
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 90, 180505(R) (2014)

Nonequilibrium noise and current fluctuations at the superconducting phase transition
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We study non-Gaussian out-of-equilibrium current fluctuations in a mesoscopic NSN circuit at the point of
a superconducting phase transition. The setup consists of a voltage-biased thin film nanobridge superconductor
(S) connected to two normal-metal (N) leads by tunnel junctions. We find that, above a critical temperature,
fluctuations of the superconducting order parameter associated with the preformed Cooper pairs mediate inelastic
electron scattering that promotes strong current fluctuations. Though the conductance is suppressed due to the
depletion of the quasiparticle density of states, higher cumulants of current fluctuations are parametrically
enhanced. We identify an experimentally relevant transport regime where excess current noise may reach or even
exceed the level of thermal noise.
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Introduction. Fluctuations of the order parameter associated
with preformed Cooper pairs strongly influence the transport
properties of superconductors above the critical temperature
Tc. Owing to extensive research spanning over several decades
we have learned a lot about the thermodynamic and kinetic
properties in the fluctuation regime [1]. In the context of
transport, fluctuation-induced corrections to electric, thermal,
thermoelectric, and thermomagnetic kinetic coefficients have
been rigorously established within the linear response for-
malism. However, despite its long history, little is known
about the nonlinear [2–4] or nonequilibrium domains [5–7].
In particular, the answer to the question on how superconduct-
ing fluctuations affect the noise or higher-order correlation
functions of various observables remains open. We address
this outstanding problem by studying excess current noise
in a system where a superconductor is tailored to be in the
fluctuation regime above Tc and driven out of equilibrium
by an externally applied voltage. Interestingly, this problem
has a very natural connection to another rich field, namely,
the full counting statistics (FCS) of electron transfer [8] in
mesoscopic systems. It concentrates on finding a probability
distribution function for the number of electrons transferred
through the conductor during a given period of time. FCS
yields all moments of the charge transfer, and in general it
encapsulates complete information about electron transport,
including the effects of correlations, entanglement, and also
information about large rare fluctuations. To access the FCS
experimentally is a challenging task, however, great progress
has been achieved during the last decade in the field of
quantum noise [9–21], where new detection schemes have
enabled the extension of traditional shot noise measurements
to higher-order current correlators.

This work serves a dual purpose. First, we elucidate the
effect of superconducting fluctuations on the nonequilibrium
transport and derive a cumulant generating function for FCS
of current fluctuations in a mesoscopic proximity circuit that
contains, as its element, a fluctuating superconductor. We
find that, due to a depletion of the quasiparticle density of
states, the conductance of the device under consideration is
suppressed, however, noise and higher moments of the current
fluctuations are enhanced due to inelastic electron scattering
in a Cooper channel. It should be stressed that finding the FCS

for interacting electrons is a very challenging task, with only
a few analytical results known to date [22–28] (see also the
review articles [29,30]).

The second important aspect of this Rapid Commu-
nication is a derivation of the nonequilibrium variant of
the time-dependent Ginzburg-Landau action (TDGL). The
conventional paradigm behind TDGL phenomenology [31]
and its subsequent generalizations [32–37] is to assume
that electronic (quasiparticle) degrees of freedom are at
equilibrium and concentrate on the dynamics of the order
parameter field. While leading to correct static averages,
fluctuation-dissipation relations, and gauge invariance, this
way of handling the problem fails to provide any prescription
for calculating the higher moments of observables, even
at equilibrium. Furthermore, existing theories exclude the
stochastic nature of electron scattering on the order parameter
fluctuations. Technically, the inclusion of such effects should
result in stochastic noise terms (Langevin forces) which have a
feedback on superconducting fluctuations. Below we elaborate
on the methodology that includes all these effects.

Model and results. We consider a superconducting diffusive
wire (nanobridge) of length L connected to two normal
reservoirs by tunnel junctions with dimensionless conduc-
tances g1 and g2, thus forming a normal metal–insulator–
superconductor–insulator–normal metal (NISIN) structure
(Fig. 1). For the conductance of the wire we assume gW > g1,2

and, moreover, g1,2 � 1, so that charging effects can be
neglected. The system is driven out of equilibrium by the
finite bias eV , and we will limit ourselves to the regime
T − Tc � eV � Tc. We also consider an externally applied
magnetic field H , which leads to dephasing of the Cooper
pairs due to orbital effects. We concentrate on the temperature
regime in the immediate vicinity of the critical temperature of
a superconductor. In this case, electron transport is dominated
by interaction effects in the Cooper channel, which are
singular in �T = T − Tc. Finally, we assume L � ξ (T ) �√

D/(T − Tc), where ξ is a superconducting coherence length
and D is a diffusion coefficient in the wire. This assumption
greatly simplifies the problem by making it effectively zero
dimensional when neglecting gradient terms in the effective
low-energy action. We note that such devices are readily
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FIG. 1. The layout of a mesoscopic NISIN proximity circuit
under voltage bias, magnetic field, and at a temperature above Tc

of a superconductor.

available in experiments [38–46] and find their practical
implementation as superconducting hot electron bolometers
[47,48].

Our goal is to derive the cumulant generation function
(CGF) F(χ ) for the irreducible moments of current fluctu-
ations. It is defined as a logarithm of the nonequilibrium
partition function, F(χ ) = − lnZ(χ ), where the counting
field χ is the variable conjugated to the classical part of the
current I . Derivatives of F(χ ) give the average value of the
current, shot noise, and higher-order moments Cn of charge
transfer during a long observation time t0.

In the normal state away from Tc, where superconducting
correlations are negligible, the above device represents a
double tunnel junction. In this case CGF is easy to compute
(see, e.g., Ref. [29]). The effects of a Coulomb interaction
on conductance and current noise in a similar setup have
been previously addressed on the basis of the quantum kinetic
approach equation [49,50]. Superconducting correlations in
the vicinity of Tc strongly affect CGF already at low bias,
eV � Tc. We delegate a derivation to the end of this Rapid
Communication and first present our main result,

F(χ ) = −t0TcE
[

1 −
√

1 − 2

(
χ2 − ieV χ

Tc

)
φ + ηE
E2

]
,

(1)
which accounts for inelastic scattering of electrons on super-
conducting fluctuations while traversing across the wire. The
proximity to a superconducting transition is controlled by the
function

E(�T,V ) = a
�T

Tc

+ b
(eV )2

T 2
c

, a = 8

π
, b = α1α2

14ζ (3)

π3
,

(2)
where αk = gk/(g1 + g2) and ζ is the Riemann zeta func-
tion. At finite magnetic field the critical temperature is
downshifted according to the law ln(Tc/Tc0) = ψ( 1

2 ) − ψ( 1
2 +

�
4πTc

), where Tc0 = Tc(H = 0), � = ETh + τ−1
H , and ψ is

the digamma function. The Thouless energy ETh = (g1 +
g2)δ/4π is defined through the mean level spacing in the wire
δ, while the dephasing time τ−1

H � (D/L2)(�/�0)2 ∝ H 2 is
due to orbital effects of the perpendicular magnetic field, where
� is a total magnetic flux through the wire and �0 is the
flux quantum. The two dimensionless functions in Eq. (1) are
defined as follows:

φ = −α1α2

π3

(
ETh

Tc

)
ψ ′′

(
1

2
+ �

4πTc

)
, (3a)

η = 2α2α2

π3

[
ETh

π�
ψ ′′′

(
1

2
+ �

4πTc

)
− ψ ′′

(
1

2
+ �

4πTc

)]
.

(3b)

FIG. 2. (Color online) Fluctuation-induced correction to conduc-
tance �G normalized to the normal conductance G (left), and
normalized fluctuation-induced nonequilibrium excess current noise
in units of thermal noise power TcG (right), plotted vs bias voltage
v = eV/

√
Tc�T for �T = δ, g = 2.5 × 103, and �/Tc = 0.25, 0.5,

0.75.

The effect of fluctuations is most singular provided that ETh �
�T , where φ � ηE . In this case Eq. (1) yields a conductance
correction,

�G

GQ

= 2α1α2

π2

(
ETh

�T

)
ψ ′′

(
1

2
+ �

4πTc

)
a − bv2

(a + bv2)2
, (4)

where we introduced a notation v = eV/
√

Tc�T . This result
is plotted in Fig. 2 (left) for a certain choice of parameters
versus bias voltage and has a BCS-like density of states profile
(note that �G is actually negative since ψ ′′ < 0). The latter
should not be surprising since superconducting fluctuations
deplete energy states near the Fermi level, which leads to a
zero-bias anomaly. In the same limit we find an excess current
noise power,

�SI

GQTc

= 4α2
1α

2
2

π5

[
ψ ′′

(
1

2
+ �

4πTc

)]2 (
ETh

�T

)2
v2

(a + bv2)3
,

(5)

which is plotted in Fig. 2 (right). The low frequency dispersion
of the noise is set by ω = max{�T,(eV )2/Tc}. From Eq. (1)
one can extract the nth moment of the current fluctuations
which progressively display more singular behavior,

Cn = 〈I (ω1) · · · I (ωn)〉ωk→0

� en−2GQTc

(
ETh

�T

)n(
Tc

�T

)n/2−1

. (6)

We interpret this result as a bunching of electrons due to slow
time-dependent fluctuations of the order parameter, which
result in long avalanches of charges and thus parametrically
enhanced current fluctuations.

This conclusion is substantiated by the direct analysis
of the current probability distribution defined by P (I ) =
(2π )−1

∫ π

−π
exp{−F(χ ) + iχ (I t0/e)}dχ . We estimate this in-

tegral using the saddle point method by rotating the integration
contour to complex χ . The typical result is plotted in
Fig. 3. The resulting distribution has a long exponential tail
P (I ) ∝ exp{−λ(I t0/e)} for positive currents I originating
from the branch point χ = iλ of the CGF and describing
avalanches of transferred charges. In the limit ETh � �T

one finds λ = (Tc/eV )(E2/2φ), which gives an estimate
λ ∼ (1/g)(δ/Tc)1/2 � 1 at the direct vicinity of the phase
transition when �T ∼ δ and v ∼ 1. The latter result is in
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FIG. 3. (Color online) The logarithm of probability P (I ) to mea-
sure current fluctuations plotted vs the current I . The parameters are
the same as in Fig. 2, with �/Tc = 0.25. Top curve: v = 3.0; middle
curve: v = 1.5; dotted curve: v = 0 (Gaussian thermal fluctuation).

agreement with Eq. (6). We note that parametric enhancement
of current fluctuations is a universal phenomenon whenever
soft modes are present in the system, and is known to occur,
e.g., in interacting diffusive mesoscopic wires [24] or in
molecular junctions [51].

Estimates. Let us now discuss the experimentally relevant
parameters to observe the effect and estimate its actual
magnitude. The maximal value of the nonequilibrium excess
current noise normalized to the thermal noise at Tc0 that follows
from Eq. (5) is (

�SI

GTc0

)
max

� 1

25g

(
ETh

�T

)2

. (7)

When finding this estimate we took a symmetric struc-
ture α1 = α2 = 1/2, used ψ ′′(1/2) = −14ζ (3), and assumed
�/4πTc � 1. This condition will be justified below. The
minimal allowed �T in our theory is limited by the mean level
spacing. Indeed, since ETh/�T = g/2π at �T = δ, then the
fluctuation-induced correction to conductance �G in Eq. (4)
already reaches its bare value and thus our approach breaks
down for the lower �T . At that bound the noise remains
parametrically enhanced, (�SI/GTc0)max � g/100π2, since
g � 1, however, a large numerical factor in the denominator
significantly diminishes the actual magnitude of the effect.
Now we look for realistic numbers. For the layout design
in Fig. 1 we assume a wire of length L � 0.5 μm and
width w � 100 nm be made of a two-dimensional film of
thickness d � 10 nm. For aluminum nanowires the typical
diffusion coefficient is D � 102 cm2 s−1, the Fermi velocity
is vF = 2 × 108 cm/s, and resistivity ρ � 2 μ� cm. These
numbers provide a Thouless energy ETh = D/L2 � 0.3 K, a
mean free path l = 3D/vF � 15 nm, a diffusive coherence
length at zero temperature ξ = √

ξ0l � 440 nm, where ξ0 =
vF /Tc0 � 1.3 μm for the bulk aluminum Tc0 = 1.2 K, and
a sheet resistance ρ� = ρ/d � 2 �. The latter translates
into the normal wire resistance RW = ρ�L/w � 10 � and
the dimensionless conductance g = 1/GQRW � 2.5 × 103 of
the nanostructure. The corresponding mean level spacing is
δ = 2πETh/g � 0.75 mK while �/Tc0 � 0.25. Finally, the
realistic estimate for maximal nonequilibrium noise above
its thermal level is (�SI/GTc0)max � 2, as shown in Fig. 2
(right). Similar estimates can be carried out for zinc and

lead nanowires. All these parameters are within the reach of
current nanoscale fabrication technology and high precision
measurements.

Formalism. As a technical tool to derive Eq. (1), we
use the Keldysh technique built into the framework of the
nonlinear-sigma-model (NLσM) [52–54]. For the above spec-
ified conditions, separation of the length scales l � ξ (0) �
L � ξ (T ) implies a diffusive limit and the quantum action
of the device under consideration (Fig. 1) is given by the
following expression S = SQ + S� + ST + SH , where

SQ = iπ

δ
Tr(−τ̂3∂t Q̂ + i�̂Q̂), S� = − 2

λδ
Tr( ��†σ̂1 ��),

(8a)

ST = i

16

∑
k=1,2

gkTr
{
Q̂

[χ]
k ,Q̂

}
, SH = iπ

8δτH

Tr(τ̂3Q̂)2.

(8b)

Here δ is the mean level spacing in the island, and λ is the
coupling constant in the Cooper channel. The two sets of Pauli
matrices τ̂i and σ̂i are operating in the Gor’kov-Nambu (N)
and Keldysh (K) subspaces, respectively. Additionally, Tr(. . .)
implies a trace over all matrices and continuous indices while
curly brackets {,} stand for the anticommutator. The action
SQ represents coupling between the Q̂tt ′-matrix field and the
superconducting order parameter field �̂(t). The former is
essentially a local in space electronic Green’s function in
the island which is a matrix in K ⊗ N ⊗ T (time) spaces.
The superconducting part of the action S� stems from the
Hubbrd-Stratonovich decoupling of a bare four-fermion BCS
interaction term, which is done by introducing the �̂ field.
The action is subject to the nonlinear constraint Q̂2 = 1. As
usual for the Keldysh theory [55], all fields come in doublets of
classical and quantum components. The former obey equations
of motion, and the latter serve to generate these equations along
with the corresponding stochastic noise terms. In particular,

�̂ = �̂cσ̂0 + �̂q σ̂3,
(9)

�̂α =
(

0 �α

−�∗α 0

)
N

, �� =
(

�c

�q

)
.

The action ST describes the coupling of the Q̂ matrix in the
island to those in the leads,

Q̂
[χ]
k =

(
ĥk −(1 − ĥk)eiχk τ̂3

−(1 + ĥk)e−iχk τ̂3 −ĥk

)
K

τ̂3, (10)

where ĥk = h(ε − eVkτ̂3) = tanh( ε−eVk τ̂3
2T

) is the distribution
function and χk is the counting field. The latter is essentially
a quantum component of the vector potential which serves to
generate observable current and its higher moments. Finally,
the SH part of the action accounts for the dephasing term of
Cooper pairs due to the magnetic field. The action S[Q,�,χ ]
defines the nonequilibrium partition function via the functional
integral over all possible realizations of Q̂ and �̂,

Z(χ ) =
∫

D[Q,�] exp (iS[Q,�,χ ]) . (11)
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Knowledge of Z yields all desired cumulants for cur-
rent fluctuation by the simple differentiation 〈I n〉 =
(e/t0)n(−i∂χ )n lnZ(χ ).

Technicalities. When computing the path integral in Eq.
(11) we need to identify such a configuration of the Q̂-matrix
field that realizes the saddle point of the action Eq. (8a).
For this purpose one needs a parametrization of the Q̂ field
which explicitly resolves the nonlinear constraint Q̂2 = 1.
We adopt the exponential parametrization Q̂ = e−iŴ Q̂0e

iŴ

with {Ŵ ,Q̂0} = 0, where the matrix multiplication in the
time space is implicitly assumed. A new matrix field Ŵtt ′

accounts for the rapid fluctuations of Q̂ associated with the
electronic degrees of freedom and is to be integrated out, while
Q̂0 is the stationary Green’s function. Minimizing the action
Eq. (8a) with respect to Ŵ , one finds the following saddle
point equation for Q̂0,

δ

8π

∑
k

gk

[
Q̂0,Q̂

[χ]
k

] = −{τ̂3∂t ,Q̂0} + i[�̂,Q̂0]

+ 1

4τH

[τ̂3Q̂0τ̂3,Q̂0], (12)

which is merely a zero-dimensional version of the Usadel
equation. In the stationary case and without superconducting
correlations, Eq. (12) is solved by such a Q̂0 that nullifies the
commutator in the left-hand side. This immediately suggests
a solution for Q̂0 that has to be chosen as a linear combination
of the Q̂ matrices in the leads,

Q̂0 = (
α1Q̂

[χ]
1 + α2Q̂

[χ]
2

)
/
√

Nχ, (13)

Nχ = 1

(g1 + g2)2

(
g2

1 + g2
2 + g1g2

{
Q̂

[χ]
1 ,Q̂

[χ]
2

})
, (14)

where the factor Nχ ensures proper normalization. If one now
uses Eqs. (13) and (14) back in the action Eq. (8a), then the
partition function of the normal double tunnel junction follows
immediately, in agreement with Ref. [29].

The next step is to integrate out the fluctuations around the
saddle point. To this end, we linearize Eq. (12) with respect
to δQ̂0 = 2iQ̂0Ŵ , and solve for the Cooperon matrix field Ŵ

to linear order in the superconducting field �̂ by passing to
Fourier space to invert the matrix equation. The result is

Ŵεε′ = i

2

i�χ + (ε + ε′)τ̂3Q̂0

�2
χ + (ε + ε′)2 [�̂,Q̂0], (15)

where �χ = τ−1
H + ETh

√
Nχ . Integrating over Ŵ at the

Gaussian level in Eq. (11),
∫

D[W ] exp(iS[W,�,χ ]) =
exp(iS[�,χ ]), one arrives at the effective action written in
terms of the superconducting order parameter only,

S[�,χ ] = Sa[�,χ ] + Sb[�,χ ] + S�, (16a)

Sa = π

2δ
Tr

[
Ĉa

εε′ (Q̂0(ε)�̂ε−ε′�̂ε′−ε

+ �̂ε−ε′�̂ε′−εQ̂0(ε′))
]
, (16b)

Sb = π

2δ
Tr

[
Ĉb

εε′ (�̂ε−ε′�̂ε′−ε

− �̂ε−ε′Q̂0(ε′)�̂ε′−εQ̂0(ε))
]
, (16c)

where Ĉa
εε′ = i(ε + ε′)τ̂3/[(ε + ε′)2 + �2

χ ] and Ĉb
εε′ =

�χ τ̂0/[(ε + ε′)2 + �2
χ ] are Cooperon propagators. For tech-

nical reasons of convenience, with the intermediate steps of
the calculations we choose to work in the gauge χ1 = α2χ

and χ2 = −α1χ , and similarly for the voltages V1 = α2V

and V2 = −α1V . Carrying out matrix products, traces, and
integrations with the help of Eqs. (9), (10), and (13), one
eventually finds

S[�,χ ] = π

4δ
Tr[ ��†

−ω�̂ω(V,�T,χ ) ��ω], (17a)

�̂ω =
(

−iχ2
v φ E − iω/Tc − χ2

v η

E + iω/Tc − χ2
v η 2i

)
.

(17b)

Here we have used the notation χ2
v = χ2 − ieV χ/Tc. Equa-

tion (17a) represents a time-dependent Ginzburg-Landau
action for nonequilibrium superconducting fluctuations. Off-
diagonal elements (retarded and advanced blocks) of the prop-
agator matrix �̂ω carry information about the excitation spec-
trum of fluctuations. The Keldysh block (quantum-quantum el-
ement of the matrix ∝�q�∗q) ensures fluctuation-dissipation
relations. The anomalous classical-classical block accounts for
the feedback of stochastic Langevin forces of fluctuations due
to the nonequilibrium quasiparticle background.

Performing the remaining path integration over � in
Eq. (11) with the action from Eq. (17a), one realizes that
the corresponding cumulant generation function for current
fluctuations is governed by the determinant of the Ginzburg-
Landau propagator [Eq. (17b)], namely, ln �Z ∝ det �̂ω. We
regularize det �̂ω by normalizing it to itself taken at zero count-
ing field, det �̂ω → det �̂ω(χ )/ det �̂ω(0), and thereby find

ln �Z = t0

∫
dω

2π
ln

[
1 − 2χ2

v (φ + Eη)

E2 + ω2/T 2
c

]
, (18)

which upon final integration reduces to Eq. (1). From the
structure of the effective action (16a), and also relying
on previous studies [37,49], one can identify the essential
physical processes affecting conductance and noise. The first
Sa term in the effective action corresponds to the density
of states effect. Superconducting fluctuations suppress the
quasiparticle density of states near the Fermi level that
translate into a zero-bias conductance dip [56]. The second Sb

term of the action corresponds to the inelastic Maki-Thompson
process [57], which can be thought of as resonant electron
scattering on the preformed Cooper pairs. The combined
effect of the two processes has a profound implication for the
higher cumulants of the current noise. The final remark is that
the Aslamazov-Larkin fluctuational correction [58] is absent
in our case since we are considering a zero-dimensional limit
while the latter relies essentially on the spatial gradients of
the superconducting order parameter.
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