,t1)δjβ(r ′,t2)〉〉 = δ(d)(r−r ′)
∑
ρσ

jρ(r,t1)jσ(r ′,t2)

× 1

3πT ν2
[δαβδρσ D(0,r,r) + δαρδσβC(0,r,r)]. (3.15)

We now apply Eq. (3.13) to the experimental setup of
interest. Consider a cubical system of linear dimension L,
with leads welded on to the faces normal to the x̂ direction.
Apply a voltage V and measure the current I . To relate I

to the local fluctuation δj we should recall that the correct
interpretation of the term δj (r,t) is as a Langevin source for
the current density j (r),

jα(r,t) = σEα + δjα(r,t), (3.16)

where E is the electric field and δj (r) is to be treated as a
random term with statistics given by Eq. (3.13). However,
since we are dealing with a good conductor there is no local
charge accumulation on the time scales of interest, as the
electric field E compensates instantly. The only effect of the

FIG. 11. The Hikami box subdiagrams. The external lines are
amputated.

Langevin force δj (r) is to affect the charge transport across
the system, so the correction to the current δI (t),

δI (t) = 1

L

∫
ddr δ �j (r,t) · x̂. (3.17)

To first order, the current density that appears on the right-hand
side of Eq. (3.15) can be taken to be the Drude result
j = V σL2−d = IL1−d giving [compare with Eq. (2.15)]

〈〈δI (t)δI (0)〉〉 = I 2

Ld

	d
φ

T τφg(	φ)2

[
Y

(
	φ

	B−

)
+ Y

(
	φ

	B+

)]

+ I 2

Ld

Ld
T

g(LT )2
fd, (3.18)

where LB± ≡ [e|B(0) ± B(t)|]−1/2 and Y is the scaling
function defined by

Y

(
	φ

	B

)
≡ 1

3π

	d
φ

τφ

[C(0,r,r; B) − C(0,r,r; 0)]. (3.19)
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FIG. 12. The diagrams contributing to the universal conductance
fluctuations. They must be multiplied by the factor (−i)2. Compare
with Fig. 10(d).

This function is well known from the study of weak
localization and see Refs. [25,26] for evaluation. The
magnetic-field-independent term fd appears on analytic
continuation to d = 2,3. In d = 2 it is given by

f2 = 1

6π2
ln

(
1

T τ

)
, (3.20)

and is a nonuniversal constant in d = 3.

D. 1/ f noise

The mesoscopic fluctuations can be made observable by
varying an external parameter, such as magnetic field. The
shifting of the TLS is another mechanism by which the
mesoscopic fluctuations are manifested, in this case as the 1/f

noise. The appropriate diagrams are collected in Fig. 13. In
fact, no new calculation is needed since we may use the result
for the mesoscopic fluctuation (3.13), make the substitution
τ−1
φ → τ−1

φ + τ−1
∗ [F̄ K (t) − F̄ K (0)], and then expand to first

order. The resulting correlations of the current are

〈〈δjα(r,t1)δjβ(r ′,t2)〉〉 =δ(d)(r−r ′)
∑
ρσ

jρ(r,t1)jσ(r ′,t2)

× 1

3πν2T τ∗

∂

∂τ−1
φ

[δαβδρσ D(0,r,r) + δαρδσβC(0,r,r)].

(3.21)

We may follow the same arguments as above to translate this
expression into an expression for the fluctuations of the current.

FIG. 13. The diagrams contributing to the noise. The TLS enters
through subdiagram (b).

In terms of the function F [see Eq. (2.1)],

F(t) = Ld [〈〈δI (0)δI (t)〉〉]/I 2, (3.22)
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the result is

F(t) = 	d
φ

T τ∗g(	φ)2

[
Z

(
	φ

	B−

)
+ Z

(
	φ

	B+

)]
[FK (t)−FK (0)],

(3.23)

where

Z(x) = (d/2 − 1)Y (x) − 2xY ′(x) + 1

12π2
δ2,d . (3.24)

The final term of Eq. (3.23), in square brackets, carries all of
the details of the microscopic model. The noise can therefore
be used to calculate τ∗ and the correlations of the impurities.

On insertion of the result for the TLS (see Appendix A)
becomes

F(t) ∝ − ln(t/t0)

ln(tm/t0)
, (3.25)

for times t with t0 < t < tm. For frequencies f with t0 <

f −1 < tm the Fourier transform of the autocorrelation has the
expected 1/f scaling. Given that t0 is microscopic while tm
may be on the order of a day, this reproduces the experimental
fact of 1/f scaling over many orders of magnitude.

E. Memory effect

We now calculate the memory effect, which is the correction
to the conductivity arising from the past history of the chemical
potential μ(t) and magnetic field B(t). By quickly sweeping
the chemical potential at well-separated times, the entire time
history of the conductivity at all energies may be reconstructed.
Throughout this section, we will suppress the dependence of
C and D on magnetic field.

The corrections to the measured current are shown in
Fig. 14. The history of the system parameters μ(t) and
B(t) enter through the history of the electron occupation
function nε(t) = tanh( ε−μ(t)

2T
). The correction to the measured

conductivity is

δσ (t)

σD

=
∫

dt ′
FR(t − t ′)

ντ ∗

×
∫

dε

2π

dε′

2π
X(ε′ − ε)

∂nε(t)

∂ε
nε′(t ′). (3.26)

It is important to note that the energies in the distribution
function are defined relative to the chemical potential at the
time t . The kernel X is defined by

X(η) = 2 Re

{
i

∫
dd �Q
(2π )d

[C( �Q,η)2 + D( �Q,η)2]

}
. (3.27)

The integral over η and Q is not convergent in d = 2 and
3, so there are logarithmic terms in d = 2 and nonuniversal
constant terms in d = 3. Using the fact that C(η)2 = −i∂ηC(η)
and likewise for the diffuson, we can integrate by parts,
obtaining∫ ∞

−∞

dε′

2π
X(ε′ − ε)nε′(t ′)

= Re

{∫ ∞

−∞

dε′

2π

∂nε′(t ′)
∂ε′ [C(r,r,ε′ − ε) + D(r,r,ε′ − ε)]

}
.

(3.28)

FIG. 14. The diagrams contributing to the memory effect. The
TLS enters through subdiagram (a). Note there is an overall factor of
i from the definition of j in Fig. 10(c).
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Finally, using the fluctuation dissipation relationship be-
tween FK and FR [see Eq. (3.10)], we obtain the main result
of this section:

δσ (t)

σD

= 1

T τ∗

1

g(LT )

∫ t

−∞
dt ′

dF̄K (t − t ′)
dt

×
[
S

(
μ(t) − μ(t ′)

T
,
LT

LB+

)
+ S

(
μ(t) − μ(t ′)

T
,
LT

LB−

)]
(3.29)

[compare with Eq. (2.31)]. The conductance at scale T is
determined by the scaling

g(LT )

g(	φ)
≡

(
LT

	φ

)2−d

, (3.30)

and the magnetic length LB± is defined by

LB± ≡
√

�c

e|B(t) ± B(t ′)| . (3.31)

The scaling3 function S is defined by

S(u,v) ≡ 8
∫ ∞

−∞
dx

x cothx − 1

sinh2x
Re{C̄[0,(2x + u),v]}.

(3.32)

Here, C̄ is the cooperon expressed in dimensionless units,
given by the equation

[iu + (i �∇ + vĀ(r))2]C̄(r,u,v) = δ(d)(r), (3.33)

where Ã is a dimensionless gauge potential obeying

�∇×Ã = ẑ, (3.34)

and ẑ is the unit vector in the direction of the magnetic field.
Although Eq. (3.32) only contains the symbol C̄, it includes the
diffuson contribution through the second term of Eq. (3.29).
The correction is similar to the usual quantum correction to
conductance, but around the old chemical potential.

The integral over x ≡ 2(ε1 − ε2)/T serves to smooth the
result over the scale of the temperature. At zero magnetic field,
we may evaluate S explicitly and we obtain

S(u,0) =
∫ ∞

−∞
dx

x cothx − 1

sinh2x
Pd (2x + u). (3.35)

The function Pd depends on the dimension and is given by

P1(z) ≡ 2√
2
|z|−1/2,

P2(z) ≡ − 2

π
ln

∣∣∣∣ 1

z(T τ )

∣∣∣∣, (3.36)

P3(z) ≡ a −
√

2

π
|z|1/2,

where a is a nonuniversal constant. When u 	 1, S has the
limiting form

S(u,0) = Pd (u). (3.37)

3There also may be an effect of the magnetic through the Zeeman
coupling, but this should be a secondary effect.

We now calculate the effect of a transverse magnetic field
in d = 2. In a magnetic field, the cooperon must be expanded
in Landau levels

C̄(0,u,v) = 4v2

4π

∞∑
n=0

[
iη +

(
n + 1

2

)
4v2

]−1

. (3.38)

Introducing an integral over the auxiliary variable s, this may
be rewritten as

C̄(0,u,v) − C(0,u,0)

= 1

4π

∫ ∞

0

ds

s
exp

(
−i

η

T
s

)(
2v2s

sinh(2v2s)
− 1

)
. (3.39)

The change in the line shape S(u,v) can now be evaluated with
the result that

S(u,v) − S(u,0)

= 2

π

∫ ∞

0

ds

s

(
2v2s

sinh(2v2s)
− 1

)(
2πs

sinh(2πs)

)2

cos(us).

(3.40)

Proceeding in the regime where v  1, the bulk of the integral
comes from the region near zero where the first term may be
perturbatively expanded:

S(u,v) ≈ S(u,0) + v4H (u), (3.41)

where

H (u) = 4

3π

∫ ∞

0
dx

(2πx)2x

sinh2(2πx)
cos(ux). (3.42)

Finally, although there is a superficial resemblance between
the retarded line FR and the usual electron-electron inter-
actions, the term FR does not get simply resummed in the
usual Fermi-liquid fashion (see Fig. 15). This is because any
interaction between an electron at time t1 and t2 will make the
diagram proportional to δ(t1 − t2) and therefore not contribute
to the memory effect. Reference [27] showed that in d = 2
electron-electron interactions can produce 1/f noise, but this

FIG. 15. A normal electron-electron interaction, indicated by the
double wavy line in figure (a), is effectively a delta function in time
on the scales of interest. Therefore, diagrams of the form (b) do not
contribute to the memory effect and there is no Fermi-liquid-type
resummation.
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is only true for frequencies f L2/D 	 1 and thus has no
relevance for the longest-time behavior in mesoscopic systems.

IV. CONCLUSION

The essential conclusions of this paper are as follows: The
existence of the two-level systems that have been suggested to
cause the 1/f noise in metals necessarily leads to a memory
effect. The strength of the memory effect is universally related
to the strength of the 1/f noise. The line shape of the
memory effect is also a universal function. Since the effects
are related to the mesoscopic fluctuations, they are sensitive
to the magnetic field in a universal fashion. The sensitivity
to the Aharonov-Bohm effect, which leads to the magnetic
field dependence, is a universal feature of quantum coherent
systems.

We emphasize that the conclusions here do not depend
on the microscopic model of the TLS. The TLS do not
have to be structural defects or mobile impurities. Any set
of localized systems that produce low-frequency noise will,
by the fluctuation-dissipation theorem, lead to a long-time
memory effect following the universal relationship. There is
no necessity for the spectrum to be exactly of the form 1/f ; any
slowly decaying spectrum will lead to a memory effect. Even
a mechanism such as atoms diffusing through a network of
tunneling sites, while not in some sense a “localized system,”
will still lead to the same relationship between noise and
memory.4

We have neglected spin-orbit coupling in our calculation.
In the limit of strong spin-orbit coupling, the strength of both
the memory effect and 1/f noise is reduced by 1

4 . Therefore,
the ratio of the two effects is the same as at zero spin-orbit
coupling. There is a small intermediate regime where the spin-
orbit scattering length is between the phase coherence length
and the temperature length. In this case, the 1/f noise will
be suppressed by up to 1

4 but the memory effect will be
unchanged. Therefore, for this regime the ratio of the two
will be changed by a numerical factor �4. In any case, the
time dependence and line shape of the memory effect will be
qualitatively unchanged.

To close our discussion, we discuss relevant theoretical and
experimental works. Other theoretical work on memory effects
has been conducted in the insulating phase. In particular, the
role of TLS in memory effects was suggested in Ref. [28],
where it was shown that TLS may cause slow relaxation of
the local density of states in insulators. The possibility that
memory effects can be a manifestation of Anderson Glass
[29–31] physics has also been investigated [32,33].

Since the memory effect we have calculated is a necessary
consequence of the TLS, it may be used to test whether the
TLS are indeed the source of the 1/f in a system. Although
in systems with a large conductance samples the memory
effect will be suppressed, there are several systems that have
anomalously high 1/f noise [34,35]. A search for memory

4We are grateful to A. Andreev for drawing our attention to this
point.

effects in these materials may help elucidate the source of this
noise.

Experimentally, memory effects have been found in a
variety of systems, including indium oxide films [36,37], thin
films of Pb or Bi [3], and granular metals [2,38–40]. However,
these systems are understood to be in the insulating regime.
We are not aware that any comparable effects have been found
in diffusive systems.

We note that in the metallic regime, the separation of the
screening length and the phase coherence length leads to some
dependence of the anomalous capacitance on the thickness of
the sample. We discuss this in Appendix C.
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APPENDIX A: TWO-LEVEL SYSTEMS

In this section, we give a model for the two-level systems.
In a disordered system one expects to find a large number
of mobile impurities. The mobile impurity may be treated as
a massive particle which sees a potential V (r) depending on
the static impurities and defects in the lattice, as renormalized
by electron-phonon excitations. We are interested in the case
where V (r) is generally larger than all relevant energy scales,
except for localized valleys located an average rm apart. If rm

is large compared to the time scales of our measurement, in a
sense to be made precise below, then we expect most of the
“mobile” impurities to not have moved from their valley. These
are indistinguishable from static impurities. However, since
the valleys are randomly located we expect to find situations
when one impurity sits in a valley, with an unoccupied valley
a distance r  rm away. These are the “close pairs,” which are
effectively two-state systems. We may write the Hamiltonian
for the TLS as

HTLS = �̃σz + Iσx, (A1)

where σx,y,z are the usual Pauli matrices, and the “up” state has
the impurity localized in one valley, and the “down” state is
the opposite. The level splitting energy �̃ is the difference in
the binding energies of the two sites, and I is the overlap
integral. We take I = �0e

− r
a where �0 is some coupling

energy.
As � and r are properties of the impurities, we take them to

be random variables. Since we are looking for exponentially
small terms, we may take the random variables to be uniformly
distributed without incurring significant error. We take them
to be distributed in the region � ∈ [0,�m], r ∈ [0,	imp]. Note
we only consider close pairs where r < 	imp and take this as
the upper cutoff on the model. This is taken for convenience so
that we may treat all impurities as point scatterers. As longer
distances correspond to exponentially longer time scales, there
is a well-defined regime in which we are insensitive to the
details of the cutoff. Since we are only interested in the
exponential dependence on r it is sufficient to our accuracy
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to set r = 	imp everywhere except in the dependence of I, and
we do so in the remainder of this section.

The close pairs interact with the electrons by altering the
local potential. Since this depends on which site the electron
occupies, the impurity state and the electronic fluid become
coupled. This corresponds to a term in the Hamiltonian

HTLS-el = γ

2ν
((1 + σz)ψ

†
1ψ1 + (1 − σz)ψ

†
2ψ2). (A2)

Here, γ is the dimensionless interaction strength, ψ1,2 is the
operator that annihilates a conduction electron at the position
r1,2, and r1,2 are random positions located a distance r apart.
We now calculate the time evolution of the density matrix of
the close pair, averaging over the metallic system. This is done
most clearly by rotating the sigma matrices so that HTLS is
proportional to σz. Working to lowest order in I gives

HTLS = �̃σ̃z (A3)

and

HTLS-el =
(

σ̃z + I
�̃

σ̃x

)
γ

ν
[ψ†

1ψ1 − ψ
†
2ψ2] (A4)

(plus a sigma-independent term). Viewing the electronic
fluctuations as a random magnetic field, we see that there
is a decohering field and a depolarizing field, where the
depolarizing field is smaller by the factor I/�̃, exponentially
smaller. Working to second order in the electronic fluctuations
we obtain the evolution equation for the density matrix ρ̂. If
we parametrize the density matrix by

ρ̂ = 1
2 + �a · �σ , (A5)

we may give the time evolution by

∂ �a
∂t

= �ẑ × �a − 1

T2
�a − ẑ

1

T1
[1 − tanh(β�)], (A6)

where the energy � is the renormalized level splitting.
This depends implicitly on the chemical potential since the
compressibilities at r1 and r2 are not equal because of the
mesoscopic fluctuations. The decoherence times T1 and T2 are
given by

T −1
1 = γ 2I2

�2

�

1 − exp(−�/T )
f (�), (A7)

T −1
2 = γ 2Tf (0), (A8)

where the function f (ε) is ν−2 times the local density-density
correlator evaluated at frequency ε. This is a function of
order unity, with subexponential dependence on r . We will
therefore treat it as a constant absorbed into γ . The dependence
on temperature comes from the phase space restrictions on
emitting an electron-hole pair, analogous to Korringa [41]
relaxation.

The behavior of interest happens at time scales much larger
then T2, and so the system is effectively classical. Then,
Eq. (A6) reduces to a master equation for the diagonal elements
of the density matrix f↑ = (1 + az)/2 and f↓ = (1 − az)/2.
The properties of the system will depend on the linear-

response functions. Recalling that the Keldysh function is the
autcorrelation and the retarded function is the linear response
to change in �, we obtain

FK (t) − FK (0) =
(

γ

cosh
(

�
T

))2

[1 − exp(−|t |/T1)] (A9)

and

FR(t) =
(

γ

cosh
(

�
T

))2 1

T1T
exp(−t/T1)�(t). (A10)

Again, some smoothly varying function of r has been absorbed
into the various constants. Equation (A10) is in accordance
with the classical fluctuation dissipation theorem.

We will need the ensemble average of the F , which we
call F̄ = 〈〈F 〉〉. Let us take the ensemble average over r first
since that contains all of the relevant behavior. For the Keldysh
component,

F̄ K (t ; �) − F̄ K (0; �) ≡
(

γ

νcosh
(

�
T

))2 1

	imp

∫ 	imp

0
dr1

− exp[t/t0 exp(−2r/a)], (A11)

where t0 is a short-time scale that depends on T and � from
the definition of T1 in Eq. (A7). This scale t0 functions as the
small-time cutoff for the calculations. Changing variables to
λ = exp(−2r/a) we obtain

1

	imp

∫ 	imp

a

dr{1 − exp[t0 exp(−2r/a)]}

= a

2	imp

∫ 1

e− 2	imp
a

dλ
1 − e−λt/t0

λ

= 1

|lntm/t0|
∫ 1

t0/tm

dλ
1 − e−λt/t0

λ

≈ 1

|lntm/t0|
∫ 1

0
dλ

1 − e−λt/t0

λ

≈ log t/t0

ln tm/t0
, (A12)

where tm ≡ t0 exp(2	imp/a). The manipulations are valid for
times between t0 and tm, which are exponentially separated.
The correlator has a “scale-free” dependence on t , which will
produce long-time correlations. The average of � only smears
out the ln tm/t0 which is insignificant in our regime. The final
result is therefore

F̄ K (t) − F̄ K (0) = ln(t/t0)

ln(tm/t0)
, (A13)

where we have defined the average scattering time depending
on the density of close pairs ρ∗:

1

τ ∗ ≡ γ 2ρ∗

ν

T

�m

tanh(�m/T ). (A14)

The average of FR(t) can be found simply by taking a time
derivative of F̄ K :

F̄ R(t) = 1

T t ln(tm/t0)
. (A15)

184203-14



QUANTUM MEMORY EFFECTS IN DISORDERED SYSTEMS . . . PHYSICAL REVIEW B 90, 184203 (2014)

The time τ ∗ depends linearly on T when T  �m. This
follows from the fact that only impurities with gaps of order T

will be thermally activated with any probability. This produces
the Korringa-type result that T τ∗ is approximately constant at
low temperature.

APPENDIX B: EXPERIMENTAL PROTOCOL

We briefly outline a procedure for detecting the pro-
posed memory effect, in the case of a weak effect in a
two-dimensional system. We will ignore logarithmic factors
throughout this Appendix.

Take a mesoscopic sample of a material with pronounced
1/f noise. Measure the scale of the universal conductance
fluctuations (UCF) SUCF, with magnetic field or gate voltage

SUCF =
〈(

δI

I

)2〉
. (B1)

Measure as well the normalized 1/f noise S1/f :

S1/f (ω) = 1

I 2

∫
dt eiω(t−t ′)δI (t)δI (t ′). (B2)

The strength of the 1/f spectrum defines a dimensionless
parameter α

S1/f (ω) ∼ α|ω|−1. (B3)

The ratio of α and the UCF gives the small parameter of our
theory

β = α/SUCF. (B4)

The parameter β is approximately the parameter ( 1
T τ∗

) that
defines the strength of both 1/f noise [Eq. (2.18)] and the
memory effect [Eq. (2.26)].

The memory effect would be obscured by the 1/f noise
in a mesoscopic sample. To get around this, we use the fact
that the predicted memory does not depend on system size,
while the 1/f noise decreases like 1/L2. So, using a large
sample of the same material, one could measure the memory
dip without the 1/f noise. The predicted depth of the peak in
the conductance δG is

δG/G ∼ β(e2R�/�), (B5)

where G is the conductance and R� is the sheet resistance of
the sample.

There is no upper limit on the size of the sample used to
detect the memory dip from the perspective of our mechanism,
so the 1/f noise may be reduced to arbitrarily low levels, and
time averaging can be used to reduce noise on shorter-time
scales.

APPENDIX C: RELATIONSHIP BETWEEN CAPACITANCE
AND CHARACTERISTIC ENERGY SCALES

IN DIFFUSIVE SAMPLES

The quantity that is directly measured in experiments is
the applied gate voltage. We would like to relate this to
scaling of the memory effect in the metallic regime. The
scaling of the memory effect is determined by the ratio of

the chemical potential δμ and the temperature T . Therefore,
we must appropriately relate the voltage and change of the
chemical potential.

Consider a sample of thickness W , geometric capacitance
per unit area C, and three-dimensional density of states ν3D.
We will show that, according to our model, the width of the
memory peak �V should scale as

�V = eWT ν3D

C
. (C1)

Importantly, this does not depend on the screening length,
independent of the relationship between W and the screening
radius rs .

In the limit where W  rs the answer is obvious and we
consider the limit W 	 rs . From electrostatic considerations,
the two-dimensional screening charge density that must
accumulate on the surface of the sample is V C. The charge dis-
tribution is determined, in a self-consistent Thomas-Fermi ap-
proximation, by the local chemical potential δφ(x). This obeys

ν3D

∫
dx δφ(x) = V C. (C2)

However, the sample we are considering is two dimensional
in the diffusive sense W  	φ . Therefore, an electron will
wander over the thickness of the material in a single measure-
ment. So, the quantity that matters is not the electrochemical
potential in the screening layer, but the electrochemical
potential averaged over the entire sample (or, equivalently, the
zero transverse modes of the diffuson) (see Fig. 16). Calling
this average electrochemical potential δμ, we have that

δμ = 1

W

∫
dx δφ(x) = V C

ν3DW
. (C3)

Combining the scaling δμ ∼ T and Eq. (C3) we obtain
Eq. (C1).

FIG. 16. Sketch of the electrochemical potential φ(x) as a
function of position x in the transverse direction of the sample.
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